
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 369–376
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

psyML at SemEval-2018 Task 1: Transfer Learning for Sentiment and
Emotion Analysis

Grace Gee, Eugene Wang
psyML, Inc.

grace.eugene@psyml.co

Abstract

In this paper, we describe the first attempt to
perform transfer learning from sentiment to
emotions. Our system employs Long Short-
Term Memory (LSTM) networks, including
bidirectional LSTM (biLSTM) and LSTM
with attention mechanism. We perform trans-
fer learning by first pre-training the LSTM net-
works on sentiment data before concatenating
the penultimate layers of these networks into a
single vector as input to new dense layers. For
the E-c subtask, we utilize a novel approach
to train models for correlated emotion classes.
Our system performs 4/48, 3/39, 8/38, 4/37,
4/35 on all English subtasks EI-reg, EI-oc, V-
reg, V-oc, E-c of SemEval 2018 Task 1: Affect
in Tweets.

1 Introduction

SemEval-2018 Task 1: Affect in Tweets (Moham-
mad et al., 2018) is a shared task expanding on pre-
vious SemEval sentiment tasks and the WASSA-
2017 Shared Task on Emotion Intensity (Moham-
mad and Bravo-Marquez, 2017). It presents 5
tasks:

1. Emotion intensity regression (EI-reg): given
tweet and emotion (fear, anger, joy or sad-
ness), predict real-valued emotion intensity
from 0 to 1.

2. Emotion intensity ordinal classification (EI-
oc): given tweet and emotion (fear, anger, joy
or sadness), predict emotion intensity ordinal
class from 0 (no emotion) to 3 (high emo-
tion).

3. Sentiment intensity regression (V-reg): given
tweet, predict real-valued sentiment intensity
from 0 (no sentiment) to 1 (high sentiment).
In this subtask, the directionality of the tweet
sentiment is ignored. A negative tweet will

be given the same score as a positive tweet
with the same valence.

4. Sentiment intensity ordinal classification (V-
oc): given tweet, predict sentiment ordinal
intensity class from -3 (very negative) to 3
(very positive).

5. Emotion classification (E-c): given tweet,
predict for each one of 11 emotions (anger,
anticipation, disgust, fear, joy, love, opti-
mism, pessimism, sadness, surprise, trust)
whether the emotion is neutral (0) or present
(1).

The task is particularly challenging since E-c and
EI-oc are completely new subtasks. Thus, no prior
data or working models are available for compar-
ison. The leaderboard is also not public during
the competition. As shown in Table 1, taken from
(Mohammad and Kiritchenko, 2018), the develop-
ment sets are particularly small compared to the
test sets, and the test sets are comparable in size to
the training sets, so the model must generalize.

For EI-oc and EI-reg, the development and test
sets are also annotated separately from the train-
ing sets. This impacts performance as our sys-
tem would have placed 1st with average pearson
score 0.755 on the WASSA 2017 task, in which
the EI-reg train, development, and test data are an-
notated in the same format. Furthermore, tweets
are difficult to analyze due to the unstructuredness
of its language (hashtags, emoticons, slang, mis-
spellings, poor grammar).

Previously submitted systems in SemEval sen-
timent analysis use deep learning models such as
CNN, RNN and LSTMs (Baziotis et al., 2017;
Cliche, 2017; Rouvier, 2017). In a previous run of
EI-reg in WASSA-2017 Shared Task on Emotion
Intensity, top performing teams use deep learning
models (Goel et al., 2017; Köper et al., 2017) and

369



Dataset train dev test Total
EI-reg, EI-oc

anger 1,701 388 1,002 3,091
fear 2,252 389 986 3,627
joy 1,616 290 1,105 3,011
sadness 1,533 397 975 2,905

V-reg, V-oc 1,181 449 937 2,567
E-c 6,838 886 3,259 10,983

Table 1: Number of tweets in SemEval-2018: Affect
in Tweets Dataset.

classifiers such as Support Vector Regressors or
Random Forest Regressors (Duppada and Hiray,
2017; Köper et al., 2017). In both tasks, some par-
ticipants use an ensemble approach (Goel et al.,
2017; Duppada and Hiray, 2017; Rouvier, 2017).

To extract linguistic features, some systems em-
ploy pre-trained word embeddings (Baziotis et al.,
2017; Cliche, 2017) or a combination of manu-
ally created features and/or lexicons (Köper et al.,
2017; Duppada and Hiray, 2017). However, ex-
clusively relying on hand-crafted features for EI-
reg may result in a model that fails to encompass
unforeseen linguistic relationships. Similarly, re-
lying exclusively on deep learning models with-
out lexicon inputs can lead to simple misclassifi-
cations due to the small training data.

To combine the best of both worlds, previous
systems collapse high-dimensional word embed-
dings into a single dimension arithmetically, be-
fore combining it with hand-crafted features (usu-
ally one-dimensional). Goel et al. for instance
averaged the word embeddings for each word in
a tweet in order to concatenate it with a 43-
dimensional vector. Duppada and Hiray simply
averaged the two top performing model outputs.

In this paper, we present a deep learning sys-
tem whose variants competed competitively in all
English subtasks in SemEval-2018 Task 1: Affect
in Tweets, specifically EI-reg, EI-oc, V-reg, V-oc,
and E-c. We make the following contributions:

• A deep learning system that can take in
a combination of one-dimensional hand-
crafted and multi-dimensional word embed-
ding inputs.

• A deep learning system that uses transfer
learning from sentiment tasks to overcome
the lack of training data compared to test
data. To the best of our knowledge, this is the

first instance of transferring knowledge from
sentiment to emotion.

• Specifically for Task E-c, procedures for
training correlated target classes.

2 Overview

Fig 1 shows an overview of our system, which
consists of three steps: (1) preprocessing input us-
ing a text processor and the Weka AffectiveTweets
package1 (Mohammad and Bravo-Marquez, 2017)
(2) pre-training Components A to C using senti-
ment data (3) training the entire system, includ-
ing Components A, B, C, E, using subtask-specific
dataset.

Figure 1: System Overview.

2.1 Preprocessing
We use the ekphrasis text processor2 and word
embeddings3 built by Baziotis et al. Ekphra-
sis corrects for spelling, emoticons, emojis, splits
hashtags and recognizes emphasized words. Its
300-dimension word embeddings are trained on
330M Twitter messages using GloVe. Other em-
beddings such as Stanford’s GloVe (Pennington
et al., 2014) do not incorporate newer popular uni-
code emojis. To build the Weka Lookup, we pass
all 658,114 tokens in Baziotis et al. embedding
dictionary into the TweetToLexiconFeatureVector
filter in the Weka AffectiveTweets package. Of
the 658,114, only 59,235 tokens returned nonzero

1https://github.com/felipebravom/
AffectiveTweets

2https://github.com/cbaziotis/
ekphrasis

3https://github.com/cbaziotis/
datastories-semeval2017-task4

370



vectors. The TweetToLexiconFeatureVector re-
turns a 43-dimension feature vector using sen-
timent and emotion lexicons such as Bing-Liu,
AFINN, Sentiment140, and NRC-10 Expanded.

2.2 Transfer Learning

Transfer learning is the process of using knowl-
edge from solving a source task to help perfor-
mance in a target task. In particular, transfer learn-
ing is useful when the target task training set is
small.

Another common way to deal with small data is
distant supervision (Mintz et al., 2009), a process
for generating labelled data from an unlabelled set
according to a set of rules. For instance, for a
sentiment analysis task, distant supervision can in-
volve labelling tweets with smileys as positive and
those with sad emojis as negative (Read, 2005).

Transfer learning has historically performed
well on computer vision problems (Yosinski et al.,
2014; Razavian et al., 2014). Traditionally, the
CNN layer weights are frozen, its output treated
as a feature vector input to a fully-connected layer,
which will learn the new target task. Intuitively,
the CNN will learn low-level image features on the
source task while the dense layers will use these
low-level features to predict a new target task.

Another strategy is to unfreeze the later lay-
ers weights of the pre-trained network and instead
backpropagate all the way to the pre-trained net-
work. In this case, the later layers of the pre-
trained network can be fine-tuned. We choose to
leave all weights from the pre-trained network un-
frozen.

Transfer learning in natural language process-
ing applications has been largely successful only
within the same task such as POS tagging or sen-
timent (Blitzer et al., 2006, 2007). For different
domains, good results are only achieved in seman-
tically equivalent transfer (in which a source task
and target task have the same objective but differ-
ent data) but not for semantically different transfer
(in which a source and target task have different
objectives) (Mou et al., 2016).

For all subtasks, we will use transfer learning
to pre-train our models on sentiment data. The
source task objective is to predict sentiment cate-
gorical classes (’positive’, ’negative’, or ’neutral’)
given a tweet. Since the source task is not equiv-
alent to any of the target tasks, we’d expect lower
performance than those experiments on domain

adaptation.
There are two main ways to perform transfer

learning, the parameter initialization approach, in
which a model is trained on a source task and the
weights are transferred to a target task, and multi-
task learning, in which a model is trained to learn
multiple tasks simultaneously. We choose to im-
plement the parameter initialization approach as
Mou et al. has shown both approaches to be com-
parable.

2.3 Neural Network

The Recurrent Neural Network (RNN) is an ex-
tension of the traditional neural network that al-
lows sequential data. Fig 2 shows the architecture
of a standard RNN which takes in a sequence of
word embeddings x1, x2, . . . , xN and outputs hid-
den states h1, h2, . . . , hN , where N is the length
of the tweet.4

Figure 2: RNN basic structure.

In its simplest form, the hidden state ht ∈ Rd

(where d is the size of the RNN at time step t) is a
function f of the current word embedding xt, the
past hidden state ht−1, and the learned θ parame-
ters.

ht = f(xt, ht−1; θ) (1)

Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) is a special form of RNN
with a memory cell and input, forget, and output
gates that allow it to take into account long-term
dependencies. It is more widely used than RNN
since it overcomes the vanishing or exploding gra-
dient problem common in RNNs. The architecture
of a standard LSTM will be the same as that of an

4Figure recreated from http://colah.github.
io/posts/2015-08-Understanding-LSTMs/

371



RNN as shown in Fig 2, but with a different re-
peating A module. Formally, each LSTM cell is
computed as follows:

X =

[
ht−1
xt

]
(2)

ft = σ(Wf ·X + bf ) (3)

it = σ(Wi ·X + bi) (4)

ot = σ(Wo ·X + bo) (5)

ct = ft � ct−1 + it � tanh(Wc ·X + bc) (6)

ht = σt � tanh(ct) (7)

where ft is the forget gate, it the input gate, ct
the cell state, ht the hidden state, σ the sigmoid
function and � element-wise multiplication.

We use bidirectional LSTM (biLSTM) to in-
corporate both past and future context. A biL-
STM employs two LSTMs, one reading forward,−−−−→
LSTM , on the input sequence and another back-
ward,

←−−−−
LSTM .

Whereas in a traditional LSTM, output hi
only incorporates information up till time step
i, or x1, x2, . . . , xi, a bidirectional LSTM would
incorporate information from both past input
x1, x2, . . . , xi and future input xi, xi+1, . . . , xN .
Fig 3 shows the architecture of a standard biL-
STM.

Figure 3: Bidirectional LSTM.

We use an attention mechanism (Rocktäschel
et al., 2015) to learn which words in a tweet con-
tribute more to a target task. Fig 4 shows the archi-
tecture of a standard LSTM with attention mecha-
nism.

The attention layer is usually a 1 or 2-layer neu-
ral net that takes the output of an LSTM or RNN as
input. It assigns ”attention weight” αi to each hid-
den state hi and outputs a weighted representation
r of the hidden states.

ei = tanh(Whhi + bh) (8)

αi = softmax(ei) (9)

r =
∑

N

αihi (10)

where α is an attention weight vector, r is a
weighted representation of the hidden states, and
Wh and bh are learned during backpropagation.

Figure 4: LSTM with Attention.

Components A and C are bidirectional LSTMs.
Component B is a LSTM with attention mecha-
nism.

3 Data

We used the dataset provided by the SemEval chal-
lenge.

For transfer learning, we pre-train Components
A to C using train, development and test data from
2013 to 2017 SemEval Task 4A sentiment anal-
ysis classification tasks5. In total, this provided
7,723 negative, 22,195 neutral and 19,652 positive
tweets.

4 Model

Component A is a 1-layer biLSTM. The input is
a matrix A ∈ Rn×d, where n is the number of
words in the tweet and d is the dimension of the
word embedding. Component B is an LSTM with
attention and takes in the same input as Com-
ponent A. The attention layer is a 1 unit dense
layer. Component C is also a 1-layer biLSTM
like Component A, except the input is a matrix

5http://alt.qcri.org/semeval2017/
task4/

372



C ∈ Rn×43, since Weka’s TweetToLexiconFea-
tureVector returns a 43-dimension vector and C
is just a concatenated sequence of 43-dimension
vectors of words passed into the TweetToLexicon-
FeatureVector. The tweet input for Components
A through C are all zero padded. Component D
just takes in an entire tweet and returns the 43-
dimension TweetToLexiconFeatureVector vector.
Component E is a 5-layer fully-connected neural
net.

4.1 Regularization
In Components A through C, we apply dropout
to both input and recurrent connections. Dropout
(Srivastava et al., 2014) is a technique that in-
volves randomly dropping units during training to
prevent overfitting and co-adaptation of neurons.
By randomly dropping units, neighboring neurons
make up for the dropped units and learn represen-
tations for the target, resulting in a more robust
network.

In Components A and C we apply global max
pooling for the final layer.

We incorporate mini-batch gradient descent in
all our models. Mini-batch gradient descent is cal-
culated over small batches of data instead of the
entire dataset as in traditional gradient descent.
Compared to stochastic gradient descent, where
gradient descent is calculated after every example,
it is not as computationally intensive.

In the E-c dataset and sentiment classification
dataset, some classes are overrepresented. This
class imbalance can lead to bias in model output.
To overcome this, for E-c we apply class weight
to the loss function to boost recall of the minority
class.

4.2 Hyper-parameters
We train all our models using mini-batches of size
8, and Adam (Kingma and Ba, 2014) optimization.
For the E-c subtask, we minimize binary cross en-
tropy loss. For EI-oc, EI-reg, V-oc and V-reg, we
minimize mean squared error.

Models Components A through C all have
dropout of 0.2 for their input layer and recurrent
connections.

Components A and C are both biLSTM with
256 units. Component A takes in A ∈ R50×300,
while Component C takes in C ∈ R50×43. We
chose 50 since none of the tweets are longer than
50 words. Finally, we add a global max pooling
layer.

Component B is a LSTM of 256 units, and takes
in B ∈ R50×300.

For source task learning, we apply a dense layer
of 3 hidden units with sigmoid activation function
to Components A through C.

Component E is 5 dense layers with 300, 125,
50, 25, and 1 hidden units. We use Rectified lin-
ear unit (ReLU) as the activation function for the
former four layers.

4.3 Training

Source Task Learning During source task learn-
ing, we train each of Components A through C in-
dividually on the sentiment dataset with 10% hold
out validation. The source task objective is to pre-
dict sentiment categorical class (’positive’, ’neg-
ative’, or ’neutral’). For each of the models, we
train it for 1, 2, 3, 4, and 5 epochs and save the
best performing one.

We experimented with RNN, CNN, LSTM, and
biLSTM before settling on biLSTM and LSTM
with attention.

Target Task Learning During target task learn-
ing, the final dense layers in Components A
through C are removed and the penultimate lay-
ers are concatenated together with the output from
Component D into a single vector as input to Com-
ponent E. None of the weights are frozen and the
entire system (Components A through E) is trained
for between 5 to 10 epochs for subtasks EI-oc, EI-
reg, V-oc, and V-reg. We choose the best perform-
ing model based on performance on the develop-
ment set.

The final layer in Component E uses sigmoid
as an activation function for EI-reg, EI-oc, V-reg,
E-c and hyperbolic tangent for V-oc. The fol-
lowing functions are used to transform the ordi-
nal classes of EI-oc, dEI−oc ∈ {0, 1, 2, 3}, and V-
oc, dV−oc ∈ {−3,−2,−1, 0, 1, 2, 3}, to the out-
put space of [0, 1] and [-1, 1] respectively.

d′EI−oc = dEI−oc ∗ 0.25 + 0.125 (11)

d′V−oc = dV−oc ∗ 2/7 (12)

For E-c, we notice the emotion classes are in-
tercorrelated. The following Figure 5 is a dendro-
gram generated from E-c training data. The emo-
tions are hierarchically clustered based on their
correlations. The horizontal axis labels corre-
spond to the 11 classes. The shorter the length of

373



the sideways n-shape, the more correlated the two
classes.

Figure 5: Dendrogram of 11 emotions, clustered using
correlation and hierarchical clustering.

For E-c, we obtain the following emotion clus-
ters from the dendrogram: [anger, disgust], [sad-
ness, pessimism, fear], [joy, optimism, love], [an-
ticipation, surprise, trust]. For each of the clus-
ters, we obtain a fresh copy of the entire pre-
trained system and train it for 2 epochs consecu-
tively for each target class in the aforementioned
order within the emotion cluster. The pseudocode
is as follows. We call this method ”cluster train-
ing”:

Algorithm 1 Cluster training
1: for emotionCluster in emotionClusters do
2: S← System from Fig 1
3: for emotion in emotionCluster do
4: Train S for 2 epochs on emotion training
5: Predict emotion test with S

4.4 Experimental Setup

We build all the models with the Keras library and
train them on Google Datalab. The dendrogram
diagram is built with Plotly.

5 Evaluation & Results

SemEval Results Our model ranks 4/48 in EI-reg,
3/39 in EI-oc, 8/38 in V-reg, 4/37 in V-oc, 4/35 in
E-c (Mohammad et al., 2018). Our performance
for V-reg is less than satisfactory because V-reg
measures sentiment intensity without regards for
directionality, whereas our source task takes into
account directionality. This supports findings by

Mou et al. that pre-training is less useful in a se-
mantically different transfer.

System To evaluate our system, we assess the
performance of each Component and various com-
binations of them. Table 2 shows the development
set performance. In particular, we note that Com-
ponent A+B performs better than Component A
or Component B separately, as with Component
C+D. Furthermore, Component A+B+C+D per-
form better overall compared to Component A+B
and Component C+D.

Cluster training Subtask E-c classes are imbal-
anced, with 95% of ”Trust” and ”Surprise” train-
ing examples being negative. Table 3 shows the
breakdown of negative and positive training exam-
ples for each of the E-c classes.

To assess our cluster training procedure, we
evaluate the performance of independently train-
ing each of the E-c emotion classes (using a fresh
copy of the pre-trained system for each of the 11
emotions) as well as with various class weighing
schemes. Table 4 shows our experiment results.

Within independent training experiments,
squared inverse weights performed best as mea-
sured by accuracy and micro-avg F1. Using
squared inverse weights, cluster training performs
better than independent training, attesting to the
utility of cluster training.

6 Conclusion

In this paper, we present the first attempt to per-
form transfer learning from sentiment to emotions.
Model weights are pre-trained with past SemEval
sentiment categorization tasks and the penultimate
layers of the models are concatenated into a single
vector as input to new dense layers. The entire
system is then trained for each subtask with the
weights unfrozen.

Our deep learning system combines
multi-dimensional word embeddings with
single dimensional lexicon-based fea-
tures. Specifically we combine features of
X ∈ R50×300,R50×43,R1×43, which results in
better performance than systems using just one of
the features.

For the E-c subtask, we utilize hierarchical clus-
tering to group correlated emotions together and
train the same model incrementally for emotions
within the same cluster. This novel method out-
performs a system which trains on each emotion
independently.

374



Experiment Anger Sadness Fear Joy
Component A 0.729 0.706 0.677 0.719
Component B 0.710 0.719 0.646 0.689
Component C 0.584 0.561 0.567 0.564
Component D 0.602 0.597 0.546 0.585
Component A+B 0.722 0.714 0.701 0.732
Component C+D 0.659 0.619 0.631 0.601
Component A+B+C+D 0.761 0.720 0.723 0.745

Table 2: Results on development set comparing Component experiments.

Emotion Percentage negative Percentage positive
Anger 63% 37%
Disgust 62% 38%
Sadness 71% 29%
Pessimism 88% 12%
Fear 82% 18%
Joy 64% 36%
Optimism 71% 29%
Love 90% 10%
Anticipation 86% 14%
Surprise 95% 5%
Trust 95% 5%

Table 3: E-c training set, breakdown of percentage of positive and negative examples.

Experiment Accuracy Micro-avg F1 Macro-avg F1
Cluster training, squared inverse weights 0.576 0.695 0.522
Independent training, equal weights 0.513 0.639 0.439
Independent training, inverse weights 0.447 0.586 0.545
Independent training, squared inverse weights 0.558 0.684 0.527

Table 4: E-c experiment results on development set.

We participated in all of the English subtasks
of SemEval 2018 Task 1: Affect in Tweets and
obtained top 4 in 4 out of the 5 subtasks, testifying
to our model robustness.

For future work, we would like to experiment
with other training methods such as multi-task
learning and distant supervision, as well as tune
the hyper-parameters of our model to augment its
performance across all subtasks (Mohammad and
Kiritchenko, 2018).

Acknowledgments

This project was kindly financed by psyML Inc.,
a company co-founded by Galen Buckwalter and
Dave Herman to bring psychology and AI together
to solve real world problems. We thank Sebastian
Ruder for his paper suggestions and the task or-

ganizers of SemEval 2018 Task 1 for the data and
gracious support.

References

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 747–754. Association
for Computational Linguistics.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
pages 440–447. Association for Computational Lin-
guistics.

375



John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Language
Processing, pages 120–128. Association for Com-
putational Linguistics.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task 4:
Twitter sentiment analysis with cnns and lstms. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 573–
580. Association for Computational Linguistics.

Venkatesh Duppada and Sushant Hiray. 2017. Seernet
at emoint-2017: Tweet emotion intensity estimator.
In Proceedings of the 8th Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and So-
cial Media Analysis, pages 205–211. Association for
Computational Linguistics.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65. Association for Compu-
tational Linguistics.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization.
arXiv:1412.6980. ArXiv preprint.

Maximilian Köper, Evgeny Kim, and Roman Klinger.
2017. Ims at emoint-2017: Emotion intensity pre-
diction with affective norms, automatically extended
resources and deep learning. In Proceedings of
the 8th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 50–57. Association for Computational Lin-
guistics.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
1003–1011. Association for Computational Linguis-
tics.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, pages 34–49. Association for Com-
putational Linguistics.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.

Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018).

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In Pro-
ceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018).

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transferable are
neural networks in nlp applications? In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 479–489. As-
sociation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sul-
livan, and Stefan Carlsson. 2014. Cnn features off-
the-shelf: an astounding baseline for recognition. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages
806–813.

Jonathon Read. 2005. Using emoticons to reduce de-
pendency in machine learning techniques for senti-
ment classification. In Proceedings of the ACL Stu-
dent Research Workshop, pages 43–48. Association
for Computational Linguistics.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiský, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv:1509.06664. ArXiv preprint.

Mickael Rouvier. 2017. Lia at semeval-2017 task 4:
An ensemble of neural networks for sentiment clas-
sification. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 760–765. Association for Computational Lin-
guistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in deep
neural networks? Advances in Neural Information
Processing Systems, 27:3320–3328.

376


