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Abstract

We present a new framework for classify-
ing commonnouns that extends named-
entity classification. We useda fixed set
of 26semantic labels, whichwecalledsu-
persenses. Theseare the labels used by
lexicographersdeveloping WordNet.This
framework hasa number of practical ad-
vantages.We show how informationcon-
tained in thedictionarycanbeusedasad-
ditional training datathat improvesaccu-
racy in learning new nouns. We alsode-
fine a morerealistic evaluation procedure
thancross-validation.

1 Intr oduction

Lexical semanticinformationis useful in many nat-
ural languageprocessingand information retrieval
applications, particularly tasks that require com-
plex inferences involving world knowledge, such
as question answering or the identification of co-
referential entities (Pasca and Harabagiu, 2001;
Pustejovsky et al., 2002).

However, even large lexical databasessuch as
WordNet (Fellbaum, 1998) do not include all of
the words encountered in broad-coverageNLP ap-
plications. Ideally, we would like a systemthat
automatically extends existing lexical resourcesby�
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identifying the syntactic andsemantic properties of
unknown words. In termsof the WordNet lexical
database,onewould like to automatically assignun-
known wordsa position in the synset hierarchy, in-
troducingnew synsetsandextending thesynsethier-
archywhereappropriate. Doing this accurately is a
difficult problem,andin thispaperweaddressasim-
pler problem: automatically determining the broad
semantic class, or supersense, to which unknown
wordsbelong.

Systemsfor thesaurusextension (Hearst,1992;
Roark and Charniak, 1998), information extrac-
tion (Riloff andJones,1999) or named-entity recog-
nition (Collins andSinger, 1999) eachpartially ad-
dress this problem in different ways. The goal
in thesetasksis automatically tagging words with
semantic labels such as “vehicle”, “organization”,
“person”, etc.

In this paperweextend thenamed-entity recogni-
tion approachto theclassification of commonnouns
into 26 different supersenses. Rather than define
theseourselves, we adopted the 26 “lexicographer
class” labels usedin WordNet,which includelabels
suchasperson,location, event,quantity, etc.Webe-
lieveourgeneral approachshould generalizeto other
definitionsof supersenses.

Using the WordNet lexicographer classesas su-
persenses has a number of practical advantages.
First,weshowhow informationcontainedin thedic-
tionary canbe usedasadditional training datathat
improvesthesystem’s accuracy. Secondly, it is pos-
sible to usea very natural evaluation procedure. A
system canbetrainedon anearlier releaseof Word-
Net andtested on thewordsaddedin a laterrelease,



1 person 7 cognition 13 attribute 19 quantity 25 plant
2 communication 8 possession 14 object 20 motive 26 relation
3 artifact 9 location 15 process 21 animal
4 act 10 substance 16 Tops 22 body
5 group 11 state 17 phenomenon 23 feeling
6 food 12 time 18 event 24 shape

Table 1. Lexicographer class labels, or supersenses.

since theselabels are constantacross different re-
leases. This new evaluation definesa realistic lexi-
cal acquisition taskwhich is well defined,well mo-
tivatedandeasilystandardizable.

Theheart of oursystem is amulticlassperceptron
classifier (CrammerandSinger, 2002). Thefeatures
usedarethestandardonesusedin word-senseclassi-
fication andnamed-entity extraction tasks, i.e., col-
location, spelling andsyntacticcontext features.

Theexperimentspresentedbelowshow thatwhen
theclassifier alsousesthedatacontainedin thedic-
tionary its accuracy improvesoverthatof atradition-
ally trainedclassifier. Finally, weshow thatthereare
both similarities and differencesin the results ob-
tained with the new evaluation andstandardcross-
validation. This might suggest that in fact that the
new evaluation definesa morerealistic task.

The paper is organized as follows. In Section2
we discussthe problem of unknown wordsandthe
taskof semantic classification. In Section 3 we de-
scribe the WordNet lexicographer classes, how to
extract training datafrom WordNet,the new evalu-
ationmethodandtherelation of this taskto named-
entity classification. In Section 4 we describe the
experimentalsetup, andin Section 5 we explain the
averagedperceptronclassifier used.In Section 6 and
7 we discusstheresults andthetwo evaluations.

2 Unknown Words and Semantic
Classification

Language processing systemsmake useof “dictio-
naries”, i.e., lists that associate words with useful
information such as the word’s frequency or syn-
tactic category. In tasksthatalsoinvolve inferences
about world knowledge, it is useful to know some-
thing about the meaningof the word. This lexical
semantic information is often modeled on what is
found in normal dictionaries, e.g., that “iri ses” are
flowersor that“exane” is a solvent.

This information can be crucial in tasks such
as question answering - e.g., to answer a ques-
tion suchas “What kind of flowers did Van Gogh
paint?” (Pascaand Harabagiu, 2001) - or the indi-
viduationof co-referential expressions,asin thepas-
sage“... the prerun canbe performedwith �������	��

... this �� ��� ����� 
 canbeconsidered...” (Pustejovsky
et al., 2002).

Lexical semantic information can be extracted
from existing dictionaries suchasWordNet. How-
ever, these resourcesare incomplete and systems
that rely on them often encounterunknown words,
evenif thedictionary is large. As anexample,in the
Bllip corpus(avery largecorpusof Wall StreetJour-
nal text) the relative frequency of commonnouns
that areunknown to WordNet1.6 is approximately
0.0054; an unknown noun occurs, on average, ev-
ery eight sentences.WordNet1.6 lists 95,000noun
types. For this reason the importanceof issues such
asautomatically building, extending or customizing
lexical resourceshasbeenrecognized for sometime
in computational linguistics (Zernik,1991).

Solutions to this problem were first proposed
in AI in the context of story understanding, cf.
(Granger, 1977). The goal is to label words using
a setof semantic labelsspecified by the dictionary.
Several studies have addressedthe problem of ex-
panding one semantic category at a time, suchas
“vehicle” or “organization”, that are relevant to a
particular task (Hearst,1992; RoarkandCharniak,
1998; Riloff andJones, 1999). In named-entity clas-
sification alargesetof namedentities(proper nouns)
areclassifiedusing a comprehensivesetof semantic
labels suchas “organization”, “person”, “location”
or “other” (Collins and Singer, 1999). This latter
approachassignsall namedentities in thedata seta
semantic label. We extend this approachto theclas-
sification of commonnounsusing a suitablesetof
semantic classes.



3 Lexicographer Classesfor Noun
Classification

3.1 WordNet Lexicographer Labels

WordNet (Fellbaum, 1998) is a broad-coverage
machine-readable dictionary. Release1.71 of the
English version lists about 150,000 entries for all
open-classwords,mostlynouns(109,000types),but
alsoverbs, adjectives,andadverbs. WordNetis or-
ganized asanetwork of lexicalizedconcepts,setsof
synonymscalledsynsets; e.g.,thenouns � chairman,
chairwoman,chair, chairperson � form a synset. A
word thatbelongsto severalsynsetsis ambiguous.

To facilitate the developmentof WordNet, lexi-
cographersorganize synsetsinto several domains,
based onsyntacticcategory andsemantic coherence.
Eachnoun synset is assigned one out of 26 broad
categories1. Sincethesebroadcategoriesgroupto-
gether very many synsets,i.e., word senses,we call
themsupersenses. Thesupersenselabels thatWord-
Net lexicographersuseto organize nounsarelisted
in Table12. Notice that sincethe lexicographer la-
belsareassignedto synsets,often ambiguity is pre-
served even at this level. For example, chair has
threesupersenses:“person”, “artifact”, and“act”.

This setof labels hasa numberof attractive fea-
tures for the purposesof lexical acquisition. It is
fairly general and therefore small. The reasonable
sizeof thelabelsetmakesit possible to applystate-
of-the-art machinelearning methods. Otherwise,
classifying new wordsat the synset level definesa
multiclassproblem with a hugeclassspace - more
than66,000 nounsynsetsin WordNet1.6,morethan
75,000 in the newest release, 1.71 (cf. also (Cia-
ramita, 2002) on this problem). At the sametime
the labelsarenot too abstractor vague. Most of the
classesseemnatural andeasily recognizable. That
is probably why they were chosen by the lexicog-
raphers to facilitate their task. But thereare more
important practical andmethodological advantages.

3.2 Extra Training Data fr om WordNet

WordNetcontainsa greatdeal of information about
words and word senses.Theinformation contained

1Therearealso15 lexicographerclassesfor verbs,3 for ad-
jectivesand1 for adverbs.

2The label “Tops” refersto about 40 very generalsynsets,
suchas“phenomenon” “entity” “object” etc.

in the dictionary’s glosses is very similar to what
is typically listedin normaldictionaries: synonyms,
definitionsandexamplesentences. This suggestsa
very simpleway in which it canbe put into use: it
canbecompiledinto training datafor supersense la-
bels. This datacan then be added to the dataex-
tractedfrom thetraining corpus.

For several thousandconceptsWordNet’s glosses
areveryinformative. Thesynset“chair” for example
looks asfollows:

����� ����� : president, chairman, chairwoman,
chair, chairperson – (theofficerwhopresidesat
themeetingsof anorganization); “addressyour
remarksto thechairperson”.

In WordNet1.6, 66,841 synsets contain definitions
(in parentheses above), and 6,147 synsets contain
example sentences(in quotation marks). As we
show below, this information about word senses is
useful for supersensetagging. Presumably this is be-
causeif it canbesaidof a“chairperson” that shecan
“presideat meetings” or that“a remark” canbe“ad-
dressedto her”, thenlogically speaking thesethings
canbe saidof the superordinatesof “chairperson”,
like “person”,aswell.

Therefore informationat the synset level is rele-
vantalsoat thesupersenselevel. Furthermore,while
individually eachglossdoesn’t saytoo muchabout
the narrow concept it is attachedto (at least from
a machine learning perspective) at the supersense
level this informationaccumulates. In fact it forms
asmallcorpusof supersense-annotateddatathatcan
beusedto train aclassifier for supersensetagging of
wordsor for other semantic classificationtasks.

3.3 Evaluation Methods

Formulating the problem in this fashion makes it
possible to definealsoavery natural evaluation pro-
cedure. Systemscanbe trained on nouns listed in
a givenrelease of WordNetandtested on thenouns
introducedin a later version. The setof lexicogra-
pherlabels remainsconstantandcanbeusedacross
differentversions.

In this way systemscanbetestedon a morereal-
istic lexical acquisition task- thesametaskthat lex-
icographers carried out to extendthe database.The
task is thenwell definedandmotivated, andeasily
standardizable.
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Figure 1. Cumulative distribution of supersense labels in
Bllip.

3.4 Relation to Named-Entity Tasks

Thecategoriestypically usedin named-entity recog-
nition tasksarea subsetof the nounsupersensela-
bels: “person”, “location”, and“group”. Small la-
bel setslike these canbe sufficient in named-entity
recognition. Collins and Singer (1999) for exam-
ple report that 88% of the namedentities occur-
ring in their data set belong to these three cate-
gories (Collins andSinger, 1999).

The distribution of commonnouns, however, is
more uniform. We estimated this distribution by
counting theoccurrencesof 744unambiguous com-
monnounsnewly introducedin WordNet1.71.Fig-
ure 1 plots thecumulative frequency distribution of
supersensetokens;thelabelsareorderedby decreas-
ing relative frequency asin Table1.

The most frequent supersenses are “person”,
“communication”, “artifact” etc.Thethreemostfre-
quent supersensesaccount for a littl e moreof 50%
of all tokens,and9 supersenses account for 90%of
all tokens. A larger numberof labels is needed for
supersensetagging than for named-entity recogni-
tion. Thefigurealsoshows thedistribution of labels
for all unambiguoustokensin WordNet1.6; thetwo
distributionsarequite similar.

4 Experiments

The “new” nounsin WordNet 1.71 and the “old”
onesin WordNet1.6 constitute the testandtraining
datathat we usedin our word classification exper-

iments. Here we describe the experimentalsetup:
training andtestdata,andfeaturesused.

4.1 Training data

We extracted from the Bllip corpus all occur-
rences of nouns that have an entry in WordNet1.6.
Bllip (BLLIP, 2000) is a 40-million-word syntac-
tically parsed corpus. We usedthe parses to ex-
tractthesyntacticfeaturesdescribedbelow. Wethen
removed all ambiguous nouns, i.e., nouns that are
tagged with more than one supersenselabel (72%
of the tokens, 28.9%of the types). In this way we
avoideddealing with theproblemof ambiguity3.

We extracted a feature vector for eachnoun in-
stance using the feature setdescribed below. Each
vector is a training instance. In addition we com-
piled another training set from the example sen-
tences andfrom thedefinitionsin thenoun database
of WordNet 1.6. Overall this procedureproduced
787,186 training instancesfrom Bllip, 66,841 train-
ing instancesfrom WordNet’s definitions,and6,147
training instancesfrom theexamplesentences.

4.2 Features

We used a mix of standard features usedin word
sense disambiguation, named-entity classification
and lexical acquisition. The following sentence il-
lustratesthem: “The art-students, nine teen-agers,
readthebook”, art-students is thetagged noun:

1. part of speechof the neighboring words: �! #"%$'&!( ,��)*$,+!+�- , ��. " $0/1& , ...

2. single words in the surrounding context: /2$'3�4�576 ,/2$'8�9!9;: , /2$=<?>!5�@!@ , /2$'A?B�4 , ...

3. bigrams and trigrams: /� #"�C . "�$'A?B�4 D�EFD�4 ,/  #"�C  G" $'A?B�4 , /�. "�C .#HI$,D�E;D�4 A�4!41DKJL57M�4?3�@ , ...

4. syntacticallygoverned elementsunder a given phrase:N " $'A?B�4 +!�
5. syntacticallygoverning elementsundera given phrase:N H $'3�4!576 -
6. coordinates/appositives: /!OP$'A�4?47DKJL57M�473Q@
7. spelling/morphological features:prefixes,suffixes,com-

plex morphology: R!�S$05 , R!�S$0573 ... RQ-2$=@ , R�-T$0AQ@
... R�/P$0573!A , R�/P$=@1A?U!6�47D�A ...

3A simpleoption to dealwith ambiguous wordswould be
to distributeanambiguousnoun’scounts to all its senses.How-
ever, in preliminaryexperimentswefoundthatabetteraccuracy
is achieved usingonly non-ambiguousnouns.We will investi-
gatethis issuein futureresearch.



Openclasswords were morphologically simpli-
fied with the “morph” function included in Word-
Net. We parsed theWordNetdefinitions andexam-
plesentenceswith thesamesyntactic parser usedfor
Bllip (Charniak, 2000).

It is not alwayspossible to identify the nounthat
representsthe synset in the WordNet glosses. For
example, in the gloss for the synset relegation the
examplesentenceis “He hasbeenrelegatedto apost
in Siberia”, whereaverbis usedinsteadof thenoun.
Whenit waspossible to identify the target nounthe
complete feature set was used;otherwise only the
surrounding-word features(2) andthe spelling fea-
tures(7) of all synonyms wereused. With the def-
initi ons it is muchharder to individuate the target;
consider thedefinition “a memberof the genus Ca-
nis” for dog. For all definitions we usedonly the
reducedfeatureset.Onetraining instancepersynset
wasextracted from the example sentencesandone
training instance from the definitions. Overall, in
the experimentswe performedwe usedaround 1.5
million features.

4.3 Evaluation

In a similar way to how we producedthe training
datawe compiled a test set from the Bllip corpus.
Wefoundall instancesof nounsthatarenot in Word-
Net 1.6 but are listed in WordNet 1.71 with only
onesupersense. Themajority of thenovel nouns in
WordNet 1.71 are unambiguous(more than 90%).
Therewere 744 new noun types,with a total fre-
quency of 9,537 occurrences. We refer to this test
setasTestVFW X7V .

We also randomly removed 755 noun types
(20,394 tokens)from thetrainingdataandusedthem
asan alternative testset. We refer to this other test
set as TestVFW Y . We then ran experimentsusing the
averagedmulticlassperceptron.

5 The Multiclass AveragedPerceptron

We useda multiclassaveragedperceptronclassifier,
which is an “ult raconservative” on-line learning al-
gorithm (CrammerandSinger, 2002), that is a mul-
ticlassextension of thestandardperceptronlearning
to themulticlasscase. It takes asinput a training setZ\[^] � 
`_FaG
cbed
gf V , whereeachinstance � 
ihkj lnm rep-
resents an instanceof a nounand a�oph\q . Here q

Algorit hm 1 Multicl assPerceptron
1: input training data

] � 
r_FaG
�b d
gf V , s [ut
2: repeat
3: for � [wv _�xgxgxg_ � do
4: if y ] � 
`z s b|{[ aG
 then
5:

�~};�����~};�I� � 

6: � 
 [ � a,h=q���� ��} _ � 
������ ��};� _ � 
�� �
7: for a'h �i
 do
8:

�~}|����}�� V� � � � � 

9: end for

10: end if
11: end for
12: until no moremistakes

is thesetof supersenses definedby WordNet.Since
for training andtesting we usedonly unambiguous
wordsthereis alwaysexactly onelabel perinstance.
Thus

Z
summarizes � wordtokensthatbelong to the

dictionary, whereeach instance � is represented asa
vector of features � 
 extracted from the context in
which the noun occurred; � is the total numberof
features;and a 
 is thetruelabel of ��
 .

In general, a multiclass classifier for the dictio-
nary is a function y �|j l d�� q that mapsfea-
ture vectors � to oneof the possible supersenses of
WordNet. In the multiclassperceptron, one intro-
duces aweight vector

� } hpj l m for every a'h0q and
definesy implicitly by theso-calledwinner-take-all
rule

y ] � z s b [u���;�S���~�}Q�~� � ��} _ � ��x (1)

Here s h�j ln�#� m refers to the matrix of weights,
with every column corresponding to one of the
weightvectors

��}
.

The learning algorithm works asfoll ows: Train-
ing patterns are presented one at a time in
the standard on-line learning setting. Whenevery ] � 
`z s b\{[ aG
 an update step is performed; oth-
erwise the weight vectors remain unchanged. To
perform theupdate,onefirst computestheerror set� 
 containing those classlabels thathave receiveda
higher scorethanthecorrect class:

� 
 [ � a'h0q ��� ��} _ � 
����¡� �~};� _ � 
c� � (2)

An ultraconservativeupdateschemein its mostgen-
eral form is thendefinedasfollows: Update

�`}0�



��}=�£¢!} � 
 with learning rates fulfilli ng the con-
straints

¢;};� [ v
, ¤ }�¥f };� ¢!} [ � v

, and
¢7} [¦t

for a {h � 
¨§ � aG
 � . Hencechanges are limited to��}
for a©h � 
	§ � aG
 � . The sumconstraint ensures

thattheupdate is balanced,which is crucial to guar-
anteeing the convergence of the learning procedure
(cf. (CrammerandSinger, 2002)). We have focused
on the simplest caseof uniform update weights,¢!} [ � V� � � � for a©h � 
 . The algorithm is summa-
rizedin Algorithm1.

Notice that the multiclass perceptron algorithm
learns all weight vectors in a coupled manner, in
contrastto methods thatperform multiclassclassifi-
cation by combining binary classifiers, for example,
training a classifier for eachclass in a one-against-
the-restmanner.

The averagedversionof the perceptron (Collins,
2002), like the voted perceptron (Freund and
Schapire, 1999), reducestheeffect of over-training.
In addition to the matrix of weight vectors s the
modelkeeps track for eachfeature ª of eachvalue
it assumed during training, ª o , and the numberof
consecutive training instance presentations during
which this weight wasnot changed,or “life span”,� � ] ª o�b . Whentraining is donetheseweightsareav-
eraged andthefinal averagedweight ªr«1¬; of featureª is computedas

ª «1¬; [ ¤ o ª�o � � ] ª�o b¤ o � � ] ª oQb (3)

For example, if there is a feature weight that is
not updated until example 500, at which point it is
incrementedto value 1, and is not touched again
until after example1000, then the average weight
of that feature in the averaged perceptron at ex-
ample750 will be: ®°¯;±r²F¯F¯;³ V ±r´F²F¯;µ®°²F¯F¯;³*´F²F¯;µ , or 1/3. At ex-
ample 1000 it will be 1/2, etc. We used the av-
eraged model for evaluation andparametersetting;
seebelow. Figure2 plots the results on testdataof
bothmodels. Theaverage modelproducesa better-
performing andsmoother output.

5.1 Parameters Setting

We used an implementation with full , i.e., not
sparse, representation of the matrix for the percep-
tron. Training andtestarefast,at the expenseof a

0 100 200 300 400 500 600 700 800 900 1000
27

28

29

30

31

32

33

34

35

36

37

38

Epochs

A
cc

ur
ac

y 
on

 T
es

t 1.
71

Averaged perceptron
Basic perceptron

Figure 2. Results on test of the normal and averaged
perceptron

slightly greater memoryload. Giventhegreatnum-
berof features,we couldn’t usethe full training set
from the Bllip corpus. Instead we randomly sam-
pledfrom roughly half of theavailable trainingdata,
yielding around 400,000 instances,the size of the
training is closeto 500,000 instanceswith also the
WordNetdata. Whentraining to teston TestVF¶ Y , we
removed from the WordNettraining setthe synsets
relative to thenouns in TestVFW Y .

Theonly adjustableparameterto setis thenumber
of passesonthetrainingdata, or epochs. While test-
ing on TestVFW X7V we set this parameterusing TestVFW Y ,
andvice versafor TestVFW Y . Theestimatedvalues for
thestoppingiterationswereverycloseatroughly ten
passes.As Figure2 shows, thegreatamountof data
requires many passesover the data, around 1,000,
before reaching convergence(on TestVFW X7V ).
6 Results

Theclassifier outputstheestimatedsupersense label
of eachinstanceof eachunknown noun type. The
label · ] � b of a nountype � is obtainedby voting4:

· ] � b [¸���1�K���~�}����º¹» � d
¼ y ] � z s b [ a¾½ (4)

where
¼ x¿½ is theindicatorfunction and � h � means

that � is a token of type � . The scoreon � is 1 if
4During preliminaryexperiments we tried alsocreatingone

singleaggregatepatternfor eachtestnountypebut thismethod
produced worseresults.



Method Token Type Testset
Baseline 20.0 27.8
AP-B-55 35.9 50.7 TestVFW X7V
AP-B-65 36.1 50.8
AP-B-55+WN 36.9 52.9
Baseline 24.1 21.0
AP-B-55 47.4 47.7 TestVFW Y
AP-B-65 47.9 48.3
AP-B-55+WN 52.3 53.4

Table 2. Experimental results.

· ] � b [ q ] � b , where q ] � b is the correct label for� , and0 otherwise.
Table2 summarizestheresults of theexperiments

onTestVFW X7V (upperhalf) andonTestVFW Y (bottom half).
A baseline was computed that always selected the
most frequent label in the training data, “person”,
which is also the most frequent in both TestVFW Y and
TestVFW X7V . The baseline performancesare in the low
twenties. The first andsecond columnsreportper-
formanceon tokens andtypesrespectively.

Theclassifiers’ results areaveragesover 50 trials
in which a fraction of the Bllip datawasrandomly
selected. Oneclassifier wastrained on 55% of the
Bllip data(AP-B-55). An identical onewastrained
on thesamedata and,additionally, on theWordNet
data(AP-B-55+WN).Wealsotrainedaclassifieron
65%of theBliip data(AP-B-65).Adding theWord-
Netdatato this trainingsetwasnotpossiblebecause
of memorylimitations. The model also trainedon
WordNetoutperformson bothtestsetsthosetrained
only on the Bllip data. A paired t-test proved the
differencebetweenmodelswith andwithout Word-
Net datato be statistically significant. The “least”
significant differenceis between AP-B-65 andAP-
B-55+WN (token) on TestVFW Y : À [Át x tGt#Â . In all
other casesthe À -level is muchsmaller.

Theseresults seemto show that the positive im-
pact of the WordNet datais not simply due to the
fact that there is more training data5. Adding the
WordNetdataseemsmoreeffective thanadding an
equivalent amountof standard training data. Fig-
ure3 plots the results of the lastsetof (single trial)
experimentswe performed,in which we variedthe

5Noticethat10%of theBllip datais approximatelythesize
of theWordNetdataandthereforeAP-B-65andAP-B-55+WN
aretrainedon roughly thesameamountof data.
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Figure 3. Results on Test Ã�Ä ÅeÃ incrementing the amount of
training data.

amountof Bllip data to be addedto the WordNet
one. The modelwith WordNetdataoften performs
better thanthemodeltrained only onBllip dataeven
whenthelatter training setis muchlarger.

Two important reasonswhy the WordNetdatais
particularly good are,in our opinion, the following.
The datais lessnoisy becauseit is extracted from
sentencesanddefinitionsthatarealways“pertinent”
to the classlabel. The dataalsocontains instances
of disambiguatedpolysemousnouns, which instead
wereexcludedfrom the Bllip training. This means
that disambiguating the training data is important;
unfortunately this is not a trivial task. Using the
WordNet dataprovides a simple way of getting at
leastsomeinformationfrom ambiguousnouns.

7 Differ encesBetweenTestSets

Thetypescoreson bothevaluationsproducedsimi-
lar results. This finding supports thehypothesisthat
thetwo evaluationsaresimilar in difficulty, andthat
the two versionsof WordNetarenot inconsistent in
theway they assign supersenses to nouns.

The evaluations show, however, very different
patternsat thetokenlevel. This might bedueto the
fact that the labeldistribution of the training datais
moresimilar to TestVFW Y thanto TestVFW X7V . In particular,
therearemany new nounsin TestVFW X7V thatbelong to
“abstract” classes6, which seemharder to learn. Ab-
stract classesare also more confusable; i.e., mem-

6Suchas“communication” (e.g., reaffirmation) or “cogni-
tion” (e.g.,mind set).



1 2 3 4 5 6 7
45

50

55

60

65

70

Test Nouns Frequency Bins

A
cc

ur
ac

y

Test
1.6

Test
1.71

Figure 4. Results on types for Test Ã�Ä Æ and Test Ã�Ä ÅeÃ ranked
by the frequency of the test words.

bers of theseclassesare frequently mis-classified
with the samewrong label. A few very frequently
mis-classifiedpairsarecommunication/act,commu-
nication/personandcommunication/artifact.

As aresult of thefactthatabstractnounsaremore
frequent in TestVFW X7V than in TestVFW Y the accuracy on
tokens is muchworsein the new evaluation thanin
the morestandardone. This hasan impactalsoon
the type scores. Figure4 plots the results on types
for TestVFW Y andTestVFW X7V groupedin binsof testnoun
types ranked by decreasing frequency. It shows that
thefirst bin is harder in TestVFW X7V thanin TestVFW Y .

Overall, then, it seemsthat therearesimilarities
but also important differencesbetween the evalua-
tions. Therefore the new evaluation might definea
morerealistic taskthancross-validation.

8 Conclusion

We presented a new framework for word sense
classification, basedon the WordNet lexicographer
classes, that extends named-entity classification.
Within this framework it is possible to usethe in-
formation containedin WordNetto improve classi-
fication anddefinea more realistic evaluation than
standard cross-validation. Directions for future re-
search includethefollowing topics: disambiguation
of the training data, e.g. during training as in co-
training; learning unknown ambiguousnouns, e.g.,
studying the distribution of the labels the classifier
guessedfor theindividual tokensof thenew word.
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