
PARSING STRATEGIES FOR THE INTEGRATION OF
TWO STOCHASTIC CONTEXT-FREE GRAMMARS

Anna Corazza
Department of Information Technologies

University of Milan
corazza@dti.unimi.it

Abstract

Integration of two stochastic context-free grammars can be useful in two pass approaches
used, for example, in speech recognition and understanding. Based on an algorithm proposed
by [Nederhof and Satta, 2002] for the non-probabilistic case, left-to-right strategies for the search
for the best solution based on CKY and Earley parsers are discussed. The restriction that one of the
two grammars must be non recursive does not represent a problem in the considered applications.

1 Introduction

In applications like speech recognition and understanding, machine translation and language

generation [Langkilde, 2000, Knight and Langkilde, 2000], a two pass approach can be adopted.

A finite set of hypotheses is generated on the basis of a first model. Afterwards, a more

sophisticated (and usually less efficient) model is used to extract the best solution from this

restricted hypothesis space.

For example, in speech recognition, the finite set of hypotheses can be generated by hidden

Markov models with a bigram language model. Two representations are possible: the N-best

strings or a word lattice. Afterwards, both can be processed by trigrams or context-free language

models.

One approach [Mohri and Riley, 2002] to the processing of the word lattice extracts the N-

best hypotheses, using only the scores produced by the first simpler model. Clearly, the hy-

potheses pruned in the first pass can not be recovered, even if the score given by the second

language model is very high: this search is suboptimal. A search based on an early integration

of the two models is likely to result in a better solution, even if suboptimal.

It is possible to directly parse the automaton representing the hypothesis set by the second

language model. For example, this second model could be represented by a Stochastic Context-

Free Grammar (SCFG), where the probabilities can be obtained by training on a large text

corpus. [Sima’an, 2002] proves the NP-completeness of the problem of extracting from the

language generated by an even simplified automaton the most probable string according to a

SCFG, which is a particular case of the best string approach in this paper. Therefore, only

suboptimal search strategies can be applied.

In principle, this is not a problem, as sub-optimal search is often effectively used in complex

problems like speech recognition and understanding. However, in this case, attention must be

paid to the definition of informative scores on partial hypotheses. This is crucial for focusing

the search on really promising hypotheses. Furthermore, a more compact representation of the

input reduces the risk of following unproductive directions in the search.

For these reasons, a probabilistic model able to represent the input set in a compact

way and giving a consistent framework to define effective and well-grounded partial hy-

pothesis scores is very appealing. This model can be represented by another SCFG, as in

[Corazza and Lavelli, 1994]. The probabilities should take into account the likelihood of the

corresponding strings. For example, in speech recognition, they could derive from the acoustic

likelihood. As the input set if finite, it is not restrictive to use a non-recursive SCFG.

In [Nederhof and Satta, 2002], a new algorithm is proposed for the non probabilistic case,

using a Push-Down Automaton (PDA) for the non-recursive grammar. Starting from the pars-

ing solutions described there, a probabilistic framework has been introduced in [Corazza, 2002].

In this paper, in addition to the probabilities for the non-recursive SCFG, only the general

relations for the CKY parser are considered. In [Nederhof and Satta, 2002] both CKY and

Earley parsers are discussed and compared by using six (non probabilistic) input grammars as

in [Langkilde, 2000] and a 100-rule (non probabilistic) parsing grammar. In this evaluation, the

number of edges produced by the Earley parser is higher than with the CKY.

On the other hand, [Stolcke, 1995] suggests that the Earley parser, when used with proba-

bilistic grammars, compares favorably with the CKY by working efficiently on sparse grammars.

In our humble opinion, neither of the two notes are to be considered final, as empirical results

strongly depend on the use of probabilistic or non probabilistic models and on the charac-

teristics of the input language and its probability distribution, which in turn depends on the

application. Further empirical assessment should better clarify these results in the different

cases.

Here, the relations given for CKY are refined and included in a search strategy which can

be made sub-optimal by pruning the least promising hypotheses. Moreover, the Earley parsing

is also considered. For both parsers, the prefix probabilities [Jelinek and Lafferty, 1991] are

introduced, which allow a left-to-right search.

In the next section, the probabilistic description is introduced, together with notation and

definitions used in the remaining of the paper. In Section 3, the probabilities derived from the

non-recursive SCFG [Corazza, 2002] are discussed. Section 4 considers the parsing probabilities,

for both CKY and Earley parsers, while Section 5 introduces prefix probabilities. Conclusions

and future work are discussed in the last section.

2 Probabilistic models

The notation used in the remaining of the paper is briefly introduced. A Stochastic Context-

Free Grammar is a quadruple (Σ, N, S,R), where Σ and N are respectively the terminal and

nonterminal alphabets, with N ∩ Σ = φ; S ∈ N is the start symbol; and R is the set of

rewriting probabilistic rules. Whenever not otherwise specified, σ, σ1, σ2, indicate strings

in Σ∗. Two SCFGs are considered, sharing the same terminal alphabet Σ: the input non-

recursive grammar, Gi = (Σ, N i, Si, Ri) generating the language Li; and the parsing grammar

Gp = (Σ, Np, Sp, Rp), corresponding to language Lp. It is assumed, without loss of generality,

that Ri contains only one rule rewriting the start symbol Si, that is Si → ξ.

Neither grammar has useless symbols nor epsilon rules. This hypothesis is stricter than

in [Nederhof and Satta, 2002], where Gp can have epsilon rules. In stochastic grammars the

presence of epsilon rules can be important, as it influences the probability distribution induced

on the language. Nevertheless, this hypothesis is introduced even for Gp for the sake of clearness

and simplicity of exposition. Whenever necessary, it can be relaxed in the Earley case by

following the solution proposed by [Stolcke, 1995] for the single string input. Moreover, for the

sake of simplicity, we assume that Gi does not have unary productions.

Both grammars are proper, i.e. ∀A ∈ N ,
∑

α∈(Σ∪N)∗ Pr(A → α) = 1 and consistent, i.e.,

Pr(Li|Gi) = Pr(Lp|Gp) = 1. When integrating two statistical language models, consistency is

important to control the balancing of the two models. In the integrated model, the product of

the probabilities of the two grammars is associated to each hypothesis: although such model is

not consistent [Corazza, 2002], it can be profitably used for comparing different hypotheses in

the same framework.

Following [Nederhof and Satta, 2002], a PDA with bounded size stack is built from Gi, defined

by (Σ, Ns, Xinit, Xfinal,∆) where Ns indicates the set of stack symbols of the form [Ai → αi•βi]

where Ai → αiβi ∈ Ri. In the rest of the paper, the letters Q,X, Y, Z indicate elements of

Ns, while q, x, y, z indicate strings of these symbols. The initial symbol Xinit is defined as

[Si → •ξ], while the final symbol is Xfinal = [Si → ξ•]. ∆ is the set of transitions; a probability

is associated to each transition in such a way that the probability distribution induced on Li

is the same induced by Gi. Moreover, as the probabilities are to be used in a search on partial

hypotheses, probabilities are introduced immediately, in order to obtain a score as informative

as possible. Given these priorities, the probability of applying all possible transitions to the top

of the stack is not normalized to 1.

SCFGs associate to each derivation tree a probability given by the product of the probabilities

of all the involved rules, counted with their multiplicity. While searching for the best solution of

Predictor/Push : Pr(X 7→ XY) = Pr([Ai → αi •Biβi] 7→ [Ai → αi •Biβi][Bi → •γi]) =
= Pr(Bi → γi)

Completer/Pop : Pr(XY 7→ Q) = Pr([Ai → αi •Biβi][Bi → γi•] 7→ [Ai → αiBi • βi]) = 1
Scanner/Scan : Pr(X a7→ Y) = Pr([A → αi • aβi] a7→ [Ai → αia • βi]) = 1

Table 1: PDA probabilistic transitions.

a given problem, two different approaches are possible. The first one looks for the most probable

string. As the grammar can be ambiguous, the probability of each string of the language is

defined as the sum of the probabilities of all the derivation trees generating the string. In the

following, this approach is called best string, as the search aims at finding the string of the

language with the highest probability and the corresponding probabilities are denoted by Prγ .

Elsewhere, the approach is also referred to as Inside approach.

An alternative approach looks for the string associated to the most probable derivation tree.

It is called best derivation approach or Viterbi approach. In the following it is denoted by Prv.

The choice of which of the two approaches should be adopted depends on the application:

for example, for speech recognition the final result is given by the string of words and the best

string approach is often adopted. On the other hand, a different meaning is usually associated

to different derivation trees, so that for speech understanding the best derivation approach has

the advantage of producing a string of words together with its derivation.

3 Input probabilities

Let Pr(q a=⇒
+

z) be the probability associated to the computation segment q
a=⇒

+
z, defined

in [Nederhof and Satta, 2002]. Let us just recall that q and z represent the topmost stack con-

tents before and after the computation considered by the segment. Each segment is composed

by a scan operation preceded by zero or more pushes and followed by zero or more pops.

Following the conditions exposed in [Nederhof and Satta, 2002] a minimal number of seg-

ments are defined, so that the computation can be effectively factorized. Segments can only

have the form αX
a=⇒

+
βY , where at least one of α and β is null, X is the start symbol or re-

sults from a pop or a scan and Y is the end symbol or prepares a scan or a push ([Ai → αi •bβi]

with b ∈ Σ ∪N i).

If the input grammar Gi is reduced such that it does not have any unary production, then

each segment q
a=⇒

+
z corresponds to a unique sequence of PDA transitions.

The probability associated to each segment is given by the product of the probabilities of

the transitions of which it is composed. These probabilities are just factors to be used in the

parsing phase: they do not give a probability distribution on the space of all legal segments.

Table 2 presents the relations to be used for the recursive computation of the probabilities

Initialization: ∀(X a7→ Y) ∈ ∆, Pr(X a=⇒
+

Y) = Pr(X a7→ Y)
Bilateral rule : Pr(Q a=⇒

+
Z) =

∑
X,Y

Pr(Q 7→ QX) Pr(X a=⇒
+

Y) Pr(QY 7→ Z)

Left rule: Pr(QyX
a=⇒

+
Z) = Pr(yX

a=⇒
+

Y) Pr(QY 7→ Z)
Right rule: Pr(Q a=⇒

+
QzY) = Pr(X a=⇒

+
zY) Pr(Q 7→ QX)

Table 2: Segment probabilities.

of segments, as given in [Corazza, 2002]. All probabilities not explicitly considered are null.

In the bilateral rule, the sum must include all the pairs (X, Y) for which the three terms are

different from 0. Whenever q
a7→ z is a complete segment according to the definition given

in [Nederhof and Satta, 2002], its probability is saved to be used in the parsing phase. To avoid

the duplication of computations, left and right rules can be applied only when the untouched

side of the segment is a legal segment extreme, as suggested in [Nederhof and Satta, 2002].

As discussed in [Nederhof and Satta, 2002], segments can be concatenated, so that q
σ=⇒

+
z

means that there is a PDA computation transforming the stack top q into the stack top z

while spanning the string σ ∈ Σ+. Whenever two different concatenations of segments lead to

exactly the same segment, its probability is given by the maximum or the sum of all probabilities

depending on which approach is applied. Of course, input probabilities of composite segments

are not explicitly computed, but only considered in the integration with parsing probability.

The probability of a composite segment only depends on the involved transitions: therefore, if

x
σ=⇒

+
y with probability Pr(x σ=⇒

+
y), then also Pr(qx σ=⇒

+
qy) = Pr(x σ=⇒

+
y).

If it existed one segment, either atomic or composite, for which q = z, it would be possible to

concatenate it with itself an unbounded number of times, obtaining a computation for an input

string of unbounded length, which is impossible as the grammar is non-recursive. Therefore, it

can be assumed that for every segment, the stack contents involved are different.

4 Parsing probabilities

Usually, the input to a parser is represented by a string of words, that is a set of words together

with their position, and a probability for every word. In this case, instead of a string of words,

the input to the parser is represented by a collection of segments and their probabilities. Each

segment is represented by a word together with the topmost contents of the stack.

Also for the parsing phase, two different approaches are possible in the probability compu-

tation: best derivation and best string. In both cases, the term probability will be used even if

the integrated model is not consistent, that is the probabilities of all possible events sum to a

number which is less than one [Corazza, 2002]. Moreover, at the beginning, each term is not

defined, such that if a term is put to zero, then no solution corresponds to that item.

In [Goodman, 1999] a uniq framework is proposed, which includes both best string and best

derivation approaches. The insight given by this work into the problem is undoubtable. Never-

theless, in this case, computational problems are crucial, and maintaing distinct the two cases

can allow for a better computational understanding.

4.1 CKY parser

The probabilities associated to the CKY parsing strategy are introduced in

[Corazza, 2002]: in this section a refinement of those is presented. In both approaches

to CKY parsing, items having the form [Ap〈σ〉, x, y], are considered where Ap ∈ Np, σ ∈ Σ+

and x and y refer to the topmost stack contents in the PDA. Each item corresponds to

all subtrees in Gp having root Ap and yield σ, and to a partial computation in the PDA,

transforming x into y while scanning σ, that is, to the (composite) segment x
σ=⇒

+
y.

When the best derivation approach is adopted, it is only necessary to compute the probability

of not more than one item for each triple (Ap, x, y). The associated string σ is the one for which

the probability is maximum. If no string like that exists, then the item is not possible and its

probability is null. Eventually, if more strings give the same maximum probability, then each

of them can be taken.

The probability of the best derivation associated to the item is denoted by Prv(Ap〈σ〉, x, y).

As Gp is in Chomsky normal form, the rule rewriting Ap in the best derivation can only be

unary or binary. In the first case, we obtain:

Pr′v(Ap, x, y) = max
a

Pr(Ap → a) Pr(x a=⇒
+

y) (1)

If, on the other hand, the rule rewriting Ap is binary, the computation is different in two cases:

Pr′′v(Ap, qx, z) = max
Bp,Cp,y

Pr(Ap → BpCp)Prv(Bp〈σ1〉, x, y)Prv(Cp〈σ2〉, qy, z) (2)

Pr′′v(Ap, x, qz) = max
Bp,Cp,y

Pr(Ap → BpCp)Prv(Bp〈σ1〉, x, qy)Prv(Cp〈σ2〉, y, z) (3)

As the two cases are mutually exclusive, the probability of the item is given by the maximum

between the two. If Pr′v(Ap, x, y) > Pr′′v(Ap, x, y), then Prv(Ap〈σ〉, x, y) = Pr′v(Ap, x, y), and

the corresponding string σ is given by the a maximizing (1). Otherwise, Prv(Ap〈σ〉, x, y) =

Pr′′v(Ap, x, y), and σ = σ1σ2.

Analogously, Prγ(Ap〈σ〉, x, y) indicates the corresponding best string probability, where the

sum of all partial derivation trees of root Ap is considered, together with the sum of the

probability of all computations starting from stack top x to stack top y. Note that in this case

the number of items to be considered for the computation is much higher, as for every σ all

factorizations σ1σ2 must be considered. Eventually, the σ for which such term is the greatest

is chosen.

Prγ(Ap〈σ〉, qx, z) = Pr(Ap → σ) Pr(qx σ=⇒
+

z)+

+
∑

Bp,Cp,y

Pr(Ap → BpCp)
∑

σ1, σ2 :
σ1σ2 = σ

Prγ(Bp〈σ1〉, x, y)Prγ(Cp〈σ2〉, qy, z) (4)

Prγ(Ap〈σ〉, x, qz) = Pr(Ap → σ) Pr(x σ=⇒
+

qz)+

+
∑

Bp,Cp,y

Pr(Ap → BpCp)
∑

σ1, σ2 :
σ1σ2 = σ

Prγ(Bp〈σ1〉, x, qy)Prγ(Cp〈σ2〉, y, z) (5)

As noted above, the two stack contents of a segment must always be different: therefore, the

relation given for the probability of each item does not recursively depend on the probability

of the same item. Moreover, as Gi is non-recursive, it is possible to find an order in the items

such that the probabilities can be computed.

4.2 Earley parser

Although with Earley parser no constraints are imposed on the grammar form, in the following

the hypothesis is made that the grammar does not have any epsilon rules. In [Stolcke, 1995]

the problem is discussed and solutions are proposed which can be applied also in this case.

Contrary to the CKY parser, the Early parser is intrinsically left-to-right. This directionality

in the analysis is connected to the correct-prefix condition which is fulfilled by every analysis

item.

In [Nederhof and Satta, 2002], two kinds of items are considered, which in the following

are referred as forward and backward items. First of all, forward items are considered.

In this case, the partial hypotheses for which probabilities are computed have the form

[Ap → µ • ν〈σ〉|q ∗ z, q ∗ w]. For the sake of clearness, the additional information of σ is re-

ported also in the best derivation case.

Every item is characterized by a rewriting rule Ap → µν ∈ Rp; as usual in the items considered

by Earley parser, the dot in the right-hand side of the rule indicates that µ has been yet analyzed.

The other two parts of the item, qz and qw give the topmost contents of the stack before and

after the analysis of µ. The marker ∗ indicates where the analysis of µ started, while the

part of the stack preceding it, q in this case, must be included to guarantee the correct-prefix

property (see [Nederhof and Satta, 2002] for details). In addition to that, as for the CKY, the

string σ is added for clarity also in the best derivation approach. The initial hypothesis is

[S → •ξ〈ε〉| ∗Xinit, ∗Xinit].

Backward items are used to explore the stack under the part determined by the item. More

in detail, the search is conducted by considering a particular stack symbol Q and gives as a

result new items which have this symbol in the part of the stack which precedes the ∗ position,

if such items are consistent with the analysis.

This backward search is performed following the indications of [Nederhof and Satta, 2002];

Initialization:
Prv(S → •ξ〈ε〉| ∗Xinit, ∗Xinit) = Pr(S → ξ) = 1
Scanning:

Prv(A → µa • ν〈σa〉| ∗ α, ∗γδ) = max
β

Prv(A → µ • aν〈σ〉| ∗ α, ∗γβ) Pr(β a=⇒
+

δ)

Prv(A → µa • ν〈σa〉| ∗ γα, ∗δ) = max
β

Prv(A → µ • aν〈σ〉|γ ∗ α, γ ∗ β) Pr(γβ
a=⇒

+
δ)

Prediction:
Prv(B → •ξ〈ε〉| ∗X, ∗X) = Pr(B → ξ) if Prv(A → µ •Bν| ∗ α, ∗βX) > 0
Completion:
Prv(A → µB • ν〈σ1σ2〉| ∗ α, ∗γδ) =

max
β,B→ξ

Prv(A → µ •Bν〈σ1〉| ∗ α, ∗γβ)Prv(B → ξ • 〈σ2〉| ∗ β, ∗δ)

Prv(A → µB • ν〈σ1σ2〉| ∗ γα, ∗δ) =
max

β,B→ξ
Prv(A → µ •Bν〈σ1〉|γ ∗ α, γ ∗ β)Prv(B → ξ • 〈σ2〉| ∗ γβ, ∗δ)

Table 3: Earley parsing: best derivation probabilities.

Pr(B → •ξ〈ε〉|Qβ ∗X, Qβ ∗X) = Pr(B → ξ)
Pr(A → µ • ν〈σ〉|Qα1 ∗ α2X, Qα1 ∗ β) = Pr(A → µ • ν〈σ〉|α1 ∗ α2X, α1 ∗ β)

Table 4: Backward stack expansions, valid for both best string and best derivation probabilities.

in Table 4 only the probabilities of the resulting items are reported. The probability associated

to each item only involves the rules and PDA transitions considered in the analysis described

by the item. Therefore, the addition of one or more stack symbols before the ∗ does not change

the item probability.

Relations used for the computation of the best derivation and best string approaches are

reported respectively in Table 3 and Table 5.

In Table 5, the quantity R(A ∗⇒ B) defined in [Stolcke, 1995] is used. It accounts for unary

productions as it is the sum of the probabilities of all ways of rewriting A into B in zero, one

or more, and possibly infinite, steps:

R(A ∗⇒ B) = Pr(A = B) + Pr(A → B) +
∑
X

Pr(A → X) Pr(X → B) + . . . (6)

The term Pr(A = B), which is equal to 1 if A = B, equal to 0 otherwise. Unary nonterminal

productions are not a problem in the CKY parser where the grammar is in Chomsky normal

form, nor for the best derivation approach, where loops are simply not included in the search

as they always lower the probability.

The parsing procedure initialization begins by putting the initial probability

Pr(S → •ξ〈ε〉| ∗Xinit, ∗Xinit) to 1. As said above, the probabilities which have not

been explicitly considered are not defined: null probabilities will be explicitly put to zero. At

every step, a parsing item is considered for expansion. The choice of the action depends on

Initialization:
Prγ(S → •ξ〈ε〉| ∗Xinit, ∗Xinit) = Pr(S → ξ) = 1
Scanning:

Prγ(A → µa • ν〈σa〉| ∗ α, ∗γδ) =
∑
β

Prγ(A → µ • aν〈σ〉| ∗ α, ∗γβ) Pr(β a=⇒
+

δ)

Prγ(A → µa • ν〈σa〉| ∗ γα, ∗δ) =
∑
β

Prγ(A → µ • aν〈σ〉|γ ∗ α, γ ∗ β) Pr(γβ
a=⇒

+
δ)

Prediction:
Prγ(C → •ξ〈ε〉| ∗X, ∗X) = Pr(C → ξ) if Prγ(A → µ •Bν〈σ〉| ∗ α, ∗βX) > 0

and R(B ∗⇒ C) > 0
Completion:
Prγ(A → µB • ν〈σ〉| ∗ α, ∗γδ) =
=

∑
β,C→ξ

∑
σ1, σ2 :

σ1σ2 = σ

Prγ(A → µ •Bν〈σ1〉| ∗ α, ∗γβ)R(B ∗⇒ C)Prγ(C → ξ • 〈σ2〉| ∗ β, ∗δ)

Prγ(A → µB • ν〈σ〉| ∗ γα, ∗δ) =
=

∑
β,C→ξ

∑
σ1, σ2 :

σ1σ2 = σ

Prγ(A → µ •Bν〈σ1〉|γ ∗ α, γ ∗ β)R(B ∗⇒ C)Prγ(C → ξ • 〈σ2〉| ∗ γβ, ∗δ)

Table 5: Earley parsing: best string probabilities.

whether the dot is at the end of the right-hand side, or whether the symbol following the dot is

a terminal or a nonterminal. In the first case, the item is put into a completed partial analyses

list.

If the symbol following the dot is a terminal, in addition to the scanning operation, also

backward search is launched to look for stack symbols that can allow further stack operations.

The items produced by the backward search are included in the open analyses list, to be used

only by the second relation of both the scan and the completion step in Table 3 and 5.

If, on the other hand, the symbol immediately following the dot is a nonterminal, then it is

necessary to look in the completed analyses list to check which analyses can be used. For the

missing ones, prediction is launched.

5 Prefix probabilities

In a left-to-right parsing strategy, a partial hypothesis is represented by a string which is a

prefix for at least one string in the intersection of the input and parsing languages. Partial

hypotheses must be scored in such a way that the score computed on a complete hypothesis is

equal to its probability, while the score of other hypotheses give information on how promising

the hypothesis is.

The best possible score is given by the probability of the best complete hypothesis which

can be derived from the current one. Unfortunately computation is straightforward only with

the best derivation approach. With string input the score used with the best string approach

is then an upper-bound of the optimal one, i.e. the prefix probability; this probability is the

probability of all the derivation trees yielding to a string having for prefix the partial hypothesis

([Jelinek and Lafferty, 1991] for CKY and [Stolcke, 1995] for Earley).

In this section their approach is extended to the case in which the input is represented by

a non-recursive SCFG for the best string case, as the best derivation approach presents less

problems, as discussed in [Stolcke, 1995]. Note that the upper-bound is only based on Gp.

Prα(Ap � a, x, y) =
∑

Bp∈Np

R(Ap ∗⇒L Bp) Pr(Bp → a) Pr(x a=⇒
+

y)

Prα(Ap � σ, qx, z) =
∑

Bp,Cp,y

R(Ap ∗⇒L BpCp)
∑

σ1, σ2 :
σ1σ2 = σ

Prγ(Bp〈σ1〉, x, y)Prα(Cp � σ2, qy, z)

Prα(Ap � σ, x, qz) =
∑

Bp,Cp,y

R(Ap ∗⇒L BpCp)
∑

σ1, σ2 :
σ1σ2 = σ

Prγ(Bp〈σ1〉, x, qy)Prα(Cp � σ2, y, z)

Table 6: CKY prefix probabilities.

In the CKY case, Prα(Ap � σ, x, y) is the probability of all trees with root Ap, yielding in

a string with prefix σ and such that in the PDA, the top of the stack x is transformed into

y while σ is scanned. Therefore, Prα(Sp � σ, x, y) is an upper-bound for the best complete

hypothesis which can be derived from [Sp〈σ〉, x, y].

When the Earley parser is considered, on the other hand, the prefix property must be satisfied.

Therefore, Prα(A → µa • ν � σ| ∗ α, ∗γδ) is the probability of all items [A → µa • ν〈σσ1〉| ∗

α, ∗γδ] such that σ is a prefix of a complete analysis and σ1 any string. Again, Prα(Sp →

µa • ν � σ| ∗ α, ∗γδ) is an upper-bound of the probability of the best complete hypothesis

which can be derived from the current one.

The definition of R(Ap ∗⇒ Bp) is reported in Equation (6); similarly, R(Ap ∗⇒L Bp)

[Stolcke, 1995] indicates the probability that, in zero or more steps, Ap derives a string beginning

with Bp. [Jelinek and Lafferty, 1991] gives a definition which is slightly different but could be

used without major changes. The same paper also includes the definition and the computation

procedure for the quantity QL(Ap ⇒ BpCp), which in Table 6 is called R(Ap ∗⇒L BpCp) for

homogeneity of notation. It indicates the sum of the probabilities of all trees with root Ap and

whose last leftmost production has BpCp as right-hand side.

6 Discussion and future work

A probabilistic framework aiming at the integration of the probabilities derived from two SCFG,

one of which is non-recursive, was exposed. It gives probabilistic scores also on partial hypothe-

ses, allowing for an effective search for the optimal solution even when only a part of the search

Initialization:
Prα(S → •ξ � ε| ∗Xinit, ∗Xinit) = Pr(S → ξ) = 1
Scanning:

Prα(A → µa • ν � σa| ∗ α, ∗γδ) =
∑
β

Prα(A → µ • aν � σ| ∗ α, ∗γβ) Pr(β a=⇒
+

δ)

Prα(A → µa • ν � σa| ∗ γα, ∗δ) =
∑
β

Prα(A → µ • aν � σ|γ ∗ α, γ ∗ β) Pr(γβ
a=⇒

+
δ)

Prediction:
Prα(C → •ξ � σ| ∗X, ∗X) =

∑
A→µBν,α,β

Prα(A → µ •Bν � σ| ∗ α, ∗βX)R(B ∗⇒L C) Pr(C → ξ)

Completion:
Prα(A → µB • ν � σ1σ2| ∗ α, ∗γδ) =∑

β,C→ξ

Prα(A → µ •Bν � σ1| ∗ α, ∗γβ)R(B ∗⇒ C)Prγ(C → ξ • 〈σ2〉| ∗ β, ∗δ)

Prα(A → µB • ν � σ1σ2| ∗ γα, ∗δ) =∑
β,C→ξ

Prα(A → µ •Bν � σ1|γ ∗ α, γ ∗ β)R(B ∗⇒ C)Prγ(C → ξ • 〈σ2〉| ∗ γβ, ∗δ)

Backward:
Prα(B → •ξ � ε|Qβ ∗X, Qβ ∗X) = Prα(B → •ξ � ε|β ∗X, β ∗X)
Prα(A → µ • ν � σ|Qα1 ∗ α2X, Qα1 ∗ β) = Prα(A → µ • ν � σ|α1 ∗ α2X, α1 ∗ β)

Table 7: Earley prefix probabilities.

space is explored.

Two parsing strategies have been considered, CKY and Earley, following a left-to-right search

strategy. Moreover, also prefix probabilities were introduced, giving an even tighter score to be

adopted in the search strategy. Empirical evaluation should be performed to obtain indications

about which strategy is preferable for each application. However, assessment results strongly

depend on the SCFGs used, which therefore must be chosen as similar as possible to the one

used in actual systems.

Further development of this work can consider bidirectional search strategies, as the one

presented in [Corazza et al., 1991] for the best string approach and in [Corazza et al., 1994] for

the best derivation one. Moreover, such upper-bounds could be improved by also considering

the possible extensions of the current hypothesis in the input grammar language.

References

[Corazza, 2002] Corazza, A. (2002). Integration of Two Stochastic Context-Free Grammars.

In Proc. of the 7th International Conference on Spoken Language Processing – ICSLP-2002,

pages 909–912, Denver, CO, USA.

[Corazza et al., 1991] Corazza, A., De Mori, R., Gretter, R., and Satta, G. (1991). Computation

of Probabilities for an Island-Driven Parser. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 13(9):936–950.

[Corazza et al., 1994] Corazza, A., De Mori, R., Gretter, R., and Satta, G. (1994). Optimal

Probabilistic Evaluation Functions for Search Controlled by Stochastic Context-Free Gram-

mars. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(10):1018–1027.

[Corazza and Lavelli, 1994] Corazza, A. and Lavelli, A. (July 1994). An n-best representation

for bidirectional parsing strategies. In Proc. of AAAI-94 Workshop on the Integration of

Natural Language and Speech Processing, pages 7–14, Seattle,Washington, USA.

[Goodman, 1999] Goodman, J. (1999). Semiring parsing. Computational Linguistics,

25(4):573–605.

[Jelinek and Lafferty, 1991] Jelinek, F. and Lafferty, J. D. (1991). Computation of the Proba-

bility of Initial Substring Generation by Stochastic Context Free Grammars. Computational

Linguistics, 17(3):315–323.

[Knight and Langkilde, 2000] Knight, K. and Langkilde, I. (2000). Preserving Ambiguities in

Generation via Automata Intersection. In National Conference on Artificial Intelligence

(AAAI).

[Langkilde, 2000] Langkilde, I. (2000). Forest-based statistical sentence generation. In 6th

Applied Natural Language Processing Conference and 1st Meeting of the North American

Chapter of the ACL, pages 170–177 (Section 2).

[Manning and Schütze, 2000] Manning, C. and Schütze, H. (2000). Foundations of Statistical

Natural Language Processing. MIT Press, Cambridge, Ma, USA.

[Mohri and Riley, 2002] Mohri, M. and Riley, M. (2002). An Efficient Algorithm for the N-Best-

String Problem. In Proc. of the International Conference of Spoken Language Processing –

ICSLP-2002, pages 1313–1316, Denver, CO, USA.

[Nederhof and Satta, 2002] Nederhof, M. and Satta, G. (2002). Parsing non-recursive context-

free grammars. In Proceedings of ACL-02, Philadelphia, PA, USA.

[Sima’an, 2002] Sima’an, K. (2002). Computational Complexity of Probabilistic Disambigua-

tion – NP-Completeness Results for Parsing Problems that arise in Speech and Language

Processing Applications. Grammars, 5(2):125–151.

[Stolcke, 1995] Stolcke, A. (1995). An Efficient Probabilistic Context-Free Parsing Algorithm

That Computes Prefix Probabilities. Computational Linguistics, 21(2):165–201.

