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Abstract 

The goal of this paper is to give a description 
of the state of the art, the issues, the problems, 
and the solutions related to industrial dialog 
systems for the automation of technical sup-
port. After a general description of the evolu-
tion of the spoken dialog industry, and the 
challenges in the development of technical 
support applications, we will discuss two spe-
cific problems through a series of experimental 
results.    The first problem is the identification 
of the call reason, or symptom, from loosely 
constrained user utterances. The second is the 
use of data for the experimental optimization 
of the Voice User Interface (VUI). 

1 Introduction 

Since the beginning of the telephony spoken dialog 
industry, in the mid 1990, we have been witnessing 
the evolution of at least three generations of sys-
tems. What differentiates each generation is not 
only the increase of complexity, but also the dif-
ferent architectures used. Table 1 provides a sum-
mary of the features that distinguish each 
generation. The early first generation systems were 
mostly informational, in that they would require 
some information from the user, and would pro-
vide information in return. Examples of those sys-
tems, mostly developed during the mid and late 
1990s, are package tracking, simple financial ap-
plications, and flight status information. At the 

time there were no standards for developing dialog 
systems, (VoiceXML 1.0 was published as a rec-
ommendation in year 2000) and thus the first gen-
eration dialog applications were implemented on 
proprietary platforms, typically evolutions of exist-
ing touch-tone IVR (Interactive Voice Response) 
architectures.  
 
Since the early developments, spoken dialog sys-
tems were implemented as a graph, called call-
flow. The nodes of the call-flow typically represent 
actions performed by the system and the arcs rep-
resent an enumeration of the possible outcomes. 
Playing a prompt and interpreting the user re-
sponse through a speech recognition grammar is a 
typical action. Dialog modules (Barnard et al., 
1999) were introduced in order to reduce the com-
plexity and increase reusability of call-flows. A 
Dialog Module (or DM) is defined as a call-flow 
object that encapsulates many of the interactions 
needed for getting one piece of information from 
the user, including retries, timeout handling, dis-
ambiguation, etc. Modern commercial dialog sys-
tems use DMs as their active call-flow nodes.  
 
The number of DMs in a call-flow is generally an 
indication of the application complexity. First gen-
eration applications showed a range of complexity 
of a few to tens of DMs, typically spanning a few 
turns of interaction.   
 
The dialog modality is another characterization of 
applications. Early applications supported strict 
directed dialog interaction, meaning that at each 
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turn the system would direct the user by proposing 
a finite—and typically small—number of choices. 
That would also result in a limited grammar or vo-
cabulary at each turn.  
 
The applications of the second generation were 
typically transactional, in the sense that they could 
perform a transaction on behalf of the user, like 
moving funds between bank accounts, trading 
stocks, or buying tickets. Most of those applica-
tions were developed using the new standards, 
typically as collections of VoiceXML documents. 
The complexity moved to the range of dozens of 
dialog modules, spanning a number of turns of in-
teractions of the order of ten or more. At the same 
time, some of the applications started using a tech-
nology known as Statistical Spoken Language Un-
derstanding, or SSLU (Gorin et al., 1997, Chu-
Carroll et al., 1999, Goel et al, 2005), for mapping 
loosely constrained user utterances to a finite num-
ber of pre-defined semantic categories. The natural 
language modality—as opposed to directed dia-
log—was initially used mostly for call-routing, i.e. 
to route calls to the appropriate call center based 
on a more or less lengthy description of the reason 
for the call by the user.  
 

While the model behind the first and second gen-
erations of dialog applications can be described by 
the form-filling paradigm, and the interaction fol-
lows a pre-determined simple script, the systems of 
the third generation have raised to a qualitatively 
different level of complexity. Problem solving ap-
plications, like customer care, help desk, and tech-
nical support, are characterized by a level of 
complexity ranging in the thousands of DMs, for a 
number of turns of dynamic interaction that can 
reach into the dozens. As the sophistication of the 
applications evolved, so did the system architec-
ture by moving the logic from the client 
(VoiceXML browser, or voice-browser) to the 
server (Pieraccini and Huerta, 2005). More and 
more system are today based on generic dialog 
application server which interprets a dialog speci-
fication described by a—typically proprietary—
markup language and serve the voice-browser with 
dynamically generated VoiceXML documents. 
Finally, the interaction modality of the third gen-
eration systems is moving from the strictly directed 
dialog application, to directed dialog, with some 
natural language (SSLU) turns, and some limited 
mixed-initiative (i.e. the possibility for the user to 
change the course of the dialog by making an un-
solicited request).  

2 Technical Support Applications 

Today, automated technical support systems are 
among the most complex types of dialog applica-
tions. The advantage of automation is clear, espe-
cially for high-volume services like broadband-
internet, entertainment (cable or satellite TV), and 
telephony. When something goes wrong with the 
service, the only choice for subscribers is to call a 
technical support center. Unfortunately, staffing a 
call center with enough agents trained to help solve 
even the most common problems results in pro-
hibitive costs for the provider, even when out-
sourcing to less costly locations End users often 
experience long waiting times and poor service 
from untrained agents. With the magnitude of the 
daily increase in the number of subscribers of those 
services, the situation with human agents is bound 
to worsen. Automation and self-service can, and 
does, help reduce the burden constituted by the 
most frequent call reasons, and resort to human 
agents only for the most difficult and less common 
problems.  

GENERATION 

  FIRST SECOND THIRD 

Time Period 1994-2001 2000-2005 2004-today 

Type of Ap-
plication Informational 

Transac-
tional 

Problem 
Solving 

Examples 

Package 
Tracking, 
Flight Status 

Banking, 
Stock 
Trading, 
Train Res-
ervation 

Customer 
Care, 
Technical 
Support, 
Help Desk. 

Architecture Proprietary 
Static 
VoiceXML  

Dynamic 
VoiceXML 

Complexity 
(Number of 
DMs) 10 100 1000 

Interaction 
Turns  few 10 10-100 

Interaction 
Modality directed 

directed + 
natural 
language 
(SSLU) 

directed + 
natural 
language 
(SSLU) + 
limited 
mixed initia-
tive 

 
Table 1: Evolution of spoken dialog systems. 
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However, automating technical support is particu-
larly challenging for several reasons. Among them:   
 

- Troubleshooting knowledge is not readily 
available in a form that can be used for 
automation. Most often it is based on the 
idiosyncratic experience of the individual 
agents. 

- End users are typically in a somewhat 
emotionally altered state—something for 
which they paid and that is supposed to 
work is broken. They want it repaired 
quickly by an expert human agent; they 
don’t trust a machine can help them.  

- The description of the problem provided 
by the user can be imprecise, vague, or 
based on a model of the world that may be 
incorrect (e.g. some users of internet can-
not tell their modem from their router). 

- It may be difficult to instruct non-
technically savvy users on how to perform 
a troubleshooting step (e.g. Now renew 
your IP address.) or request technical in-
formation (e.g. Are you using a Voice over 
IP phone service?) 

- Certain events cannot be controlled. For 
instance, the time it would take for a user 
to complete a troubleshooting step, like re-
booting a PC, is often unpredictable.   

- The acoustic environment may be chal-
lenging. Users may be asked to switch 
their TV on, reboot their PC, or check the 
cable connections. All these operations can 
cause noise that can trigger the speech rec-
ognizer and affect the course of the inter-
action. 

 
On the other hand, one can leverage the automated 
diagnosis or troubleshooting tools that are cur-
rently used by human agent and improve the effi-
ciency of the interaction. For instance, if the IP 
address of the digital devices at the user premises 
is available, one can ping them, verify their con-
nectivity, download new firmware, and perform 
automated troubleshooting steps in the background 
without the intervention of the user. However, the 
interplay between automated and interactive op-
erations can raise the complexity of the applica-
tions such as to require higher level development 
abstractions and authoring tools.  

3 High Resolution SSLU 

The identification of the call reason—i.e. the prob-
lem or the symptoms of the problem experienced 
by the caller—is one of the first phases of the in-
teraction in a technical support application. There 
are two possible design choices with today’s spo-
ken language technology: 
 

- Directed dialog. A specific prompt enu-
merates all the possible reasons for a call, 
and the user would choose one of them. 

-  Natural Language: An open prompt asks 
the user to describe the reason for the call. 
The utterance will be automatically 
mapped to one of a number of possible call 
reasons using SSLU technology. 

 
Directed dialog would be the preferred choice in 
terms of accuracy and cost of development. Unfor-
tunately, in most technical support applications, the 
number of call-reasons can be very large, and thus 
prompting the caller through a directed dialog 
menu would be impractical. Besides, even though 
a long menu can be structured hierarchically as a 
cascade of several shorter menus, the terms used 
for indicating the different choices may be mis-
leading or meaningless for some of the users (e.g. 
do you have a problem with hardware, software, or 
networking?).  Natural language with SSLU is 
generally the best choice for problem identifica-
tion.  
 
In practice, users mostly don’t know what the ac-
tual problem with their service is (e.g. modem is 
wrongly configured), but typically they describe 
their observations—or symptoms—which are ob-
servable manifestations of the problem. and not the 
problem itself (e.g. symptom: I can’t connect to the 
Web, problem: modem wrongly configured). Cor-
rectly identifying the symptom expressed in natural 
language by users is the goal of the SSLU module.  
 
SSLU provides a mapping between input utter-
ances and a set of pre-determined categories. 
SSLU has been effectively used in the past to en-
able automatic call-routing. Typically call-routing 
applications have a number of categories, of the 
order of a dozen or so, which are designed based 
on the different routes to which the IVR is sup-
posed to dispatch the callers. So, generally, in call-
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routing applications, the categories are known and 
determined prior to any data collection.  
 
One could follow the same approach for the prob-
lem identification SSLU, i.e. determine a number 
of a-priori problem categories and then map a col-
lection of training symptom utterances to each one 
of them. There are several issues with this ap-
proach.  
 
First, a complete set of categories—the prob-
lems—may not be known prior to the acquisition 
and analysis of a significant number of utterances. 
Often the introduction of new home devices or ser-
vices (such as DVR, or HDTV) creates new prob-
lems and new symptoms that can be discovered 
only by analyzing large amounts of utterance data.   
 
Then, as we noted above, the relationship between 
the problems—or broad categories of problems—
and the manifestations (i.e. the symptoms) may not 
be obvious to the caller. Thus, confirming a broad 
category in response to a detailed symptom utter-
ance may induce the user to deny it or to give a 
verbose response (e.g. Caller: I cannot get to the 
Web. System: I understand you have a problem 
with your modem configuration, is that right? 
Caller: Hmm…no. I said I cannot get to the Web.). 
 
Finally, caller descriptions have different degrees 
of specificity (e.g. I have a problem with my cable 
service vs. The picture on my TV is pixilated on all 
channels).  Thus, the categories should reflect a 
hierarchy of symptoms, from vague to specific, 
that need to be taken into proper account in the 
design of the interaction.  
 
As a result from the above considerations, SSLU 
for symptom identification needs to be designed in 
order to reflect the high-resolution multitude and 
specificity hierarchy of symptoms that emerge 
from the analysis of a large quantity of utterances. 
Figure 1 shows an excerpt from the hierarchy of 
symptoms for a cable TV troubleshooting applica-
tion derived from the analysis of almost 100,000 
utterance transcriptions.  
 
Each node of the tree partially represented by Fig-
ure 1 is associated with a number of training utter-
ances from users describing that particular 
symptom in their own words. For instance the top-

most node of the hierarchy, “TV Problem”, corre-
sponds to vague utterances such as I have a 
problem with my TV or My cable TV does not 
work. The” Ordering” node represents requests of 
the type I have a problem with ordering a show, 
which is still a somewhat vague request, since one 
can order “Pay-per-view” or “On-demand” events, 
and they correspond to different processes and 
troubleshooting steps. Finally, at the most detailed 
level of the hierarchy, for instance for the node 
“TV Problem-Ordering-On Demand-Error”, one 
finds utterances such as I tried to order a movie on 
demand, but all I get is an error code on the TV. 

 
In the experimental results reported below, we 
trained and tested a hierarchically structured SSLU 
for a cable TV troubleshooting application. A cor-
pus of 97,236 utterances was collected from a de-
ployed application which used a simpler, non 
hierarchical, version of the SSLU. The utterances 
were transcribed and initially annotated based on 
an initial set of symptoms. The annotation was car-
ried out by creating an annotation guide document 
which includes, for each symptom, a detailed ver-
bal description, a few utterance examples, and 
relevant keywords. Human annotators were in-
structed to label each utterance with the correct 
category based on the annotation guide and their 

TV Problem

On Demand

Pay-per-view

Ordering

No Picture

Error

PIN

Other

Error

 
 
Figure 1: Excerpt from the hierarchical symp-
tom description in a cable TV technical support 
application 
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work was monitored systematically by the system 
designer. 
 
After a first initial annotation of the whole corpus, 
the annotation consistency was measured by com-
puting a cluster similarity distance between the 
utterances corresponding to all possible pairs of 
symptoms. When the consistency between a pair of 
symptoms was below a given threshold, the clus-
ters were analyzed, and actions taken by the de-
signer in order to improve the consistency, 
including reassign utterances and, if necessary, 
modifying the annotation guide. The whole process 
was repeated a few times until a satisfactory global 
inter-cluster distance was attained.  
 
Eventually we trained the SSLU on 79 symptoms 
arranged on a hierarchy with a maximum depth of 
3. Table 2 summarizes the results on an independ-
ent test set of 10,332 utterances.  The result shows 
that at the end of the process, a satisfactory batch 
accuracy of 81.43% correct label assignment what 
attained for the utterances which were deemed to 
be in-domain, which constituted 90.22% of the test 
corpus. Also, the system was able to correctly re-
ject 24.56% of out-of-domain utterances. The 
overall accuracy of the system was considered rea-
sonable for the state of the art of commercial 
SSLUs based on current statistical classification 
algorithms. Improvement in the classification per-
formance can result by better language models (i.e. 
some of the errors are due to incorrect word recog-
nition by the ASR) and better classifiers, which 
need to take into account more features of the in-
coming utterances, such as word order1 and con-
textual information. 

                                                           
1 Current commercial SSLU modules,  as the one used in the 
work described here, use statistical classifiers based only on 
bags of words. Thus the order of the words in the incoming 
utterance is not taken into consideration.  

3.1 Confirmation Effectiveness 

Accuracy is not the only measure to provide an 
assessment of how the symptom described by the 
caller is effectively captured. Since the user re-
sponse needs to be confirmed based on the inter-
pretation returned by the SSLU, the caller always 
has the choice of accepting or denying the hy-
pothesis. If the confirmation prompts are not prop-
erly designed, the user can erroneously deny 
correctly detected symptoms, or erroneously accept 
wrong ones.  
 
The analysis reported below was carried out for a 
deployed system for technical support of Internet 
service. The full symptom identification interac-
tions following the initial open prompt was tran-
scribed and annotated for 895 calls. The SSLU 
used in this application consisted of 36 symptoms 
structured in a hierarchy with a maximum depth of 
3. For each interaction we tracked the following 
events: 
 

- the first user response to the open question 
- successive responses in case of re-

prompting because of speech recognition 
rejection or timeout 

- response to the yes/no confirmation ques-
tion) 

- successive responses to the confirmation 
question in case the recognizer rejected it 
or timed out. 

- Successive responses to the confirmation 
question in case the user denied, and a 
second best hypothesis was offered. 

 
Table 3 summarizes the results of this analysis. 
  
The first row reports the number of calls for which 
the identified symptom was correct (as compared 
with human annotation) and confirmed by the 
caller.  The following rows are the number of calls 
where the identified symptom was wrong and the 
caller still accepted it during confirmation, the 
symptom was correct and the caller denied it, and 
the symptom was wrong and denied, respectively. 
Finally there were 57 calls where the caller did not 
provide any confirmation (e.g. hung up, timed out, 
ASR rejected the confirmation utterance even after 
re-prompting, etc.), and 100 calls in which it was 
not possible to collect the symptom (e.g. rejections 

Utterances 10332 100.00% 
In domain 9322 90.22% 
Correct  in-domain 7591 81.43% 
Out of domain  1010 9.78% 
Correct rejection out-of-
domain 249 24.65% 
 
Table 2: Accuracy results for Hierarchical 
SSLU with 79 symptoms. 
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of first and second re-prompts, timeouts, etc.) In 
both cases—i.e. no confirmation or no symptom 
collection at all—the call continued with a differ-
ent strategy (e.g. moved to a directed dialog, or 
escalated the call to a human agent). The interest-
ing result from this experiment is that the SSLU 
returned a correct symptom 59.8 + 2.5 = 62.3% of 
the times (considering both in-domain and out-of-
domain utterances), but the actual “perceived” ac-
curacy (i.e. when the user accepted the result) was 
higher, and precisely 59.8 + 13.2 = 73%. A deeper 
analysis shows that for most of the wrongly ac-
cepted utterances the wrong symptom identified by 
the SSLU was still in the same hierarchical cate-
gory, but with different degree of specificity (e.g. 
Internet-Slow vs. vague Internet) 
 
The difference between the actual and perceived 
accuracy of SSLU has implications for the overall 
performance of the application. One could build a 
high performance SSLU, but a wrongly confirmed 
symptom may put the dialog off course and result 
in reduced automation, even though the perceived 
accuracy is higher. Confirmation of SSLU results 
is definitely an area where new research can poten-
tially impact the performance of the whole system. 

4 Experimental VUI 

Voice User Interface (VUI) is typically considered 
an art. VUI designers acquire their experience by 
analyzing the effect of different prompts on the 
behavior of users, and can often predict whether a 
new prompt can help, confuse, or expedite the in-
teraction. Unfortunately, like all technologies rely-
ing on the anecdotal experience of the designer, in 
VUI it is difficult to make fine adjustments to an 
interface and predict the effect of competing simi-
lar designs before the application is actually de-
ployed. However, in large volume applications, 

and when a global measure of performance is 
available, one can test different non-disruptive de-
sign hypotheses on the field, while the application 
is running. We call this process experimental VUI.  
 
There have been, in the past, several studies aimed 
at using machine learning for the design of dialog 
systems (Levin et al., 2000, Young 2002, Pietquin 
et al, 2006). Unfortunately, the problem of full de-
sign of a system based uniquely on machine learn-
ing is a very difficult one, and cannot be fully 
utilized yet for commercial systems. A simpler and 
less ambitious goal is that of finding the optimal 
dialog strategy among a small number of compet-
ing designs, where all the initial designs are work-
ing reasonably well (Walker 2000, Paek et al 2004, 
Lewis 2006). Comparing competing designs re-
quires carrying on an exploration based on random 
selection of each design at crucial points of the 
dialog. Once a reward schema is defined, one can 
use it for changing the exploration probability so as 
to maximize a function of the accumulated reward 
using, for instance, one of the algorithms described 
in (Sutton 1998). 
 
Defining many different competing designs at sev-
eral points of the interaction is often impractical 
and costly. Moreover, in a deployed commercial 
application, one needs to be careful about main-
taining a reasonable user experience during explo-
ration. Thus, the competing designs have to be 
chosen carefully and applied to portions of the dia-
log where the choice of the optimal design can 
make a significant difference for the reward meas-
ure in use.  
 
In the experiments described below we selected the 
symptom identification as a point worth exploring. 
in an internet technical support application We 
then defined three prompting schemas 
 

- Schema A: the system plays an open 
prompt 

- Schema B: the system plays an open 
prompt, and then provides some examples 
of requests 

- Schema C: The system plays an open 
prompt, and then suggests a command that 
provides a list of choices. 

 

Accepted correct 535 59.8% 
Accepted wrong 118 13.2% 
Denied correct 22 2.5% 
Denied wrong 63 7.0% 
Unconfirmed 57 6.4% 
No result 100 11.2% 
TOTAL 895 100.0% 

 
Table 3: Result of the confirmation analy-
sis based on the results of 895 calls 

30



The three schemas were implemented on a de-
ployed system for limited time. There was 1/3 
probability for each individual call to go through 
one of the above schemas. The target function cho-
sen for optimization was the average automation 
rate.  
 
Figure 2 shows the effect on the cumulated average 
automation rate for each one of the competing de-
sign. The exploration was carried out until the dif-
ference in the automation rate among the three 
designs reached statistical significance, which was 
after 13 days with a total number of 21,491 calls. 
At that point in time we established that design B 
had superior performance, as compared to A and 
C, with a difference of 0.68 percent points.  
Event though the gain in total automation rate (i.e. 
0.68 percent points) seems to be modest, one has to 
consider that this increase is simply caused only by 
the selection  of the best wording of a single 
prompt in an application with thousands of 
prompts. One can expect to obtain more important 
improvements by at looking to other areas of the 
dialog where experimental VUI can be applied and 
selecting the optimal prompt can have an impact 
on the overall automation rate.  

5 Conclusions 

We started this paper by describing the advances 
achieved in dialog system technology for commer-
cial applications during the past decade. The indus-
try moved from the first generation of systems able 
to handle very structured and simple interactions, 
to a current third generation where the interaction 
is less structured and the goal is to automate com-

plex tasks such as problem solving and technical 
support.We then discussed general issues regarding 
the effective development of a technical support 
application. In particular we focused on two areas: 
the collection of the symptom from natural lan-
guage expressions, and the experimental optimiza-
tion of the VUI strategy. In both cases we 
described how a detailed analysis of live data can 
greatly help optimize the overall performance.  

6 References 

Barnard, E., Halberstadt, A., Kotelly, C., Phillips, M.,  1999 
“A Consistent Approach To Designing Spoken-dialog 
Systems,” Proc. of ASRU99 – IEEE Workshop, Keystone, 
Colorado, Dec. 1999. 

Gorin, A. L., Riccardi, G.,Wright, J. H.,  1997 Speech Com-
munication, vol. 23, pp. 113-127, 1997. 

Chu-Carroll, J., Carpenter B., 1999. “Vector-based natural 
language call routing,” Computational Linguistics, 
v.25, n.3, p.361-388, September 1999 

Goel, V., Kuo, H.-K., Deligne, S., Wu S.,  2005 “Language 
Model Estimation for Optimizing End-to-end Performance 
of a Natural Language Call Routing System,” ICASSP 
2005 

Pieraccini, R., Huerta, J., Where do we go from here? Re-
search and Commercial Spoken Dialog Systems, Proc. of 
6th SIGdial Workshop on Discourse and Dialog, Lisbon, 
Portugal, 2-3 September, 2005. pp. 1-10 

Levin, E., Pieraccini, R., Eckert, W., A Stochastic Model of 
Human-Machine Interaction for Learning Dialog Strate-
gies,  IEEE Trans. on Speech and Audio Processing, Vol. 
8, No. 1, pp. 11-23, January 2000. 

Pietquin, O., Dutoit, T., A Probabilistic Framework for Dialog 
Simulation and Optimal Strategy Learning, In IEEE 
Transactions on Audio, Speech and Language Processing, 
14(2):589-599, 2006 

Young, S., Talking to Machines (Statistically Speaking), Int 
Conf Spoken Language Processing, Denver, Colorado. 
(2002). 

Walker, M., An Application of Reinforcement Learning to 
Dialogue Strategy Selection in a Spoken Dialogue System 
for Email . Journal of Artificial Intelligence Research, 
JAIR, Vol 12., pp. 387-416, 2000 

Paek T., Horvitz E.,. Optimizing automated call routing by 
integrating spoken dialog models with queuing models. 
Proceedings of HLT-NAACL, 2004, pp. 41-48. 

Lewis, C., Di Fabbrizio, G., Prompt Selection with Rein-
forcement Learning in an AT&T Call Routing Applica-
tion, Proc. of Interspeech 2006, Pittsburgh, PA. pp. 1770-
1773, (2006) 

Sutton, R.S., Barto, A.G. (1998). Reinforcement Learning: An 
Introduction. MIT Press. 

 

14.00%

15.00%

16.00%

17.00%

18.00%

19.00%

20.00%

21.00%

1 2 3 4 5 6 7 8 9 10 11 12 13

Time (days)

A
u

to
m

at
io

n
 r

at
e

A

B

C

Figure 2: Daily average automation rate for com-
peting designs. 

31


