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Abstract

This paper describes an effective approach
to adapting an HPSG parser trained on the
Penn Treebank to a biomedical domain. In
this approach, we train probabilities of lex-
ical entry assignments to words in a tar-
get domain and then incorporate them into
the original parser. Experimental results
show that this method can obtain higher
parsing accuracy than previous work on do-
main adaptation for parsing the same data.
Moreover, the results show that the combi-
nation of the proposed method and the exist-
ing method achieves parsing accuracy that is
as high as that of an HPSG parser retrained
from scratch, but with much lower training
cost. We also evaluated our method in the
Brown corpus to show the portability of our
approach in another domain.

Introduction

et al., 2006) trained on the WSJ section of the Penn
Treebank (Marcus et al., 1994) to a biomedical do-
main. Our method re-trains a probabilistic model of
lexical entry assignments to words in a target do-
main, and incorporates it into the original parser.
The model of lexical entry assignments is a log-
linear model re-trained with machine learning fea-
tures only of word n-grams. Hence, the cost for the
re-training is much lower than the cost of training
the entire disambiguation model from scratch.

In the experiments, we used an HPSG parser orig-
inally trained with the Penn Treebank, and evaluated
a disambiguation model re-trained with the GENIA
treebank (Kim et al., 2003), which consists of ab-
stracts of biomedical papers. We varied the size of
a training corpus, and measured the transition of the
parsing accuracy and the cost required for parameter
estimation. For comparison, we also examined other
possible approaches to adapting the same parser. In
addition, we applied our approach to the Brown cor-
pus (Kucera and Francis, 1967) in order to examine

Domain portability is an important aspect of the apPortability of our approach.

plicability of NLP tools to practical tasks. There-

The experimental results revealed that by sim-

fore, domain adaptation methods have recently beéy re-training the probabilistic model of lexical en-
proposed in several NLP areas, e.g., word sense digy assignments we achieve higher parsing accuracy
ambiguation (Chan and Ng, 2006), statistical parghan with a previously proposed adaptation method.
ing (Lease and Charniak, 2005; McClosky et al.In addition, combined with the existing adaptation
2006), and lexicalized-grammar parsing (Johnsomethod, our approach achieves accuracy as high as
and Riezler, 2000; Hara et al., 2005). Their aim wathat obtained by re-training the original parser from
to re-train a probabilistic model for a new domain ascratch, but with much lower training cost. In this
low cost, and more or less successfully improved theaper, we report these experimental results in detail,
accuracy for the domain.
In this paper, we propose a method for adaptingntry assignments contribute to domain adaptation.
an HPSG parser (Miyao and Tsuijii, 2002; Ninomiya In recent years, it has been shown that lexical in-
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formation plays a very important role for high accu- Lexical Entries
racy of lexicalized grammar parsing. Bangalore and [sBsonr ] [S5aea e | [SioT: H
Joshi (1999) indicated that, correct disambiguation John has come
with supertagging, i.e., assignment of lexical entries
before parsing, enabled effective LTAG (Lexical-
ized Tree-Adjoining Grammar) parsing. Clark and
Curran (2004a) showed that supertagging reduced
cost for training and execution of a CCG (Combina-
tory Categorial Grammar) parser while keeping ac-

SUBCAT <verb> SUBCAT <noun>

Grammar Rule

HEAD }
[SUBCAT <[2]>

[HEAD ] [HEAD ]

SUBCAT <[1}> SUBCAT <[2}>

HEAD rzoun] [HEAD verb ] [HEAD verb ]

curacy. Clark and Curran (2006) showed that a CCG SUBCAT <>1 L SUBCAT <vert>J - L SUBCAT <nour>
parser trained on data derived from lexical category John has come
sequences alone was only slightly less accurate than ‘_HE:b

one trained on complete dependency structures. Ni- | S580AT o
nomiya et al. (2006) also succeeded in significantly HEAD ] [HEAD@’b ]

SUBCAT <> SUBCAT <verb> SUBCAT <noun>.

improving speed and accuracy of HPSG parsing by

using supertagging probabilities. These results indi- John has come

cate that the probability of lexical entry assignments

is essential for parse disambiguation. Figure 1: Parsing a sentencéohn has comeg
Such usefulness of lexical information has also F1er0ues

been shown for domain adaptation methods. Lease SUBCAT <>

and Charniak (2005) showed how existing domain-

specific lexical resources on a target domain may be [HERD et o]

leveraged to augment PTB-training: part-of-speech

tags, dictionary collocations, and named-entities. HEAD v | [HEAD ey ] [HEAD It ]

SUBCAT <> SUBCAT <verb> SUBCAT <noun>

Our findings basically follow the above results. The
contribution of this paper is to provide empirical re-
sults of the relationships among domain variationF
probability of lexical entry assignment, training dat
size, and training cost. In particular, this paper em-
pirically shows how much in-domain corpus is re-
quired for satisfiable performance. lexical entries express word-specific characteristics.
In Section 2, we introduce an HPSG parser andihe structures of sentences are explained using com-
describe an existing method for domain adaptatiofinations of grammar rules and lexical entries.
In Section 3, we show our methods of re-training Figure 1 shows an example of HPSG parsing of
a lexical disambiguation model and incorporatinghe sentenceJohn has comeFirst, as shown at the
it into the original model. In Section 4, we exam-top of the figure, an HPSG parser assigns a lexical
ine our method through experiments on the GENI&ntry to each word in this sentence. Next, a gram-
treebank. In Section 5, we examine the portabilitynar rule is assigned and applied to lexical entries. At
of our method through experiments on the Browihe middle of this figure, the grammar rule is applied
corpus. In Section 6, we showed several recent r& the lexical entries forfas’ and “come” We then

John has come

igure 2: An HPSG parse tree for a sentendehh
as comg

searches related to domain adaptation. obtain the structure represented at the bottom of the
figure. After that, the application of grammar rules
2 An HPSG Parser is done iteratively, and then we can finally obtain the

parse tree as is shown in Figure 2. In practice, since
HPSG (Pollard and Sag, 1994) is a syntactic théwo or more parse candidates can be given for one
ory based on lexicalized grammar formalism. Irsentence, a disambiguation model gives probabili-
HPSG, a small number of grammar rules describiges to these candidates, and a candidate given the
general construction rules, and a large number diighest probability is then chosen as a correct parse.
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The HPSG parser used in this study is Ninomiy
et al. (2006), which is based d&nju (Miyao and
Tsuijii, 2005). Lexical entries of Enju were extracte
from the Penn Treebank (Marcus et al., 1994), which

Fable 1: Features for the probabilities of lexical en-
OIIry selection

surrounding words~ w_jwows (word trigram)
surrounding POS tags p_ap_1pop1p2 (POS 5-gram)

consists of sentences collected from The Wall Street—combinations W_ 110, W, P10, Patlo,
Journal (Miyao et al., 2004). The disambiguation D1Wo, PoP1P2P3, P—2P—1P0,
model of Enju was trained on the same treebank. P=1PoP1, PopLP2, P=2P—1,

P—1Po, PoP1, P1P2

The disambiguation model of Enju is based on
a feature forest model (Miyao and Tsujii, 2002),

which is a log-linear model (Berger et_ f_;ll., 1996) OTharsing accuracy as high as Miyao and Tsuijii (2005),
packed forest structure. The probabilipys (1{w),  \yith around four times faster parsing speed.
of producing the_parsg restulfor a given sentence Johnson and Riezler (2000) suggested the pos-
w = (w1,...,wy) is defined as sibility of the method for adapting a stochastic
unification-based grammar including HPSG to an-
other domain. They incorporated auxiliary distribu-
tions as additional features for an original log-linear
Z, = Z lem(li|w,i) - Qayn (E]) model, and then attempted to assign proper weights
teT(w) i to the new features. With this approach, they suc-
wherel = (I;,...,1,) is a list of lexical entries as- ceeded in decreasing to a degree indistinguishable

signed tow, p..(li|w,i) is a probabilistic model Sentences for a target grammar.

giving the probability that lexical entrly is assigned ~ Our previous work proposed a method for adapt-
to word w;, gsyn(#|1) is an unnormalized log-linear ing an HPSG parser trained on the Penn Treebank
model of tree construction and gives the possibilto & biomedical domain (Hara et al., 2005). We
ity that parse candidateis produced from lexical re-trained a disambiguation model of tree construc-
entriesl, and7'(w) is a set of parse candidates astion, i.e., gsyn, for the target domain. In this ap-
signed tow. With a treebank of a target domain asProach, gsy, of the original parser was used as a
training data, model parametersygf, andg;,, are reference distributiorfJelinek, 1998) of another log-
estimated so as to maximize the log-likelihood of théinear model, and the new model was trained using a

1 .
p(tw) = o T pree Gslw, 1) - gy (11,

training data. target treebank. Since re-training used only a small
Probabilistic modep,.,, is defined as a log-linear treebank of the target domain, the cost was small and
model as follows. parsing accuracy was successfully improved.
) i : : :
s ) = 1 exp Z)\jfj(liawyi) , 3 Re tra_lnlng ofa Dlsqmblguatlon Model
wi - of Lexical Entry Assignments

biguation model of lexical entry assignments for the
target domain and then incorporate it into the origi-
where L(w;) is a set of lexical entries which cannal parser. Since Enju includes the disambiguation
be assigned to worda;. Before training this model, model of lexical entry assignments pag,, we can
L(w;) for all w; are extracted from the training tree-implement our method in Enju by training another
bank. The feature functiofy(/;, w, ) represents the disambiguation model;, (/;|w,i) of lexical entry
characteristics of;, w andw;, while corresponding assignments for the biomedical domain, and then re-
); is its weight. For the feature functions, instead oplacing the originap;., with the newly traineg;,, .
using unigram features adopted in Miyao and Tsujii In this paper, forp; ., we train a disambigua-
(2005), Ninomiya et al. (2006) used “word trigram”tion modelp;c, mi.(l;|w,7) of lexical entry assign-
and “POS 5-gram” features which are listed in Taments. pje;_miz IS @ maximum entropy model and
ble 1. With the revised Enju model, they achievedhe feature functions for it is the same mg, as

) Our idea of domain adaptation is to train a disam-

Zui= Y exp (Z Aj fi(li, w, i)

;€L (w;) J
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given in Table 1. With these feature functions, we The “baseline” method does no adaptation to the
train pie..miz ON the treebanks both of the originalbiomedical domain, and therefore gives lower pars-
and biomedical domains. ing accuracy for the domain than for the original do-
In the experiments, we examine the contributiomain. This method is regarded as the baseline of
of our method to parsing accuracy. In addition, wehe experiments. The “GENIA only” method relies
implement several other possible methods for consolely on the treebank for the biomedical domain,
parison of the performances. and therefore it cannot work well with the small tree-
bank. The “Mixture” method is a kind of smoothing
method using all available training data at the same

GENIA only: execute the same method of trainingiMe, and therefore the method can give the highest
the disambiguation model of Enju, using only2ccuracy of the thre'e, Whlch_would be regarded as
the GENIA treebank the ideal accuracy with the naive methods. However,

training this model is expected to be very costly.

Mixture: execute the same method of training the The “baseline (lex),” “GENIA only (lex),” and
disambiguation model of Enju, using both of“Mixture (lex)” approaches rely solely on models of
the Penn Treebank and the GENIA treebank (Rxical entry assignments, and show lower accuracy
kind of smoothing method) than those that contain both of models of lexical en-

HMTO5: execute the method proposed in our pret—ry assignments an'o'l tree cc_)ns_tructions.' These ap-

. proaches can be utilized as indicators of importance
vious work (Hara et al., 2005) .
of combining the two types of models.

Our method: replace p;., in the original model ~ Our previous work (Hara et al., 2005) showed that
With pjes—miaz, While |eavingqsyn asitis the model trained with the “HMTO05” method can

give higher accuracy than the “baseline” method,

Our method (GENIA): replacep,., in the original  eyen with the small amount of the treebanks in the
model withpie; —genia, Which is a probabilistic piomedical domain. The model also takes much less
model of lexical entry assignments trained only.ost to train than with the “Mixture” method. How-
with the GENIA treebank, while leavings,.  ever, they reported that the method could not give as
asitis high accuracy as the “Mixture” method.

baseline: use the original model of Enju

Our method + GENIA: replaceplez.ln the original 4 Experiments with the GENIA Corpus
model Withp;e,—mix andQSyn with dsyn—genia>
which is a disambiguation model of tree con4.1  Experimental Settings

struction trained with the GENIA treebank . . :
uet I w We implemented the models shown in Section 3,

Our method + HMTO5: replacep,., in the orig- and then evaluated the performance of them. The
inal model With pje;—mix and gs,, with the original parser, Enju, was developed on Section 02-
model re-trained with our previous method21 of the Penn Treebank (39,832 sentences) (Miyao
(Hara et al., 2005) (the combination of ourand Tsujii, 2005; Ninomiya et al., 2006). For
method and the “HMT05” method) training those models, we used the GENIA tree-

_ _ _ ~ bank (Kim et al., 2003), which consisted of 1,200
baseline (lex):use onlyp,., as a disambiguation gpgiracts (10,848 sentences) extracted from MED-
model LINE. We divided it into three sets of 900, 150, and

GENIA only (Iex): use onlypies genia @S a disam- 150 abstracts (8,127, 1,361, anc! 1,360 sentgnces),
biguation model, which is a brobabilistic mOOIeIand these sets were used res_pectlvely as training, de-
of lexical entry assignments trained only Withvelopmept, and final _evalgatlon data. The method
the GENIA treebank of Gaussian MAP estimation (Chen and Rosenfeld,

1999) was used for smoothing. The meta parameter

Mixture (lex): use onlyp;.._mi» @S a disambigua- o of the Gaussian distribution was determined so as

tion model to maximize the accuracy on the development set.
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Figure 3: Corpus size vs. accuracy for various methods

In the following experiments, we measured thesize of the training set and the training time among
accuracy of predicate-argument dependencies dme given models respectively. Table 2 and Table 3
the evaluation set. The measure is labeled pre@ghow the parsing performance and the training cost
sion/recall (LP/LR), which is the same measure agbtained when using 900 abstracts of the GENIA
previous work (Clark and Curran, 2004b; Miyao andreebank. Note that Figure 4 does not include the
Tsuijii, 2005) that evaluated the accuracy of lexicalresults of the “Mixture” method because only the
ized grammars on the Penn Treebank. method took too much training cost as shown in
. Table 3. It should also be noted that training time
The features for the examined approaches Werﬁ Fiqure 4 includes time required for both trainin
all the same as the original disambiguation model" "'9ure cludes time required for both fraining

. “ » and development tests. In Table 2, accuracies with
In our previous work, the features for “HMTO05

models other than “baseline” showed the significant

were tuned to some extent. We evened out the feg.— ) o . o
. . ifferences from “baseline” according to stratified
tures in order to compare various approaches under

the same condition. The lexical entries for trainingShummg test (Cohen, 19.95) with p-valug.05.
In the rest of this section we analyze these exper-

each model were extracted from the treebank used

for training the model of lexical entry assignments.'!nental resu!ts by fogusmg malnly'on the contribu-
tion of re-training lexical entry assignment models.

We compared the performances of the given moda/e first observe the results with the naive or existing
els from various angles, by focusing mainly on theapproaches. On the basis of these results, we evalu-
accuracy against the cost. For each of the modelste the impact of our method. We then explore the
we measured the accuracy transition according ombination of our method with other methods, and
the size of the GENIA treebank for training and acanalyze the errors for our future research.
cording to the training time. We changed the size . . o
of the GENIA treebank for training: 100, 200, 300,42 Exploring Naive or Existing Approaches
400, 500, 600, 700, 800, and 900 abstracts. Figuk¥ithout adaptation, Enju gave the parsing accuracy
3 and 4 show the F-score transition according to thef 86.39 in F-score, which was 3.42 point lower than
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Figure 4: Training time vs. accuracy for various methods

that Enju gave for the original domain, the Penrthe other hand, when we compared the “HMT05”
Treebank. This is the baseline of the experiments. method with the “GENIA only” method, for the

Figure 3 shows that, for less than about 4,5051 gﬁ; dsiflezsoée;gealt;rslglntgr]]ec?(r;pEulfli Aﬂ;(rall H r'::';?}i d
training sentences, the “GENIA only” method could_m y y

not obtain as high parsing accuracy as the “baseling? PArsing accuracy and training cost.
method. This result would indicate that the training;.3  |mpact of Re-training a Lexical
data would not be sufficient for re-training the whole Disambiguation Model

disambiguation model from scratch.  However, i hen we focused on our method, it could constantly

we prepared more than about 4,500 sentences, tgﬁle higher accuracy than the “baseline” and the

method could give higher accuracy than baseIme“HMTOS” methods. These results would indicate

with low training cost (see Figure 4). On the other L P
hand, the “Mixture” method could obtain the high_that, for an individual method, re-training a model of

: ) lexical entry assignments might be more critical to
est level of the parsing accuracy for any size of th y g g

GENIA treebank. However, Table 3 shows that this omain adaptatlo_n . than re-training that of tree con-
: o struction. In addition, for the small treebank, our
method required too much training cost. It would be . . . .y
) . . method could give as high accuracy as the “Mixture
a major barrier for further challenges for improve- . S
. . o method with much lower training cost. Our method
ment with various additional parameters. e .
would be a very satisfiable approach when applied
The “HMTO05” method could give higher accu- with a small treebank. It should be noted that the re-
racy than the “baseline” method for any size of thérained lexical model could not solely give the ac-
training sentences although the accuracy was loweuracy as high as our method (see “Mixture (lex)”
than the “Mixture” method. The method could alsan Figure 3). The combination of a re-trained lexi-
be carried out in much smaller training time andtal model and a tree construction model would have
lower cost than the “Mixture” method. These pointgyiven such a high performance.

would be the benefits of the “HMTO05” method. On When we compared the training time for our
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Table 2: Parsing accuracy and time for various methods

For GENIA Corpus For Penn Treebank
LP LR F-score| Time LP LR F-score Time
baseline 86.71| 86.08| 86.39 | 476 sec.| 89.99 | 89.63| 89.81 675 sec.
GENIA only 88.99 | 87.91| 88.45 | 242sec.| 72.07 | 45.78 | 55.99 | 2,441 sec.
Mixture 90.01| 89.87| 89.94 | 355sec.| 89.93| 89.60| 89.77 767 sec.
HMTO05 88.47| 87.89| 88.18 | 510sec.| 88.92| 88.61| 88.76 778 sec.
Our method 89.11| 88.97| 89.04 | 327 sec.| 89.96 | 89.63 | 89.79 713 sec.
Our method (GENIA) | 86.06 | 85.15| 85.60 | 542 sec.| 70.18 | 44.88 | 54.75 | 3,290 sec.
Our method + GENIA| 90.02 | 89.88| 89.95 | 320sec.| 88.11| 87.77| 87.94 718 sec.
Our method + HMTO5| 90.23 | 90.08 | 90.15 | 377 sec.| 89.31| 88.98 | 89.14 859 sec.
baseline (Iex) 85.93| 85.27| 85.60 | 377 sec.| 87.52 | 87.13| 87.33 553 sec.
GENIA only (lex) 87.42| 86.28 | 86.85 | 197 sec.| 71.49| 45.41| 55.54 | 1,928 sec.
Mixture (lex) 88.43 | 88.18 | 88.31 | 258 sec.| 87.49 | 87.12| 87.30 585 sec.
90
Table 3: Training cost of various methods
80
Training time | Memory used W

baseline Osec.| 0.00GByte =70

GENIA only 14,695 sec.| 1.10 GByte o

Mixture 238,576 sec| 5.05 GByte )

HMTO5 21,833 sec.| 1.10 GByte o ----PTB

Our method 12,957 sec.| 4.27 GByte S 50

Our method (GENIA) 1,419 sec.| 0.94 GByte —®— GENIA

Our method + GENIA 42,475 sec.| 4.27 GByte

Our method + HMTO5| 31,637 sec.| 4.27 GByte 40 A~ GENIA + PTB

baseline (lex) Osec.| 0.00 GByte 30

GENIA only (lex) 1,434 sec.| 1.10 GByte

Mixture (lex) 13,595 sec| 4.27 GByte 0 2000 4000 6000 8000

# of used sentences

Figure 5: Corpus size vs. coverage of each training
method with the one for the “HMTO05” method, set for the GENIA corpus
our method required less time than the “HMTO05”
method. This would be because our method required
only the re-training of the very simple model, that is,
a probabilistic model of lexical entry assignments.

Table 4: Coverage of each training set

. % of covered sentences
It should be noted that our method would not Training set for GENIA | forPTB
work only with in-domain treebank. The “Our STEE’;‘{A”gebE”k ;S-gggﬁ) gi-?ggﬁ)
” “ ” reepan . (1] . (1]
method (GENIA)” and the “GENIA only (Iex)"  GeniA treebank + PTB treebank 82.74% | 84.86 %

methods could hardly give as high parsing accuracy
as the “baseline” method. Although, for the larger

size_of th_e GE.NlA treebank, the meth?ds CQUI%A Effectiveness of Combining Lexical and
obtain a little hlghe_zr accuracy 'Fhan the “baseline Syntactic Disambiguation Models
method, the benefit was very little. These results
would indicate that only the treebank in the targetVhen we compared the “Our method + HMTO05"
domain would be insufficient for adaptation. Fig-and “Our method + GENIA’ methods with the
ure 5 shows the coverage of each training corpus féMixture” method, the former two models could
the GENIA treebank, which would also support thegive as the high parsing accuracies as the latter one
above observation. It shows that the GENIA treefor any size of the training corpus. In particular,
bank could not solely cover so much sentences iior the maximum size, the “Our method + HMT05”
the GENIA corpus as the combination of the Penmodels could give a little higher parsing accuracy
Treebank and the GENIA treebank. than the “Mixture” method. This difference was
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Table 5: Errors in various methods

Total errors = Common errors with baseline Specific errors
GENIA only 2,889 = 1,906 (65.97%) + 983 (34.03%)
Mixture 2,653 = 2,177 (82.06%) + 476 (17.94%)
HMTO05 3,063 = 2,470 (80.64%) + 593 (19.36%)
Our method 2,891 = 2,405 (83.19%) + 486 (16.81%)
Our method (GENIA) 3,153 = 2,070 (65.65%) + 1,083 (34.35%)
Our method + GENIA| 2,650 = 2,056 (77.58%) + 594 (22.42%)
Our method + HMTO05 2,597 = 1,943 (74.82%) + 654 (25.18%)
baseline 3,542

Total errors = Common errors with baseline (lex) +  Specifiomrsr
GENIA only (lex) 3,320 = 2,509 (75.57%) + 811 (24.43%)
Mixture (lex) 3,100 = 2,769 (89.32%) + 331 (10.68%)
baseline (lex) 3,757

mances in the point that the former could obtain

Table 6: Types of disambiguation errors high parsing accuracy with less training time than

# of errors the latter. This would come from the fact that the

Error cause Only for : . .
Common paseline| Adapted  latter method traineds,,, genia SOlely with lexical
Attachment ambiguity entries in the GENIA treebank, while the former one
prepositional phrase 12 12 6 trainedqs,, with rich lexical entries borrowed from
relative clause 0 1 0 yn * . .
adjective 4 2 2 Qrez—miz- RiCh lexical entries would decrease un-
adverb 11 3 1 known lexical entries, and therefore would improve
verb phrase 0 3 the effectiveness of making the feature forest model.
subordinate clause 0 2 0 ) A ] ;
Argument/modifier distinction On the other hand, the difference in lexical entries
to-infinitive | 0] 0] 7_ would not seem to affect so much on the contribu-
Lexical ambiguity tion of tree construction model to the parsing accu-
preposition/modifier 0 3 0 .
verb subcategorization framé 5 0 6 racy. In our experiments, the parameters for a tree
$articiple/adiective 0 2 0 construction model such as feature functions were
est set errors . . . .

ok | 7T 0] o not adjus'_[ed thorou_ghly, WhICh m!ght possibly blur
Other types of error causes the benefits of the rich lexical entries.
Comma 10 8 4
Noun phrase identification 21 5 8 45 Error Analysis
Coordination/insertion 6 3 5 ’
é‘;’}‘;’:‘)”‘)”” resolution ? 1 (2) Table 5 shows the comparison of the number of er-

rors for various models with that for the original
model in parsing the GENIA corpus. For each of
the methods, the table gives the numbers of common
shown to be significant according to stratified shuferrors with the original Enju model and the ones
fling test with p-value< 0.10, which might suggest specific to that method. If possible, we would like
the beneficial impact of the “Our method + HMTO5" our methods to decrease the errors in the original
method. In addition, Figure 4 and Table 3 shovwenju model while not increasing new errors. The ta-
that training the “Our method + HMTOS5” or “Our ple shows that our method gave the least percentage
method + GENIA" model required much less timeof newly added errors among the approaches except
and PC memory than training the “Mixture” model.for the methods utilizing only lexical entry assign-
According to the above observation, we would benents models. On the other hand, the “Our method
able to say that the “Our method + HMTO05” methody HMTO5"” approach gave over 25 % of newly added
might be the most ideal among the given methods.errors, although we considered above that the ap-

The “Our method + HMTO05” and “Our method proach gave the best performance.
+ GENIA" methods showed the different perfor- In order to explore this phenomenon, we observed
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the errors for the “Our method + HMTO05” and the

. - . Table 7: Domains in the Brown corpus
baseline models, and then classified them into sev- P

eral types. Table 6 shows manual classification of 'é‘ge' gggfl?:r‘ — sen;eztz:gs
causes of errors for the two models in 50 sentences. cG  belles lettres 2546
In the classification, one error often propagated and gf general flctldog e fict 3’21;4215
: ; : } mystery and detective fiction ,
resulted in multiple errors of'predlcate argument de CM  science fiction 615
pendencies. The numbers in the table include such cN  adventure and western fiction 3,521
double counting. It would be desirable that the er-  CP  romance and love story 3,089
in the rightmost column were less than the ones —or—umor 812
rorsin 9 Al total of all the above domains 19,395

in the middle column, which means that the “Our
method + HMTO05” approach did not produce more

errors specific to the approach than the baseline. For the target of adaptation, we utilized the do-

With the “Our method + HMTOS" approach, p,5in containing all of these 8 domains as a total fic-
errors for “attachment ambiguity” decreased as g, gomain (labelled “All") as well as the individual
whole. Errors for “comma” and lexical ambiguities ;o< As in the experiments with the GENIA Tree-
of “preposition/modifier” and “participle/adjective” bank, we divided sentences for each domain into
also decreased. For these attributes, the appro%rgee parts, 80% for training, 10% for develepment
could learn in the training phase lexical properties Qg ang 109 for final test. For the “All” domain, we
continuous words with the lexical entry assignment,oqeq all training sets, all development test sets,
model, and syntactic relations of separated wordg, | 5| fina| test sets for the 8 domains respectively.

with the tree construction model. On the other hand, Table 8 and 9 show the parsing accuracy and train-

the errors for “to-infinitive argument/modifier dis- ing time for each domain with the various methods

tm(.:t',(,m an'd verb §ubcategor|zat|on frame amb":?hown in Section 3. The methods are fundamen-
guity” considerably increased. These two types q

errors have close relation to each other because taIIy the same as in the experiments with the GE-
. . - A corpus except that the target corpus is replaced
failure to recognize verb subcategorization frames

with the Brown corpus. In order to avoid confusion,

tends to cause the failure to recognize the syntactic, replaced “GENIA” in the names of the meth-

rolethof the to—|nf|n|t|ve?.tWe muEt research furtherOCIS with “Brown” Each of the bold numbers in
On INese efrors in our future work. Table 8 means that it was the best accuracy given

When we focused on “noun phrase |dent|f|cafor the target domain. It should be noted that the

tion,” most of the errors did not differ between“CM,, and “CR” domain contains very small tree-

the two models. In the blomedlcgl domain, ther%ank, and therefore we must consider that the results
would be many technical terms which could not b?/vith these domains would not be so useful

correctly identified solely with the disambiguation
model, which would possibly result in such Manys > Evaluation of Portability of Our Method
untouched errors. In order to properly cope with
these terms, we might have to introduce some kindd/hen we focus on the "ALL" domain, the ap-
of dictionaries or named entity recognition methodsproaches other than the baseline succeeded to give
higher parsing accuracy than the baseline. This
5 Experiments with the Brown Corpus would show that these approaches were effective not
only for the GENIA corpus but also for the Brown
corpus. The “Mixture” method gave the highest ac-
We applied our methods to the Brown corpusuracy which was 3.41 point higher than the base-
(Kucera and Francis, 1967) and examined the porténe. The “Our method + HMTO05” approach also
bility of our method. The Brown corpus consists ofgave the accuracy as high as the “Mixture” method.
15 domains, and the Penn Treebank gives bracketbdaddition, as is the case with the GENIA corpus,
version of the corpus for the 8 domains containinghe approach could be trained with much less time
19,395 sentences (Table 7). than the “Mixture” method. Not only for these two

5.1 Brown Corpus
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Table 8: Parsing accuracy for the Brown corpus

F-score
ALL CF CG CK CL CM CN CP CR
baseline 83.09 || 85.75| 85.38| 81.12 | 77.53| 85.30 | 82.84 | 85.18 | 76.63
Brown only 84.84 | 77.65| 78.92| 75.72 | 70.56 | 50.02 | 78.38 | 79.10 | 50.34
Mixture 86.50 | 86.59 | 85.94 | 82.49 | 78.66 | 84.82 | 84.28 | 86.85 | 76.45
HMTO5 83.79 | 85.80 | 84.98 | 81.48 | 76.91 | 85.25| 83.50 | 85.66 | 77.15
Our method 86.14 | 86.73 | 85.74 | 82.77 | 77.95| 85.40 | 84.23 | 86.90 | 76.71

Our method (GENIA) || 84.71 | 78.49 | 79.63 | 75.43 | 70.86 | 50.24 | 78.49 | 79.69 | 51.82
Our method + GENIA|| 86.00 || 86.12 | 85.41 | 83.22 | 77.10 | 83.39 | 84.21| 85.77 | 76.91
Our method + HMTO5|| 86.44 || 86.76 | 85.85 | 82.90 | 77.70 | 85.61 | 84.43 | 86.87 | 77.48

baseline (lex) 82.19] 84.69| 83.85] 80.25| 76.32| 83.42| 81.29 | 84.13| 77.33
Brown only (lex) 83.92 || 77.12| 77.81 | 75.06 | 70.35| 49.95| 77.06 | 78.84 | 50.63
Mixture (lex) 85.29 || 85.47 | 84.18 | 81.88 | 77.22| 83.98 | 82.67 | 85.65| 77.58

Table 9: Consumed time for various methods for the Brownusrp

Consumed time for training (sec.)

ALL CF CG CK CL CM CN CP CR
baseline 0 0 0 0 0 0 0 0 0
Brown only 42,614 4,115 3,763 2,478 2,162 925 2,362 2,695 1,226
Mixture 383,557 190,449| 159,490 | 156,299 210,357 | 131,335| 170,108 | 224,045| 184,251
HMTO5 30,933 6,003 4,830 4,186 5,010 1,681 4,411 5,069 1,588
Our method 15,912 11,053 10,988 11,151 10,782 10,158 11,075 10,594 | 10,284
Our method (Brown) 3,273 312 373 310 249 46 321 317 86

Our method + Brown || 130,434| 24,633| 21,848| 20,171| 19,184| 11,995| 19,164| 20,922| 13,461
Our method + HMTO5|| 54,355| 17,722| 16,627 | 15,229| 14,914| 12,226| 15,760| 16,175| 11,724

baseline (lex) 0 0 0 0 0 0 0 0 0
Brown only (lex) 3,001 317 373 308 251 47 321 317 86
Mixture (lex) 21,148 11,128 | 11,251| 11,094| 10,728| 10,466| 11,151| 10,897 10,537

methods, the experimental results for the “All” do-lexical entry coverage between the “CL’ and the
main showed the tendency similar to the GENIlAother domains. As mentioned in the error analysis
corpus as a whole, except for the less improvemennt Section 4, the model of tree construction might
with the “HMTO05” method. affect the performance in some way. In our future
When we focus on the individual domains, ourwork’ we m_ust clarify the_ mechanism of this result
A . and would like to further improve the performance.
method could successfully obtain higher parsing ac-
curacy than the baseline_ for all the domains. Mpre6 Related Work
over, for the “CP” domain, our method could give
the highest parsing accuracy among the methodsor recent years, domain adaptation has been stud-
These results would support the portability of reied extensively. This section explores how our re-
training the model for lexical entry assignment. Thesearch is relevant to the previous works.
“Our method + HMTO05"” approach, which gave the Our previous work (Hara et al., 2005) and this
highest performance for the GENIA corpus, alsaesearch mainly focused on how to draw as much
gave accuracy improvement for the all domaindenefit from a smaller amount of in-domain anno-
while it did not give so much impact for the “CL” tated data as possible. Titov and Henderson (2006)
domain. The “Mixture” approach, which utilized also took this type of approach. They first trained a
the same lexical entry assignment model, could olprobabilistic model on original and target treebanks
tain 0.94 point higher parsing accuracy than thand used it to define a kernel over parse trees. This
“Our method + HMTO5” approach. Table 10, whichkernel was used in a large margin classifier trained
shows the lexical coverage with each domains, do@sm a small set of data only from the target domain,
not seem to indicate the noteworthy difference imnd the classifier was then used for reranking the top
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Table 10: Coverage of each training set for the Brown corpus

Training set % of covered sentences for the target corpus

9 ALL CF CG CK CL CM CN CP CR
Target treebank 74.99 % | 49.13 % | 50.00% | 47.97 % | 49.08 % | 29.66 % | 53.51 % | 64.01% | 8.57%
PTB treebank | 70.02% | 72.09 % | 68.93 % | 66.42 % | 68.87 % | 78.62 % | 70.00 % | 77.59 % | 47.14 %
Target + PTB 79.77% | 7471 % | 71.47 % | 71.59 % | 70.45% | 80.00% | 72.70 % | 80.39 % | 52.86 %

parses on the target domain. then succeeded to achieve accuracy improvement.

On the other hand, several studies have explordd'® Second approach is to expand lexical entries for
how to draw useful information from unlabelled in-& target domain. Szolovits (2003) extended a lexical

domain data. Roark and Bacchiani (2003) adaptedcgctionary for a target domain by predicting lexical
lexicalized PCFG by using maximum posteriori information for words. They transplanted lexidad
(MAP) estimation for handling unlabelled ao|a|0»[a_discernibilityof words in an original domain into a
tion data. In the field of classifications, Blitzer et alarget domain. Pyysalo et al. (2004) showed the ex-
(2006) utilized unlabelled corpora to extract featureBerimental results that this approach improved the
of structural correspondences, and then adaptedPgrformance of a parser for Link Grammar. Since
POS-tagger to a biomedical domain. Steedman 8t' re-trained model of lexical entry assignments
al. (2003) utilized a co-training parser for adaptaas shown to be unable to cope with this problem
tion and showed that co-training is effective everoperly (shown in Section 4), the combination of
across domains. McClosky et al. (2006) adapted #€ above approaches with our approach would be
re-ranking parser to a target domain by self-trainin§XPected to bring further improvement.

the parser with unlabelled data in the target domain’ Conclusions

Clegg and Shepherd (2005) combined several ex-

isting parsers with voting schemes or parse selegis paper presented an effective approach to adapt-
tion, and then succeeded to gain the improvemef{g an HPSG parser trained on the Penn Treebank
of performance for a biomedical domain. Althougho 3 biomedical domain. We trained a probabilis-
unsupervised methods can exploit large in-domaific model of lexical entry assignments in a target
data, the above studies could not obtain the acCdomain and then incorporated it into the original
racy as high as that for an original domain, eveparser. The experimental results showed that this
with the sufficient size of the unlabelled corporagpproach obtains higher parsing accuracy than the
On the other hand, we showed that our approacdkisting approach of adapting the structural model
could achieve this goal with about 6,500 labellecyjone. Moreover, the results showed that, the com-
sentences. However, when 6,500 labelled can not Bgation of our method and the existing approach
prepared, it might be worth while to explore the poroy|d achieve parsing accuracy that is as high as that
tentiality of combining the above unsupervised angptzined by re-training an HPSG parser for the target
our supervised methods. domain from scratch, but with much lower training
When we focuses on biomedical domains, thereost. With this model, the parsing accuracy for the
have also been various works which coped witharget domain improved by 3.84 f-score points, us-
domain adaptation. Biomedical sentences containg a domain-specific treebank of 8,127 sentences.
many technical terms which cannot be easily recodg=xperiments showed that 6,500 sentences are suffi-
nized without expert knowledge, and this damagegent for achieving as high parsing accuracy as the
performances of NLP tools directly. In order to solveébaseline for the original domain.
this problem, two types of approaches have been In addition, we applied our method to the Brown
suggested. The first approach is to utilize existingorpus in order to evaluate the portability of our
domain-specific lexical resources. Lease and Chamethod. Experimental results showed that the pars-
niak (2005) utilized POS tags, dictionary collocaing accuracy for the target domain improved by 3.35
tions, and named entities for parser adaptation, ariescore points. On the other hand, when we focused
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on some individual domains, that combination apM. Johnson and S. Riezler. 2000. Exploiting auxiliary

proach could not give the desirable results. distributions in stochastic unification-based grammars.
In future work, we would like to explore further " Proc. 1stNAACL

performance improvement of our approach. For thé D. Kim, T. Ohta, Y. Teteisi, and J. Tsujii. 2003. GE-

first step, domain-specific features such as namedN!A corpus - a semantically annotated corpus for bio-

entities could be much help for solving unsuccess- textmining. Bioinformatics 19(suppl. 1):i180-i182.

ful recognition of technical terms. H. Kucera and W. N. Francis. 1967Computational
Analysis of Present-Day American EnglistBrown
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