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Abstract
Building large datasets annotated with seman-
tic information, such as FrameNet, is an ex-
pensive process. Consequently, such resources
are unavailable for many languages and spe-
cific domains. This problem can be alleviated
by using unsupervised approaches to induce
the frames evoked by a collection of docu-
ments. That is the objective of the second task
of SemEval 2019, which comprises three sub-
tasks: clustering of verbs that evoke the same
frame and clustering of arguments into both
frame-specific slots and semantic roles.

We approach all the subtasks by applying a
graph clustering algorithm on contextualized
embedding representations of the verbs and ar-
guments. Using such representations is appro-
priate in the context of this task, since they
provide cues for word-sense disambiguation.
Thus, they can be used to identify different
frames evoked by the same words. Using this
approach we were able to outperform all of the
baselines reported for the task on the test set
in terms of Purity F1, as well as in terms of
BCubed F1 in most cases.

1 Introduction

The Frame Semantics theory of language (Fill-
more, 1976) states that one cannot understand the
meaning of a word without knowing the context
surrounding it. That is, a word may evoke dif-
ferent semantic frames depending on its context.
Considering this relation, sets of frame definitions
and annotated datasets that map text into the se-
mantic frames it evokes are important resources
for multiple Natural Language Processing (NLP)
tasks (Shen and Lapata, 2007; Aharon et al., 2010;
Das et al., 2014). The most prominent of such
resources is the FrameNet (Baker et al., 1998),
which provides a set of more than 1,200 generic
semantic frames, as well as over 200,000 anno-
tated sentences in English. However, this kind

of resource is expensive and time-consuming to
build, since both the definition of the frames and
the annotation of sentences require expertise in the
underlying knowledge. Furthermore, it is difficult
to decide both the granularity and the domains to
consider while defining the frames. Consequently,
such resources only exist for a reduced amount
of languages (Boas, 2009) and even English lacks
domain-specific resources in multiple domains.

The problem of building semantic frame re-
sources can be alleviated by using unsupervised
approaches to induce the frames evoked by a
collection of documents. The second task of
SemEval 2019 aims at comparing unsupervised
frame induction systems for building semantic
frame resources for verbs and their arguments
(Qasemi Zadeh et al., 2019). It is split into three
subtasks. The first, Task A, focuses on cluster-
ing instances of verbs according to the semantic
frame they evoke while the others focus on cluster-
ing the arguments of those verbs, both according
to the frame-specific slots they fill, on Task B.1,
and their semantic role, on Task B.2.

In this paper, we address the three subtasks
by following an approach that takes advantage
of the recent developments on the generation of
contextualized word representations (Peters et al.,
2018; Radford et al., 2018; Devlin et al., 2018).
Such representations are able to disambiguate dif-
ferent word senses by varying the position of a
word in the embedding space according to its con-
text. This ability is important in the context of
semantic frame induction, since different word-
senses typically evoke different frames. To iden-
tify words that evoke the same frame or have the
same role, our approach consists of clustering their
representations by applying the Chinese Whispers
algorithm (Biemann, 2006) to a similarity-based
graph. This way, we do not need to define the
number of clusters and there is no bias towards the
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generation of clusters of similar size.
In the remainder of the paper, we start by pro-

viding an overview of previous studies related to
the task, in Section 2. Then, in Section 3, we
describe our approach and explain how it differs
from previous approaches. Section 4 describes
our experimental setup. The results of our exper-
iments are presented and discussed in Section 5.
Finally, Section 6 summarizes the conclusions of
our work and provides pointers for future work.

2 Related Work

Following the motivation described in the previ-
ous section, previous studies have employed un-
supervised approaches for the induction of se-
mantic frames and roles. However, most stud-
ies have focused on semantic role induction. For
instance, Titov and Klementiev (2012) proposed
two models based on the Chinese Restaurant Pro-
cess (Ferguson, 1973). The factored model in-
duces semantic roles for each predicate indepen-
dently using an iterative clustering approach, start-
ing with one cluster per argument. On the other
hand, the coupled model takes into consideration
a distance-dependent prior shared among different
predicates. Arguments from different predicates
are then used as vertices of a similarity graph and
each argument selects another argument as a mem-
ber of the same cluster based on that similarity.
Overall, the coupled model performs slightly bet-
ter than the factored one. In both cases, each argu-
ment is represented by a set of syntactic features –
sentence voice, argument position, syntactic rela-
tion, and existing prepositions.

Lang and Lapata (2014) proposed a graph par-
titioning approach over a multilayer graph. Each
layer corresponds to a feature, i.e., each pair of
vertices (arguments) is connected through multi-
ple edges, each corresponding to their similarity
according to that feature. Then, two clustering
approaches were considered, achieving similar re-
sults. The first is an adaptation of agglomera-
tive clustering to the multilayer setting. Instead
of combining the similarity values into a single
score, it clusters the arguments in each layer and
then combines the obtained scores into a multi-
layer score. Clusters with greater multilayer sim-
ilarity are then merged together, with larger clus-
ters being prioritized. The second clustering ap-
proach consists of propagating cluster member-
ship along the graph edges. In both cases, the com-

bination of the scores of each layer is based on a
set of conditions, in order to avoid having to learn
or guess weights for each feature.

In contrast to the previous approaches, Titov
and Khoddam (2015) proposed a reconstruction-
error maximization framework which comprises
two main components: an auto-encoder, responsi-
ble for labeling arguments with induced roles, and
a reconstruction model, which takes the induced
roles and predicts the argument that fills each role,
i.e., it tries to reconstruct the input. The learning
error is obtained by comparing the reconstructed
argument to the original one. This enables the use
of a larger feature set and more complex features,
similarly to supervised approaches.

Concerning frame induction, Ustalov et al.
(2018a) proposed a graph-based approach for the
triclustering of Subject-Verb-Object (SVO) triples
extracted using a dependency parser. Each vertex
in the graph is the SVO triple, represented by the
concatenation of word embeddings for the three
elements. Vertices are connected to their k-nearest
neighbours (k=10) according to their cosine sim-
ilarity. The clusters are then generated using the
Watset fuzzy graph clustering algorithm (Ustalov
et al., 2017), which induces word-sense informa-
tion in the graph before clustering. For each clus-
ter, the corresponding triframe is generated by ag-
gregating the subjects, verbs, and objects into sep-
arate sets and generating a triple using those sets.
This approach outperformed hard clustering ap-
proaches, as well as topic-based approaches, such
as LDA-Frames (Materna, 2012).

3 Induction Approach

Considering the subtasks we are approaching, we
must use an approach that is able to induce not
only semantic roles, but also semantic frames and
its slots. In this sense, of the approaches described
in the previous section, the triclustering approach
proposed by Ustalov et al. (2018a) is the only one
able to induce frames. However, in the context
of our task, it has two major flaws. First, it fo-
cuses on the clustering of SVO triples, i.e., a frame
is defined by a head and two slots. In our case,
each instance has a variable number of arguments.
Thus, the triclustering approach is not appropri-
ate. Furthermore, since the arguments are clus-
tered in combination with the verb, this approach
is particularly inappropriate for semantic role in-
duction. The second flaw is related to the approach
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used for inducing word-sense information, which
requires a thesaurus to provide synonymity infor-
mation. Such resources must be manually built
and, thus, may not be available for every language
or lack domain-specific information.

We approach the first flaw by clustering the verb
and its arguments independently. This way, we are
able to cluster the instances of verbs to identify the
frame heads, as required for Task A, and the in-
stances of arguments to identify semantic roles, as
required for Task B.2. To identify the slots of each
frame, as required for Task B.1, we combine the
clusters of the verbs with those of the arguments.

To deal with the second flaw, we replace the per-
word embeddings used by Ustalov et al. (2018a)
with contextualized word representations. These
include information concerning the context in
which a word appears and, thus, the position of
a word in the embedding space varies according to
that context. By using such representations, we are
able to discard the fuzzy clustering approach used
by Ustalov et al. (2018a) to induce word-sense,
since it is revealed by the contextual variations of
the representation of a word. Therefore, a hard
clustering algorithm can be applied directly.

Algorithm 1 Induction Approach
Input: T // The set of head tokens to cluster
Input: EMBED // The contextualized embedding

approach
Input: THRESH // The function for computing the

neighboring threshold
Output: C // The set of clusters

1: V ← {EMBED(t) : t ∈ T} // The whole sen-
tence is required for embedding generation

2: D ← {1 − cos(θv,v′) : (v, v
′) ∈ V 2, v 6= v′}

// θv,v′ is the angle between the two vectors
3: t← THRESH(D)
4: E ← {(v, v′, Dv,v′) : (v, v′) ∈ V 2, v 6=
v′, Dv,v′ < t} // The edge is weighted with
the cosine distance between the vertices

5: C ← CHINESEWHISPERS(V,E)
6: return C

Our approach is summarized in Algorithm 1. It
starts by generating the contextualized represen-
tation of each instance to be clustered. In cases
where the verb or argument to cluster consists of
multiple words, we use a dependency parser to
identify the head word and use its contextualized
representation, since it contains information from
the other words. Then, in order to build a graph,

we compute the pairwise distances between the in-
stances. These distances are used to decide which
instances are considered neighbors. Since each in-
stance is represented as a vector in the embedding
space, we use the cosine distance. Moreover, since
using a fixed number of neighbors is not realis-
tic, we decided to use a threshold based on this
distance. This threshold defines the granularity
of the clusters and varies according to the set of
instances. Instead of using a fixed threshold, we
define it based on the parameters of the pairwise
distances distribution. The actual combination of
the parameters varies according to the subtask and
is further discussed in the subsections below. Fi-
nally, to obtain the clusters, we apply the Chinese
Whispers algorithm (Biemann, 2006) on a graph
where the vertices are the instances and the edges
connect neighbor instances. The weight of each
edge is given by the distance between neighbors.
We use the Chinese Whispers algorithm since it
chooses the number of clusters on its own and is
able to handle clusters of different sizes, thus be-
ing appropriate for the task. Furthermore, it has
been proved successful in NLP clustering tasks.

3.1 Verb Clustering

The first subtask focuses on clustering verbs that
evoke the same frame. The number of frames
evoked in a set of documents is typically larger
than the number of semantic roles and even larger
in comparison to the number of slots per frame.
Thus, a lower neighboring threshold is required to
achieve such granularity. In our experiments, we
achieved the best results when defining the neigh-
boring threshold for clustering verbs, tf , as

tf =
µ+ σ

2
, (1)

where µ and σ are the mean and standard devia-
tion of the pairwise distance distribution, respec-
tively. Using this threshold may lead to the in-
duction of frames with different granularity, de-
pending on the sense similarity between the verbs
present in the dataset. However, if the induced
frames are considered too abstract, the approach
can be applied hierarchically on the instances of
each cluster to obtain finer-grained frames.

3.2 Argument Clustering

Both the second and third subtasks focus on clus-
tering arguments. However, while the second fo-
cuses on doing so in a per-frame manner to induce
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its slots (frame elements), the third focuses on
clustering them independently of the frame, i.e.,
to induce generic semantic roles. In the first case
it would make sense to cluster the arguments of
verbs that evoke each frame independently of the
others. However, that may not be feasible on small
datasets. Thus, we opted for clustering all the ar-
guments together in both cases. The slot clusters
for the second subtask are then given by the com-
bination of the verb and argument clusters. Thus,
this approach considers that slots are per-frame
specializations of the semantic roles, which is ac-
curate in most situations.

As previously stated, the number of seman-
tic roles is typically smaller than the number of
frames. Thus, a higher neighboring threshold can
be used. In our experiments, we achieved the best
results when defining the neighboring threshold
while clustering arguments, ta, as

ta = µ− 1.5σ. (2)

Finally, since the arguments are highly depen-
dent on the verb, we also performed experiments
in which we combined the contextualized repre-
sentation of the argument with that of the verb be-
fore applying the clustering approach.

4 Experimental Setup

In this section we describe our experimental setup
in terms of data, implementation details, and eval-
uation metrics and baselines.

4.1 Dataset
In our experiments, we used the dataset provided
by the task organization, built with sentences from
the Penn Treebank 3.0 (Marcus et al., 1993), and
annotated with FrameNet frames (Task A), frame
elements or slots (Task B.1) and generic semantic
roles (Task B.2). The development set consists of
600 verb-argument instances, 588 sentences and
1,211 arguments. The (blind) test set comprises
4,620 verb-argument instances, 3,346 sentences,
9,466 arguments labeled for semantic role and
9,510 arguments labeled for frame slot. Addition-
ally, morphosyntactic information is provided in
the CoNLL-U format (Buchholz and Marsi, 2006).

4.2 Implementation Details1

In our experiments we compared the performance
of two approaches to generate the contextual-

1
https://gitlab.l2f.inesc-id.pt/eugenio/find/

ized word representations. The first, ELMo (Pe-
ters et al., 2018), is based on bi-directional
LSTMs (Hochreiter and Schmidhuber, 1997) and
was the first approach to generate contextualized
representations. Its output provides a context-free
representation of the word and context information
at two levels. In our experiments we use the sum
of all information, since it leads to variations of the
context-free representation according to the con-
text. The second representation, BERT (Devlin
et al., 2018), is based on the Transformer archi-
tecture (Vaswani et al., 2017) and currently leads
to state-of-the-art results on multiple benchmark
NLP tasks. Its output can be extracted from a
single layer or the multiple layers included in the
model. Contrarily to the ELMo layers, these do
not have an associated semantics. Thus, we use
the output of the last layer, since it contains in-
formation from all that precede it. In both cases
we used pre-trained models. To obtain embedding
vectors with the same dimensionality, 1,024, we
used the ELMo model provided by the AllenNLP
package (Gardner et al., 2017) and the large un-
cased BERT model provided by its authors.

To apply the Chinese Whispers algorithm, we
relied on the implementation by Ustalov et al.
(2018b), which requires the graph to be built using
the NetworkX package (Hagberg et al., 2004). We
did not use weight regularization and performed a
maximum of 20 iterations. Furthermore, in order
to avoid result changes based on non-deterministic
factors, we fixed the random seed as 1337.

Finally, to obtain the syntactic dependencies
used to determine the head token of multi-word
verbs or arguments, we used the annotations pro-
vided with the task dataset.

4.3 Baselines

For comparison purposes, in addition to our re-
sults, we report the baselines provided by the task
scorer. For the frame induction subtask (Task A),
the baseline consists of assigning each verb lemma
to a frame (Lemma). For the semantic role induc-
tion subtask (Task B.2), arguments are assigned
to clusters according to their syntactic relation to
the head verb (Dep). For the frame slot induc-
tion subtask (Task B.1), the previous baselines are
combined by assigning each pair of verb lemma
and argument’s syntactic dependency to a cluster
(Lemma + Dep). On the test set, we also consider
a random assignment to the gold number of clus-

https://gitlab.l2f.inesc-id.pt/eugenio/find/
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Approach #C Purity inv-Purity Purity F1 B3 Precision B3 Recall B3 F1

Ta
sk

A ELMo 32 93.17 96.50 94.80 89.06 95.63 92.23
BERT 72 89.67 84.00 86.74 83.17 77.77 80.38

BL: Lemma 35 93.50 85.67 89.41 90.22 79.63 84.60
Ta

sk
B

.1 ELMo 72 68.35 72.40 70.31 57.60 64.18 60.72
BERT 170 52.98 72.98 61.39 46.82 62.77 53.64
ELMo + Verb 72 68.35 72.40 70.31 57.60 64.18 60.72

BL: Lemma + Dep 136 84.30 70.74 76.93 78.71 58.36 67.03

Ta
sk

B
.2

ELMo 11 62.23 69.01 65.44 46.75 56.33 51.10
BERT 72 48.35 83.97 61.36 38.94 72.86 50.75
ELMo + Verb 140 70.17 43.80 53.93 62.20 23.27 33.87
Dep + PoS 66 65.95 29.26 40.53 55.61 20.05 29.47

BL: Dep 22 67.93 71.32 69.59 53.31 57.67 55.41

Table 1: Results obtained on the development set. The baselines are identified with BL.

ters as a baseline. Due to space constraints, we do
not report the results of the remaining baselines
proposed by Kallmeyer et al. (2018).

We report the results of an additional baseline
for Task B.2 which considers both the argument’s
syntactic relation to the head verb and its Part-of-
Speech (POS) tag (Dep + POS).

4.4 Evaluation metrics

We report our results using the metrics defined for
the task: number of clusters (#C), purity, inverse-
purity, and their harmonic mean (Purity F1), as
proposed by Steinbach et al. (2000), and BCubed
(B3) precision, recall, and F1, as proposed by
Bagga and Baldwin (1998).

5 Results

The results obtained on the development set are
reported in Table 1. We can see that using ELMo
to obtain the contextualized word representations
leads to better results than BERT on every sub-
task. This is somewhat surprising since BERT is
the state-of-the-art approach to generate contex-
tualized representations. A possible explanation
may lie in the fact that the two levels of ELMo
which provide context information can be related
to syntax and semantics (Peters et al., 2018), mak-
ing them highly related to the task. On the other
hand, the information provided by BERT repre-
sentations is not as easy to categorize. Moreover,
in every case, the number of clusters is underesti-
mated when using ELMo and overestimated when
using BERT.

On the frame induction subtask (Task A), our
approach surpasses every baseline, but only when
using ELMo embeddings. The lemma baseline is

surpassed by over 5 percentage points on Purity
F1 and 7.5 on BCubed F1. The same is not true
on the other tasks, with the clustering based on
the dependency relation between the argument and
verb achieving the best results. It outperforms our
approach in terms of both F1 metrics by around
6.5 percentage points on the slot induction subtask
(Task B.1) and around 4 points on the semantic
role induction subtask (Task B.2). We believe that
this happens because the development set is small
and the kind of arguments does not vary much.

Combining the verb representation with that of
the argument leads to worse results on Task B.2,
since it is clustering the semantic roles per verb.
On Task B.1, the result is the same as without us-
ing the verb representation, which suggests that
the information provided by the verb is not able
to improve the induced slots, but only to attribute
them to the corresponding frame.

The approach which combines the dependency
relation with the POS tag obtains worse results on
Task B.2, as it leads to additional partitioning of
the clusters. Thus, a large number of clusters is
generated, which is not consistent with the nature
of semantic roles.

The results obtained on the test set are reported
in Table 2. We only submitted the clusters ob-
tained using ELMo, since it outperformed BERT
on the development set. Similarly, we did not con-
sider the combination of verb and argument repre-
sentation for the argument clustering tasks. How-
ever, we assessed the performance of the baseline
based on the dependency relation and the POS tag.

On Task A, our approach surpasses all the base-
lines in terms of Purity F1, but by less than 2 per-
centage points. In fact, it has a similar perfor-
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Approach #C Purity inv-Purity Purity F1 B3 Precision B3 Recall B3 F1

Ta
sk

A ELMo 222 72.84 77.84 75.25 61.25 69.96 65.32

BL: Lemma 273 82.16 66.95 73.78 75.98 57.33 65.35
BL: Random 149 15.30 5.74 8.34 6.82 3.85 4.92

Ta
sk

B
.1 ELMo 526 58.26 64.30 61.13 44.79 53.21 48.64

BL: Lemma + Dep 1203 78.46 45.99 57.99 71.11 33.77 45.79
BL: Random 436 11.25 6.09 7.90 6.07 4.82 5.37

Ta
sk

B
.2 ELMo 6 58.29 71.19 64.10 36.80 60.15 45.66

Dep + PoS 159 57.39 26.25 36.03 41.41 15.07 22.1

BL: Dep 37 61.44 51.53 56.05 40.89 37.33 39.03
BL: Random 32 34.77 4.85 8.51 21.92 3.46 5.98

Table 2: Results obtained on the test set. The baselines are identified with BL.

mance to the lemma baseline in terms of BCubed
F1. This happens because it overestimates the
number of clusters, which suggests that the prob-
lem may be related to the threshold. However,
using a threshold that leads to the induction of a
number of frames similar to the gold standard ends
up generating clusters of lower quality. This sug-
gests that additional features must be introduced.

On the remaining tasks, our approach performs
better than every baseline, which supports the
claim that the better performance of the cluster-
ing approach based on the dependency relation on
the development set is due to the limited variation
in the kinds of argument present in that set. We
observed an improvement of around 4 percentage
points on Task B.1 on both F1 metrics, and above
8 percentage points on Purity F1 and nearly 7 on
BCubed F1 on Task B.2.

Once again, the approach which combines the
dependency relation with the POS tag leads to
worse results on Task B.2, due to additional par-
titioning of the clusters. In this case, the number
of semantic roles is even more overestimated.

6 Conclusions

In this paper we presented our approach on un-
supervised semantic frame, slot, and role induc-
tion in the context of the second task of SemEval
2019. The approach is based on the clustering of
contextualized word representations of verbs and
arguments. Using such representations is appro-
priate for the task since they provide word-sense
information which is important for distinguishing
the evoked frames.

We were able to achieve results that surpassed
or performed on par with every baseline proposed
for the three subtasks on the test set. However,

the results are far from perfect and below those
achieved by more complex approaches on the task,
which suggests that the contextualized represen-
tations on their own are not able to provide all
the information required to perform an accurate
frame induction. Thus, as future work, we intend
to assess the cases that our approach fails to clus-
ter, and introduce additional features that provide
relevant information for those cases, either by us-
ing a weighted combination of per-feature distance
functions or a multilayer graph similar to that pro-
posed by Lang and Lapata (2014).

Furthermore, since the number of instances in
the test set is larger than in the development set,
it may be feasible to apply a per-frame clustering
approach for the slot induction task. This way, the
induced slots are no longer mere specifications of
the generic semantic roles.

Finally, although the number of semantic roles
is not consensual in the literature, there is a set
of core semantic roles which is common to ev-
ery theory. Thus, it would be interesting to take
advantage of that information to apply clustering
approaches with a pre-defined number of clusters
for semantic role induction. In fact, it would be
interesting to explore other clustering approaches
on every task and compare their performance with
that of the Chinese Whispers algorithm.
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