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Abstract

This paper describes an effective approach
to adapting an HPSG parser trained on the
Penn Treebank to a biomedical domain. In
this approach, we train probabilities of lex-
ical entry assignments to words in a tar-
get domain and then incorporate them into
the original parser. Experimental results
show that this method can obtain higher
parsing accuracy than previous work on do-
main adaptation for parsing the same data.
Moreover, the results show that the combi-
nation of the proposed method and the exist-
ing method achieves parsing accuracy that is
as high as that of an HPSG parser retrained
from scratch, but with much lower training
cost. We also evaluated our method in the
Brown corpus to show the portability of our
approach in another domain.

1 Introduction

Domain portability is an important aspect of the ap-
plicability of NLP tools to practical tasks. There-
fore, domain adaptation methods have recently been
proposed in several NLP areas, e.g., word sense dis-
ambiguation (Chan and Ng, 2006), statistical pars-
ing (Lease and Charniak, 2005; McClosky et al.,
2006), and lexicalized-grammar parsing (Johnson
and Riezler, 2000; Hara et al., 2005). Their aim was
to re-train a probabilistic model for a new domain at
low cost, and more or less successfully improved the
accuracy for the domain.

In this paper, we propose a method for adapting
an HPSG parser (Miyao and Tsujii, 2002; Ninomiya

et al., 2006) trained on the WSJ section of the Penn
Treebank (Marcus et al., 1994) to a biomedical do-
main. Our method re-trains a probabilistic model of
lexical entry assignments to words in a target do-
main, and incorporates it into the original parser.
The model of lexical entry assignments is a log-
linear model re-trained with machine learning fea-
tures only of word n-grams. Hence, the cost for the
re-training is much lower than the cost of training
the entire disambiguation model from scratch.

In the experiments, we used an HPSG parser orig-
inally trained with the Penn Treebank, and evaluated
a disambiguation model re-trained with the GENIA
treebank (Kim et al., 2003), which consists of ab-
stracts of biomedical papers. We varied the size of
a training corpus, and measured the transition of the
parsing accuracy and the cost required for parameter
estimation. For comparison, we also examined other
possible approaches to adapting the same parser. In
addition, we applied our approach to the Brown cor-
pus (Kucera and Francis, 1967) in order to examine
portability of our approach.

The experimental results revealed that by sim-
ply re-training the probabilistic model of lexical en-
try assignments we achieve higher parsing accuracy
than with a previously proposed adaptation method.
In addition, combined with the existing adaptation
method, our approach achieves accuracy as high as
that obtained by re-training the original parser from
scratch, but with much lower training cost. In this
paper, we report these experimental results in detail,
and discuss how disambiguation models of lexical
entry assignments contribute to domain adaptation.

In recent years, it has been shown that lexical in-
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formation plays a very important role for high accu-
racy of lexicalized grammar parsing. Bangalore and
Joshi (1999) indicated that, correct disambiguation
with supertagging, i.e., assignment of lexical entries
before parsing, enabled effective LTAG (Lexical-
ized Tree-Adjoining Grammar) parsing. Clark and
Curran (2004a) showed that supertagging reduced
cost for training and execution of a CCG (Combina-
tory Categorial Grammar) parser while keeping ac-
curacy. Clark and Curran (2006) showed that a CCG
parser trained on data derived from lexical category
sequences alone was only slightly less accurate than
one trained on complete dependency structures. Ni-
nomiya et al. (2006) also succeeded in significantly
improving speed and accuracy of HPSG parsing by
using supertagging probabilities. These results indi-
cate that the probability of lexical entry assignments
is essential for parse disambiguation.

Such usefulness of lexical information has also
been shown for domain adaptation methods. Lease
and Charniak (2005) showed how existing domain-
specific lexical resources on a target domain may be
leveraged to augment PTB-training: part-of-speech
tags, dictionary collocations, and named-entities.
Our findings basically follow the above results. The
contribution of this paper is to provide empirical re-
sults of the relationships among domain variation,
probability of lexical entry assignment, training data
size, and training cost. In particular, this paper em-
pirically shows how much in-domain corpus is re-
quired for satisfiable performance.

In Section 2, we introduce an HPSG parser and
describe an existing method for domain adaptation.
In Section 3, we show our methods of re-training
a lexical disambiguation model and incorporating
it into the original model. In Section 4, we exam-
ine our method through experiments on the GENIA
treebank. In Section 5, we examine the portability
of our method through experiments on the Brown
corpus. In Section 6, we showed several recent re-
searches related to domain adaptation.

2 An HPSG Parser

HPSG (Pollard and Sag, 1994) is a syntactic the-
ory based on lexicalized grammar formalism. In
HPSG, a small number of grammar rules describe
general construction rules, and a large number of
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Figure 1: Parsing a sentence “John has come.”
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Figure 2: An HPSG parse tree for a sentence “John
has come.”

lexical entries express word-specific characteristics.
The structures of sentences are explained using com-
binations of grammar rules and lexical entries.

Figure 1 shows an example of HPSG parsing of
the sentence “John has come.” First, as shown at the
top of the figure, an HPSG parser assigns a lexical
entry to each word in this sentence. Next, a gram-
mar rule is assigned and applied to lexical entries. At
the middle of this figure, the grammar rule is applied
to the lexical entries for “has” and “come.” We then
obtain the structure represented at the bottom of the
figure. After that, the application of grammar rules
is done iteratively, and then we can finally obtain the
parse tree as is shown in Figure 2. In practice, since
two or more parse candidates can be given for one
sentence, a disambiguation model gives probabili-
ties to these candidates, and a candidate given the
highest probability is then chosen as a correct parse.
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The HPSG parser used in this study is Ninomiya
et al. (2006), which is based onEnju (Miyao and
Tsujii, 2005). Lexical entries of Enju were extracted
from the Penn Treebank (Marcus et al., 1994), which
consists of sentences collected from The Wall Street
Journal (Miyao et al., 2004). The disambiguation
model of Enju was trained on the same treebank.

The disambiguation model of Enju is based on
a feature forest model (Miyao and Tsujii, 2002),
which is a log-linear model (Berger et al., 1996) on
packed forest structure. The probability,pE(tjw),
of producing the parse resultt for a given sentencew = hw1; :::; wui is defined aspE(tjw) = 1Zs Yi plex(lijw; i) � qsyn(tjl);Zs = Xt2T (w)Yi plex(lijw; i) � qsyn(tjl)
wherel = hl1; :::; lui is a list of lexical entries as-

signed tow, plex(lijw; i) is a probabilistic model
giving the probability that lexical entryli is assigned
to wordwi, qsyn(tjl) is an unnormalized log-linear
model of tree construction and gives the possibil-
ity that parse candidatet is produced from lexical
entriesl, andT (w) is a set of parse candidates as-
signed tow. With a treebank of a target domain as
training data, model parameters ofplex andqsyn are
estimated so as to maximize the log-likelihood of the
training data.

Probabilistic modelplex is defined as a log-linear
model as follows.plex(lijw; i) = 1Zwi exp Xj �jfj(li;w; i)! ;Zwi = Xli2L(wi) exp Xj �jfj(li;w; i)! ;
whereL(wi) is a set of lexical entries which can

be assigned to wordwi. Before training this model,L(wi) for all wi are extracted from the training tree-
bank. The feature functionfj(li;w; i) represents the
characteristics ofli, w andwi, while corresponding�j is its weight. For the feature functions, instead of
using unigram features adopted in Miyao and Tsujii
(2005), Ninomiya et al. (2006) used “word trigram”
and “POS 5-gram” features which are listed in Ta-
ble 1. With the revised Enju model, they achieved

Table 1: Features for the probabilities of lexical en-
try selection

surrounding words w�1w0w1 (word trigram)
surrounding POS tags p�2p�1p0p1p2 (POS 5-gram)
combinations w�1w0; w0w1; p�1w0; p0w0;p1w0; p0p1p2p3; p�2p�1p0;p�1p0p1; p0p1p2; p�2p�1;p�1p0; p0p1; p1p2

parsing accuracy as high as Miyao and Tsujii (2005),
with around four times faster parsing speed.

Johnson and Riezler (2000) suggested the pos-
sibility of the method for adapting a stochastic
unification-based grammar including HPSG to an-
other domain. They incorporated auxiliary distribu-
tions as additional features for an original log-linear
model, and then attempted to assign proper weights
to the new features. With this approach, they suc-
ceeded in decreasing to a degree indistinguishable
sentences for a target grammar.

Our previous work proposed a method for adapt-
ing an HPSG parser trained on the Penn Treebank
to a biomedical domain (Hara et al., 2005). We
re-trained a disambiguation model of tree construc-
tion, i.e., qsyn, for the target domain. In this ap-
proach,qsyn of the original parser was used as a
reference distribution(Jelinek, 1998) of another log-
linear model, and the new model was trained using a
target treebank. Since re-training used only a small
treebank of the target domain, the cost was small and
parsing accuracy was successfully improved.

3 Re-training of a Disambiguation Model
of Lexical Entry Assignments

Our idea of domain adaptation is to train a disam-
biguation model of lexical entry assignments for the
target domain and then incorporate it into the origi-
nal parser. Since Enju includes the disambiguation
model of lexical entry assignments asplex, we can
implement our method in Enju by training another
disambiguation modelp0lex(lijw; i) of lexical entry
assignments for the biomedical domain, and then re-
placing the originalplex with the newly trainedp0lex.

In this paper, forp0lex, we train a disambigua-
tion modelplex�mix(lijw; i) of lexical entry assign-
ments. plex�mix is a maximum entropy model and
the feature functions for it is the same asplex as
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given in Table 1. With these feature functions, we
train plex�mix on the treebanks both of the original
and biomedical domains.

In the experiments, we examine the contribution
of our method to parsing accuracy. In addition, we
implement several other possible methods for com-
parison of the performances.

baseline: use the original model of Enju

GENIA only: execute the same method of training
the disambiguation model of Enju, using only
the GENIA treebank

Mixture: execute the same method of training the
disambiguation model of Enju, using both of
the Penn Treebank and the GENIA treebank (a
kind of smoothing method)

HMT05: execute the method proposed in our pre-
vious work (Hara et al., 2005)

Our method: replaceplex in the original model
with plex�mix, while leavingqsyn as it is

Our method (GENIA): replaceplex in the original
model withplex�genia, which is a probabilistic
model of lexical entry assignments trained only
with the GENIA treebank, while leavingqsyn
as it is

Our method + GENIA: replaceplex in the original
model withplex�mix andqsyn with qsyn�genia,
which is a disambiguation model of tree con-
struction trained with the GENIA treebank

Our method + HMT05: replaceplex in the orig-
inal model with plex�mix and qsyn with the
model re-trained with our previous method
(Hara et al., 2005) (the combination of our
method and the “HMT05” method)

baseline (lex): use onlyplex as a disambiguation
model

GENIA only (lex): use onlyplex�genia as a disam-
biguation model, which is a probabilistic model
of lexical entry assignments trained only with
the GENIA treebank

Mixture (lex): use onlyplex�mix as a disambigua-
tion model

The “baseline” method does no adaptation to the
biomedical domain, and therefore gives lower pars-
ing accuracy for the domain than for the original do-
main. This method is regarded as the baseline of
the experiments. The “GENIA only” method relies
solely on the treebank for the biomedical domain,
and therefore it cannot work well with the small tree-
bank. The “Mixture” method is a kind of smoothing
method using all available training data at the same
time, and therefore the method can give the highest
accuracy of the three, which would be regarded as
the ideal accuracy with the naive methods. However,
training this model is expected to be very costly.

The “baseline (lex),” “GENIA only (lex),” and
“Mixture (lex)” approaches rely solely on models of
lexical entry assignments, and show lower accuracy
than those that contain both of models of lexical en-
try assignments and tree constructions. These ap-
proaches can be utilized as indicators of importance
of combining the two types of models.

Our previous work (Hara et al., 2005) showed that
the model trained with the “HMT05” method can
give higher accuracy than the “baseline” method,
even with the small amount of the treebanks in the
biomedical domain. The model also takes much less
cost to train than with the “Mixture” method. How-
ever, they reported that the method could not give as
high accuracy as the “Mixture” method.

4 Experiments with the GENIA Corpus

4.1 Experimental Settings

We implemented the models shown in Section 3,
and then evaluated the performance of them. The
original parser, Enju, was developed on Section 02-
21 of the Penn Treebank (39,832 sentences) (Miyao
and Tsujii, 2005; Ninomiya et al., 2006). For
training those models, we used the GENIA tree-
bank (Kim et al., 2003), which consisted of 1,200
abstracts (10,848 sentences) extracted from MED-
LINE. We divided it into three sets of 900, 150, and
150 abstracts (8,127, 1,361, and 1,360 sentences),
and these sets were used respectively as training, de-
velopment, and final evaluation data. The method
of Gaussian MAP estimation (Chen and Rosenfeld,
1999) was used for smoothing. The meta parameter� of the Gaussian distribution was determined so as
to maximize the accuracy on the development set.
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Figure 3: Corpus size vs. accuracy for various methods

In the following experiments, we measured the
accuracy of predicate-argument dependencies on
the evaluation set. The measure is labeled preci-
sion/recall (LP/LR), which is the same measure as
previous work (Clark and Curran, 2004b; Miyao and
Tsujii, 2005) that evaluated the accuracy of lexical-
ized grammars on the Penn Treebank.

The features for the examined approaches were
all the same as the original disambiguation model.
In our previous work, the features for “HMT05”
were tuned to some extent. We evened out the fea-
tures in order to compare various approaches under
the same condition. The lexical entries for training
each model were extracted from the treebank used
for training the model of lexical entry assignments.

We compared the performances of the given mod-
els from various angles, by focusing mainly on the
accuracy against the cost. For each of the models,
we measured the accuracy transition according to
the size of the GENIA treebank for training and ac-
cording to the training time. We changed the size
of the GENIA treebank for training: 100, 200, 300,
400, 500, 600, 700, 800, and 900 abstracts. Figure
3 and 4 show the F-score transition according to the

size of the training set and the training time among
the given models respectively. Table 2 and Table 3
show the parsing performance and the training cost
obtained when using 900 abstracts of the GENIA
treebank. Note that Figure 4 does not include the
results of the “Mixture” method because only the
method took too much training cost as shown in
Table 3. It should also be noted that training time
in Figure 4 includes time required for both training
and development tests. In Table 2, accuracies with
models other than “baseline” showed the significant
differences from “baseline” according to stratified
shuffling test (Cohen, 1995) with p-value< 0:05.

In the rest of this section we analyze these exper-
imental results by focusing mainly on the contribu-
tion of re-training lexical entry assignment models.
We first observe the results with the naive or existing
approaches. On the basis of these results, we evalu-
ate the impact of our method. We then explore the
combination of our method with other methods, and
analyze the errors for our future research.

4.2 Exploring Naive or Existing Approaches

Without adaptation, Enju gave the parsing accuracy
of 86.39 in F-score, which was 3.42 point lower than
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Figure 4: Training time vs. accuracy for various methods

that Enju gave for the original domain, the Penn
Treebank. This is the baseline of the experiments.

Figure 3 shows that, for less than about 4,500
training sentences, the “GENIA only” method could
not obtain as high parsing accuracy as the “baseline”
method. This result would indicate that the training
data would not be sufficient for re-training the whole
disambiguation model from scratch. However, if
we prepared more than about 4,500 sentences, the
method could give higher accuracy than “baseline”
with low training cost (see Figure 4). On the other
hand, the “Mixture” method could obtain the high-
est level of the parsing accuracy for any size of the
GENIA treebank. However, Table 3 shows that this
method required too much training cost. It would be
a major barrier for further challenges for improve-
ment with various additional parameters.

The “HMT05” method could give higher accu-
racy than the “baseline” method for any size of the
training sentences although the accuracy was lower
than the “Mixture” method. The method could also
be carried out in much smaller training time and
lower cost than the “Mixture” method. These points
would be the benefits of the “HMT05” method. On

the other hand, when we compared the “HMT05”
method with the “GENIA only” method, for the
larger size of the training corpus, the “HMT05”
method was defeated by the “GENIA only” method
in parsing accuracy and training cost.

4.3 Impact of Re-training a Lexical
Disambiguation Model

When we focused on our method, it could constantly
give higher accuracy than the “baseline” and the
“HMT05” methods. These results would indicate
that, for an individual method, re-training a model of
lexical entry assignments might be more critical to
domain adaptation than re-training that of tree con-
struction. In addition, for the small treebank, our
method could give as high accuracy as the “Mixture”
method with much lower training cost. Our method
would be a very satisfiable approach when applied
with a small treebank. It should be noted that the re-
trained lexical model could not solely give the ac-
curacy as high as our method (see “Mixture (lex)”
in Figure 3). The combination of a re-trained lexi-
cal model and a tree construction model would have
given such a high performance.

When we compared the training time for our
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Table 2: Parsing accuracy and time for various methods

For GENIA Corpus For Penn Treebank
LP LR F-score Time LP LR F-score Time

baseline 86.71 86.08 86.39 476 sec. 89.99 89.63 89.81 675 sec.
GENIA only 88.99 87.91 88.45 242 sec. 72.07 45.78 55.99 2,441 sec.
Mixture 90.01 89.87 89.94 355 sec. 89.93 89.60 89.77 767 sec.
HMT05 88.47 87.89 88.18 510 sec. 88.92 88.61 88.76 778 sec.
Our method 89.11 88.97 89.04 327 sec. 89.96 89.63 89.79 713 sec.
Our method (GENIA) 86.06 85.15 85.60 542 sec. 70.18 44.88 54.75 3,290 sec.
Our method + GENIA 90.02 89.88 89.95 320 sec. 88.11 87.77 87.94 718 sec.
Our method + HMT05 90.23 90.08 90.15 377 sec. 89.31 88.98 89.14 859 sec.
baseline (lex) 85.93 85.27 85.60 377 sec. 87.52 87.13 87.33 553 sec.
GENIA only (lex) 87.42 86.28 86.85 197 sec. 71.49 45.41 55.54 1,928 sec.
Mixture (lex) 88.43 88.18 88.31 258 sec. 87.49 87.12 87.30 585 sec.

Table 3: Training cost of various methods

Training time Memory used
baseline 0 sec. 0.00 GByte
GENIA only 14,695 sec. 1.10 GByte
Mixture 238,576 sec. 5.05 GByte
HMT05 21,833 sec. 1.10 GByte
Our method 12,957 sec. 4.27 GByte
Our method (GENIA) 1,419 sec. 0.94 GByte
Our method + GENIA 42,475 sec. 4.27 GByte
Our method + HMT05 31,637 sec. 4.27 GByte
baseline (lex) 0 sec. 0.00 GByte
GENIA only (lex) 1,434 sec. 1.10 GByte
Mixture (lex) 13,595 sec. 4.27 GByte

method with the one for the “HMT05” method,
our method required less time than the “HMT05”
method. This would be because our method required
only the re-training of the very simple model, that is,
a probabilistic model of lexical entry assignments.

It should be noted that our method would not
work only with in-domain treebank. The “Our
method (GENIA)” and the “GENIA only (lex)”
methods could hardly give as high parsing accuracy
as the “baseline” method. Although, for the larger
size of the GENIA treebank, the methods could
obtain a little higher accuracy than the “baseline”
method, the benefit was very little. These results
would indicate that only the treebank in the target
domain would be insufficient for adaptation. Fig-
ure 5 shows the coverage of each training corpus for
the GENIA treebank, which would also support the
above observation. It shows that the GENIA tree-
bank could not solely cover so much sentences in
the GENIA corpus as the combination of the Penn
Treebank and the GENIA treebank.
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Figure 5: Corpus size vs. coverage of each training
set for the GENIA corpus

Table 4: Coverage of each training set

% of covered sentences
Training set for GENIA for PTB
GENIA treebank 77.54 % 25.66 %
PTB treebank 70.45 % 84.12 %
GENIA treebank + PTB treebank 82.74 % 84.86 %

4.4 Effectiveness of Combining Lexical and
Syntactic Disambiguation Models

When we compared the “Our method + HMT05”
and “Our method + GENIA” methods with the
“Mixture” method, the former two models could
give as the high parsing accuracies as the latter one
for any size of the training corpus. In particular,
for the maximum size, the “Our method + HMT05”
models could give a little higher parsing accuracy
than the “Mixture” method. This difference was
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Table 5: Errors in various methods
Total errors = Common errors with baseline + Specific errors

GENIA only 2,889 = 1,906 (65.97%) + 983 (34.03%)
Mixture 2,653 = 2,177 (82.06%) + 476 (17.94%)
HMT05 3,063 = 2,470 (80.64%) + 593 (19.36%)
Our method 2,891 = 2,405 (83.19%) + 486 (16.81%)
Our method (GENIA) 3,153 = 2,070 (65.65%) + 1,083 (34.35%)
Our method + GENIA 2,650 = 2,056 (77.58%) + 594 (22.42%)
Our method + HMT05 2,597 = 1,943 (74.82%) + 654 (25.18%)
baseline 3,542

Total errors = Common errors with baseline (lex) + Specific errors
GENIA only (lex) 3,320 = 2,509 (75.57%) + 811 (24.43%)
Mixture (lex) 3,100 = 2,769 (89.32%) + 331 (10.68%)
baseline (lex) 3,757

Table 6: Types of disambiguation errors

# of errors
Only forError cause Common Baseline Adapted

Attachment ambiguity
prepositional phrase 12 12 6
relative clause 0 1 0
adjective 4 2 2
adverb 1 3 1
verb phrase 10 3 1
subordinate clause 0 2 0
Argument/modifier distinction
to-infinitive 0 0 7
Lexical ambiguity
preposition/modifier 0 3 0
verb subcategorization frame 5 0 6
participle/adjective 0 2 0
Test set errors
Errors of treebank 2 0 0
Other types of error causes
Comma 10 8 4
Noun phrase identification 21 5 8
Coordination/insertion 6 3 5
Zero-pronoun resolution 8 1 0
Others 1 1 2

shown to be significant according to stratified shuf-
fling test with p-value< 0.10, which might suggest
the beneficial impact of the “Our method + HMT05”
method. In addition, Figure 4 and Table 3 show
that training the “Our method + HMT05” or “Our
method + GENIA” model required much less time
and PC memory than training the “Mixture” model.
According to the above observation, we would be
able to say that the “Our method + HMT05” method
might be the most ideal among the given methods.

The “Our method + HMT05” and “Our method
+ GENIA” methods showed the different perfor-

mances in the point that the former could obtain
high parsing accuracy with less training time than
the latter. This would come from the fact that the
latter method trainedqsyn�genia solely with lexical
entries in the GENIA treebank, while the former one
trainedqsyn with rich lexical entries borrowed fromqlex�mix. Rich lexical entries would decrease un-
known lexical entries, and therefore would improve
the effectiveness of making the feature forest model.
On the other hand, the difference in lexical entries
would not seem to affect so much on the contribu-
tion of tree construction model to the parsing accu-
racy. In our experiments, the parameters for a tree
construction model such as feature functions were
not adjusted thoroughly, which might possibly blur
the benefits of the rich lexical entries.

4.5 Error Analysis

Table 5 shows the comparison of the number of er-
rors for various models with that for the original
model in parsing the GENIA corpus. For each of
the methods, the table gives the numbers of common
errors with the original Enju model and the ones
specific to that method. If possible, we would like
our methods to decrease the errors in the original
Enju model while not increasing new errors. The ta-
ble shows that our method gave the least percentage
of newly added errors among the approaches except
for the methods utilizing only lexical entry assign-
ments models. On the other hand, the “Our method
+ HMT05” approach gave over 25 % of newly added
errors, although we considered above that the ap-
proach gave the best performance.

In order to explore this phenomenon, we observed
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the errors for the “Our method + HMT05” and the
baseline models, and then classified them into sev-
eral types. Table 6 shows manual classification of
causes of errors for the two models in 50 sentences.
In the classification, one error often propagated and
resulted in multiple errors of predicate argument de-
pendencies. The numbers in the table include such
double counting. It would be desirable that the er-
rors in the rightmost column were less than the ones
in the middle column, which means that the “Our
method + HMT05” approach did not produce more
errors specific to the approach than the baseline.

With the “Our method + HMT05” approach,
errors for “attachment ambiguity” decreased as a
whole. Errors for “comma” and lexical ambiguities
of “preposition/modifier” and “participle/adjective”
also decreased. For these attributes, the approach
could learn in the training phase lexical properties of
continuous words with the lexical entry assignment
model, and syntactic relations of separated words
with the tree construction model. On the other hand,
the errors for “to-infinitive argument/modifier dis-
tinction” and “verb subcategorization frame ambi-
guity” considerably increased. These two types of
errors have close relation to each other because the
failure to recognize verb subcategorization frames
tends to cause the failure to recognize the syntactic
role of the to-infinitives. We must research further
on these errors in our future work.

When we focused on “noun phrase identifica-
tion,” most of the errors did not differ between
the two models. In the biomedical domain, there
would be many technical terms which could not be
correctly identified solely with the disambiguation
model, which would possibly result in such many
untouched errors. In order to properly cope with
these terms, we might have to introduce some kinds
of dictionaries or named entity recognition methods.

5 Experiments with the Brown Corpus

5.1 Brown Corpus

We applied our methods to the Brown corpus
(Kucera and Francis, 1967) and examined the porta-
bility of our method. The Brown corpus consists of
15 domains, and the Penn Treebank gives bracketed
version of the corpus for the 8 domains containing
19,395 sentences (Table 7).

Table 7: Domains in the Brown corpus

label domain sentences
CF popular lore 2,420
CG belles lettres 2,546
CK general fiction 3,172
CL mystery and detective fiction 2,745
CM science fiction 615
CN adventure and western fiction 3,521
CP romance and love story 3,089
CR humor 812
All total of all the above domains 19,395

For the target of adaptation, we utilized the do-
main containing all of these 8 domains as a total fic-
tion domain (labelled “All”) as well as the individual
ones. As in the experiments with the GENIA Tree-
bank, we divided sentences for each domain into
three parts, 80% for training, 10% for develepment
test, and 10% for final test. For the “All” domain, we
merged all training sets, all development test sets,
and all final test sets for the 8 domains respectively.

Table 8 and 9 show the parsing accuracy and train-
ing time for each domain with the various methods
shown in Section 3. The methods are fundamen-
tally the same as in the experiments with the GE-
NIA corpus except that the target corpus is replaced
with the Brown corpus. In order to avoid confusion,
we replaced “GENIA” in the names of the meth-
ods with “Brown.” Each of the bold numbers in
Table 8 means that it was the best accuracy given
for the target domain. It should be noted that the
“CM” and “CR” domain contains very small tree-
bank, and therefore we must consider that the results
with these domains would not be so useful.

5.2 Evaluation of Portability of Our Method

When we focus on the “ALL” domain, the ap-
proaches other than the baseline succeeded to give
higher parsing accuracy than the baseline. This
would show that these approaches were effective not
only for the GENIA corpus but also for the Brown
corpus. The “Mixture” method gave the highest ac-
curacy which was 3.41 point higher than the base-
line. The “Our method + HMT05” approach also
gave the accuracy as high as the “Mixture” method.
In addition, as is the case with the GENIA corpus,
the approach could be trained with much less time
than the “Mixture” method. Not only for these two
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Table 8: Parsing accuracy for the Brown corpus

F-score
ALL CF CG CK CL CM CN CP CR

baseline 83.09 85.75 85.38 81.12 77.53 85.30 82.84 85.18 76.63
Brown only 84.84 77.65 78.92 75.72 70.56 50.02 78.38 79.10 50.34
Mixture 86.50 86.59 85.94 82.49 78.66 84.82 84.28 86.85 76.45
HMT05 83.79 85.80 84.98 81.48 76.91 85.25 83.50 85.66 77.15
Our method 86.14 86.73 85.74 82.77 77.95 85.40 84.23 86.90 76.71
Our method (GENIA) 84.71 78.49 79.63 75.43 70.86 50.24 78.49 79.69 51.82
Our method + GENIA 86.00 86.12 85.41 83.22 77.10 83.39 84.21 85.77 76.91
Our method + HMT05 86.44 86.76 85.85 82.90 77.70 85.61 84.43 86.87 77.48
baseline (lex) 82.19 84.69 83.85 80.25 76.32 83.42 81.29 84.13 77.33
Brown only (lex) 83.92 77.12 77.81 75.06 70.35 49.95 77.06 78.84 50.63
Mixture (lex) 85.29 85.47 84.18 81.88 77.22 83.98 82.67 85.65 77.58

Table 9: Consumed time for various methods for the Brown corpus

Consumed time for training (sec.)
ALL CF CG CK CL CM CN CP CR

baseline 0 0 0 0 0 0 0 0 0
Brown only 42,614 4,115 3,763 2,478 2,162 925 2,362 2,695 1,226
Mixture 383,557 190,449 159,490 156,299 210,357 131,335 170,108 224,045 184,251
HMT05 30,933 6,003 4,830 4,186 5,010 1,681 4,411 5,069 1,588
Our method 15,912 11,053 10,988 11,151 10,782 10,158 11,075 10,594 10,284
Our method (Brown) 3,273 312 373 310 249 46 321 317 86
Our method + Brown 130,434 24,633 21,848 20,171 19,184 11,995 19,164 20,922 13,461
Our method + HMT05 54,355 17,722 16,627 15,229 14,914 12,226 15,760 16,175 11,724
baseline (lex) 0 0 0 0 0 0 0 0 0
Brown only (lex) 3,001 317 373 308 251 47 321 317 86
Mixture (lex) 21,148 11,128 11,251 11,094 10,728 10,466 11,151 10,897 10,537

methods, the experimental results for the “All” do-
main showed the tendency similar to the GENIA
corpus as a whole, except for the less improvement
with the “HMT05” method.

When we focus on the individual domains, our
method could successfully obtain higher parsing ac-
curacy than the baseline for all the domains. More-
over, for the “CP” domain, our method could give
the highest parsing accuracy among the methods.
These results would support the portability of re-
training the model for lexical entry assignment. The
“Our method + HMT05” approach, which gave the
highest performance for the GENIA corpus, also
gave accuracy improvement for the all domains
while it did not give so much impact for the “CL”
domain. The “Mixture” approach, which utilized
the same lexical entry assignment model, could ob-
tain 0.94 point higher parsing accuracy than the
“Our method + HMT05” approach. Table 10, which
shows the lexical coverage with each domains, does
not seem to indicate the noteworthy difference in

lexical entry coverage between the “CL” and the
other domains. As mentioned in the error analysis
in Section 4, the model of tree construction might
affect the performance in some way. In our future
work, we must clarify the mechanism of this result
and would like to further improve the performance.

6 Related Work

For recent years, domain adaptation has been stud-
ied extensively. This section explores how our re-
search is relevant to the previous works.

Our previous work (Hara et al., 2005) and this
research mainly focused on how to draw as much
benefit from a smaller amount of in-domain anno-
tated data as possible. Titov and Henderson (2006)
also took this type of approach. They first trained a
probabilistic model on original and target treebanks
and used it to define a kernel over parse trees. This
kernel was used in a large margin classifier trained
on a small set of data only from the target domain,
and the classifier was then used for reranking the top
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Table 10: Coverage of each training set for the Brown corpus

% of covered sentences for the target corpus
Training set ALL CF CG CK CL CM CN CP CR
Target treebank 74.99 % 49.13 % 50.00 % 47.97 % 49.08 % 29.66 % 53.51 % 64.01 % 8.57%
PTB treebank 70.02 % 72.09 % 68.93 % 66.42 % 68.87 % 78.62 % 70.00 % 77.59 % 47.14 %
Target + PTB 79.77 % 74.71 % 71.47 % 71.59 % 70.45 % 80.00 % 72.70 % 80.39 % 52.86 %

parses on the target domain.

On the other hand, several studies have explored
how to draw useful information from unlabelled in-
domain data. Roark and Bacchiani (2003) adapted a
lexicalized PCFG by using maximuma posteriori
(MAP) estimation for handling unlabelled adapta-
tion data. In the field of classifications, Blitzer et al.
(2006) utilized unlabelled corpora to extract features
of structural correspondences, and then adapted a
POS-tagger to a biomedical domain. Steedman et
al. (2003) utilized a co-training parser for adapta-
tion and showed that co-training is effective even
across domains. McClosky et al. (2006) adapted a
re-ranking parser to a target domain by self-training
the parser with unlabelled data in the target domain.
Clegg and Shepherd (2005) combined several ex-
isting parsers with voting schemes or parse selec-
tion, and then succeeded to gain the improvement
of performance for a biomedical domain. Although
unsupervised methods can exploit large in-domain
data, the above studies could not obtain the accu-
racy as high as that for an original domain, even
with the sufficient size of the unlabelled corpora.
On the other hand, we showed that our approach
could achieve this goal with about 6,500 labelled
sentences. However, when 6,500 labelled can not be
prepared, it might be worth while to explore the po-
tentiality of combining the above unsupervised and
our supervised methods.

When we focuses on biomedical domains, there
have also been various works which coped with
domain adaptation. Biomedical sentences contain
many technical terms which cannot be easily recog-
nized without expert knowledge, and this damages
performances of NLP tools directly. In order to solve
this problem, two types of approaches have been
suggested. The first approach is to utilize existing
domain-specific lexical resources. Lease and Char-
niak (2005) utilized POS tags, dictionary colloca-
tions, and named entities for parser adaptation, and

then succeeded to achieve accuracy improvement.
The second approach is to expand lexical entries for
a target domain. Szolovits (2003) extended a lexical
dictionary for a target domain by predicting lexical
information for words. They transplanted lexicalin-
discernibilityof words in an original domain into a
target domain. Pyysalo et al. (2004) showed the ex-
perimental results that this approach improved the
performance of a parser for Link Grammar. Since
our re-trained model of lexical entry assignments
was shown to be unable to cope with this problem
properly (shown in Section 4), the combination of
the above approaches with our approach would be
expected to bring further improvement.

7 Conclusions

This paper presented an effective approach to adapt-
ing an HPSG parser trained on the Penn Treebank
to a biomedical domain. We trained a probabilis-
tic model of lexical entry assignments in a target
domain and then incorporated it into the original
parser. The experimental results showed that this
approach obtains higher parsing accuracy than the
existing approach of adapting the structural model
alone. Moreover, the results showed that, the com-
bination of our method and the existing approach
could achieve parsing accuracy that is as high as that
obtained by re-training an HPSG parser for the target
domain from scratch, but with much lower training
cost. With this model, the parsing accuracy for the
target domain improved by 3.84 f-score points, us-
ing a domain-specific treebank of 8,127 sentences.
Experiments showed that 6,500 sentences are suffi-
cient for achieving as high parsing accuracy as the
baseline for the original domain.

In addition, we applied our method to the Brown
corpus in order to evaluate the portability of our
method. Experimental results showed that the pars-
ing accuracy for the target domain improved by 3.35
f-score points. On the other hand, when we focused
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on some individual domains, that combination ap-
proach could not give the desirable results.

In future work, we would like to explore further
performance improvement of our approach. For the
first step, domain-specific features such as named
entities could be much help for solving unsuccess-
ful recognition of technical terms.
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