
Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 1–2,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Increasing Maintainability of NLP Evaluation Modules Through Declarative
Implementations

Terry Heinze
Research & Development Department

Thomson Corporation
Eagan, MN 55123

terry.heinze@thomson.com

Marc Light
Research & Development Department

Thomson Corporation
Eagan, MN 55123

marc.light@thomson.com

Abstract

Computing precision and recall metrics for named
entity tagging and resolution involves classifying
text spans as true positives, false positives, or false
negatives. There are many factors that make this
classification complicated for real world systems.
We describe an evaluation system that attempts to
control this complexity through a set of rules and a
forward chaining inference engine.

1 Introduction

Computing precision and recall metrics for named entity
recognition systems involves classifying each text span
that the system proposes as an entity and a subset of the
text spans that the gold data specifies as an entity. These
text spans must be classified as true positives, false posi-
tives, or false negatives.

In the simple case, it is easy to write a procedure to
walk through the list of text spans from the system and
check to see if a corresponding text span exists in the gold
data with the same label, mark the text span as true posi-
tive or false positive accordingly, and delete the span from
the gold data set. Then the procedure need only walk
through the remaining gold data set and mark these spans
as false negatives. The three predicates are the equality
of the span’s two offsets and the labels. This evaluation
procedure is useful for any natural language processing
task that involves finding and labeling text spans.

The question this poster addresses is how best to man-
age the complexity of the evaluation system that results
from adding a number of additional requirements to the
classification of text spans. The requirements may in-
clude fuzzy extent predicates, label hierarchies, confi-
dence levels for gold data, and collapsing multiple men-
tions in a document to produce a single classification. In
addition, named entity tasks often also involve resolving
a mention of an entity to an entry in an authority file (i.e.,

record in a relational database). This extension also re-
quires an interleaved evaluation where the error source is
important.

We started with a standard procedural approach, en-
coding the logic in nested conditionals. When the nesting
reached a depth of five (e.g., Figure 1), we decided to try
another approach. We implemented the logic in a set of
rules. More specifically, we used the Drools rules and for-
ward chaining engine (http://labs.jboss.com/drools/) to
classify text spans as true positives, false positives, and/or
false negatives. The procedural code was 379 lines long.
The declarative system consists of 25 rules with 150 lines
of supporting code. We find the rules more modular and
easier to modify and maintain. However, at this time, we
have no experimental result to support this opinion.

2 Added Complexity of the Classification
of Text Spans for Evaluation

Matching extents and labels: A system text span may
overlap a gold data span but leave out, say, punctuation.
This may be deemed correct but should be recorded as a
fuzzy match. A match may also exist for span labels also
since they may be organized hierarchically (e.g, cities and
countries are kinds of locations). Thus, calling a city a
location may be considered a partial match.

Annotator Confidence: We allowed our annotators to
mark text span gold data with an attribute of “low con-
fidence.” We wanted to pass this information through to
the classification of the spans so that they might be fil-
tered out for final precision and recall if desired.

Document level statistics: Some named entity tagging
tasks are only interested in document level tagging. In
other words, the system need only decide if an entity is
mentioned in a document: how many times it is men-
tioned is unimportant.

Resolution: Many of our named entity tagging tasks
go a step further and also require linking each entity men-
tion to a record in a database of entities. For error anal-

1

ysis, we wished to note if a false negative/positive with
respect to resolution is caused by the upstream named
entity tagger. Finally, our authority files often have many
entries for the same entity and thus the gold data contains
multiple correct ids.

for (annotations)
if(extents & labels match)

if(ids match => TP res)
if(notresolved => TN res)
else if(single id => TP res)
else if(multiple ids => contitional TP res)
else error

else
if(gold id exists)

if(gold id uncertain => FP res low confidence)
else => FP res

else
if(fuzzy extents & labels match)

if(ids match)
if(no gold id => TN res)
else if(multiple ids => conditional TP res)
else => fuzzy TP res

else ...

Figure 1: Nested conditionals for instance classification

3 Using Rules to Implement the Logic of
the Classification

The rules define the necessary conditions for membership
in a class. These rules are evaluated by an inference en-
gine, which forward chains through the rule set. In this
manner, rules for fuzzy matches, for handling gold data
confidence factors, and for adding exclusionary condi-
tions could be added (or removed) from the rule set with-
out modifying procedural code.

rule “truepositive” salience 100
sa : SourceAnnotation(assigned == false)
ta : TargetAnnotation(type == sa.type,

beginOffset == sa.beginOffset, endOffset == sa.endOffset)
then sa.setResult(“TP”);

rule “false positive” salience 90
sa : SourceAnnotation(assigned == false)
not TargetAnnotation(type == sa.type,

beginOffset == sa.beginOffset, endOffset == sa.endOffset)
then sa.setResult(“FP”);

rule “false negative” salience 80
ta : TargetAnnotation(assigned == false)
not SourceAnnotation(type == ta.type,

beginOffset == ta.beginOffset, endOffset == ta.endOffset)
then ta.setResult(”FN”);

Figure 2: Rules for instance classification

Three rules were needed to determine the basic col-
lection level metrics. The results of these rules were
then passed on to the next sets of rules for modification
for conditional checks. We use agenda groups and rule
salience to control the firing precedence within the rule

sets. In Figure 2, we present an example of the sort of
rules that are defined.

For example, the determination of true positives was
made by firing the “true positive” rule whenever an an-
notation from the system matched an annotation from
the gold data. This occurred if the entity type and off-
sets were equal. This rule was given higher salience than
those for true negatives and false positives since it had the
effect of removing the most candidate annotations from
the working memory.

Note that because we use a Java implementation that
adheres to JSR94, all of the rules apply their conditions
to Java objects. The syntax for tautologies within the con-
dition statements, refer to bean properties within the en-
closing object.

In Figure 3, we show first, a modification to add a fuzzy
metric rule that checks false negative annotations to see if
they might be a fuzzy match. Second, we show a rule that
removes false positives that are defined in a stop-word
list.

rule“fuzzy check” agenda-group “FuzzyMatch”
ta : TargetAnnotation(result == ”FN”);
sa : SourceAnnotation(type == ta.type, result == ”FP”,

ta.beginOffset < endOffset, ta.endOffset > beginOffset);
eval(ifFuzzyMatch(sa.getText(), ta.getText(), sa.getType()));

then sa.setResult(”FzTP”);
rule “filter FP” salience 10 agenda-group “Filter”

sa : SourceAnnotation(result == “FP”);
eval(DexterMetrics.ifStopWord(sa.getText(), sa.getType()));

then sa.setResult(sa.getResult() + “-ignored:stop word”);

Figure 3: Rules for modified classification

4 Conclusion
We described some of the complexities that our evalua-
tion module had to deal with and then introduce a rule-
based approach to its implementation. We feel that this
approach made our evaluation code easier to understand
and modify. Based on this positive experience, we sug-
gest that other groups try using rules in their evaluation
modules.

2

