
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 181–185
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

uOttawa at SemEval-2018 Task 1: Self-Attentive Hybrid GRU-Based
Network

Ahmed Husseini Orabi1, Mahmoud Husseini Orabi1, Diana Inkpen1, David Van Bruwaene2

1EECS, University of Ottawa, 800 King Edward Avenue, Ottawa, Canada
2VISR inc., 10 Dundas St E. Suite 600, Toronto, Canada

{ahuss045, mhuss092, diana.inkpen}@uottawa.ca, d@visr.co

Abstract

We propose a novel attentive hybrid GRU-
based network (SAHGN), which we used at
SemEval-2018 Task 1: Affect in Tweets.
Our network has two main characteristics,
1) has the ability to internally optimize its
feature representation using attention
mechanisms, and 2) provides a hybrid rep-
resentation using a character-level Convo-
lutional Neural Network (CNN), as well as
a self-attentive word-level encoder. The key
advantage of our model is its ability to sig-
nify the relevant and important information
that enables self-optimization. Results are
reported on the valence intensity regression
task.

1 Introduction

Affect analysis is one of the main topics of nat-
ural language processing (NLP). It involves many
sub-tasks such as sentiment and valence analyses
expressed in text. We focus on the task of determin-
ing valence intensity.

Hand-crafted features and/or sentiment lexicons
are commonly used for affect analysis
(Mohammad, Kiritchenko, & Zhu, 2013; Taboada,
Brooke, Tofiloski, Voll, & Stede, 2011) with clas-
sifiers such as random forest and support vector
machines (SVM).

Affect in tweets (AIT) is a challenging task as it
requires handling an informal writing style, which
typically has many grammar mistakes, slangs, and
misspellings.

In this paper, we present a self-attentive hybrid
GRU-based network (SAHGN) that competed at
SemEval-2018 Task 1 (Mohammad, Bravo-
Marquez, Salameh, & Kiritchenko, 2018;
Mohammad & Kiritchenko, 2018).

Our contributions can be summarized as below.

• The implementation of a social media text
processor: A library to help process social
media text such as short-forms, emoticons,
emojis, misspellings, hash tags, and slangs,
as well as tokenization, word normalization,
and sentence encoding.

• The implementation of a self-attentive
deep learning system: This system can pre-
dict valence and intensity with limited cor-
pora and vocabulary, and yet can have ac-
ceptable performance.

2 High-Level Description of Our System

Our goal is to provide a system that can predict va-
lence and intensity for short text. Figure 1 shows a
high-level description of our solution, which con-
sists of two main components, social media text
processor (Section 3) and self-attentive hybrid
GRU-based network (Section 4.2).

Figure 1: System architecture.

3 Social Media Text Processor

The social media text processor aims to provide
a reliable and fast tokenization. It involves the fol-
lowing preprocessing steps:
• Use a named entity recognizer (NER) (Finkel,

Grenager, & Manning, 2005) to identify enti-
ties such as persons, names, and places, and
then replace them accordingly.

• Build a vocabulary using an NGram tokenizer.

181

• Tokenize sentences into a set of tokens, and
then use them to encode text into a sequence of
indices (Table 1), which are fed into the net-
work.

• Clean text from accents, punctuations, and
non-Latin characters.

• Identify emoticons and emojis, and then re-
place them with meaningful text; e.g., replace
the happy face emoticon :) with <happy>.

• Recognize hashtags, URLs, and then briefly
describe them; e.g. replace #depressed by
<hashtag_start>depressed<hashtag_end>.

• Identify user reference mentions, and then re-
place them with a person entity; e.g. <person>.

Text @name I am feeling under the weather af-
ter I met with Carl :’(#sick \\u0001F600

Pro-
cessed

<SOS> <reference> I am feeling under the
weather after I met with <person> <cry-
ing> <hashtag_start> sick <hashtag_end>
<grinning_face> <EOS>

Table 1: Example of processed text.

4 Model Description

The overall architecture of our SAHGN model is
shown in Figure 2. The main components include
1) a word sequence encoder, 2) a bidirectional
GRU-based layer that applies a self-attentive
mechanism on the word level, 3) a character-level
CNN feature extractor, and 4) an attention with
context-aware mechanism.

4.1 Word Sequence Encoder

A network input is described as a sequence (𝑆𝑆) of
tokens (such as words), where 𝑆𝑆 = [𝑠𝑠1, 𝑠𝑠2, … . , 𝑠𝑠𝑡𝑡]

and 𝑡𝑡 denotes the timestep. 𝑆𝑆𝑖𝑖 is a one-hot input (𝑖𝑖)
vector of a fixed length (𝑇𝑇) of tokens. A sequence
that exceeds this length is truncated.

Word encoding. We use a 𝑊𝑊 word vocabulary
to encode a sequence. 𝑊𝑊 has fixed terms to deter-
mine the start and end of the sequence, as well as
the out of vocabulary (OOV) words. We handle the
variable length through padding for short se-
quences and truncating for long sequences.

Embedding layer. We apply a pretrained GloVe
word embedding (Pennington, Socher, & Manning,
2014) on 𝑆𝑆𝑖𝑖. GloVe projects these words into a low-
dimensional vector representation (𝑥𝑥𝑖𝑖), where 𝑥𝑥𝑖𝑖 ∈
𝑅𝑅𝑊𝑊 and 𝑊𝑊 is the word weight embedding matrix.
𝑊𝑊 is used to initialize the word embedding layer.

We used the official training and development
corpora to train the GloVe word embedding with a
dimension of 100. The vocabulary size of this
model is 8145 words, which is small and poses a
major challenge to training, as well as to perfor-
mance.

4.2 Self-attentive GRU-based Mechanism

Recurrent neural network (RNN) is commonly
used for NLP problems (Yin, Kann, Yu, & Schütze,
2017; Young, Hazarika, Poria, & Cambria, 2017),
as it enables remembering values over arbitrary
time durations. RNN processes every element of an
input embedding (𝑥𝑥𝑖𝑖) sequentially, such that ℎ𝑡𝑡 =
tanh (𝑊𝑊𝑥𝑥𝑖𝑖 + 𝑊𝑊ℎ𝑡𝑡−1). 𝑊𝑊 is the weight matrix be-
tween an input and hidden states, while ℎ𝑡𝑡 is the
hidden state of the recurrent connection at timestep
(𝑡𝑡). The design of the RNN enables variable length
processing while preserving the sequence order.

Figure 2: The architecture of Self-Attentive Hybrid GRU-Based Network.

182

However, RNN has many limitations with long
sequences, in particular the exponentially growing
or decaying gradients. A common way to resolve
these issues is by using gating mechanisms, such as
LSTM and GRU (Gers, Schmidhuber, &
Cummins, 2000; Hochreiter & Schmidhuber,
1997). We use GRU as it is faster to converge, in
addition to being memory efficient.

Bidirectional GRU layer. In our model, we use
bidirectional GRU layers. GRU receives a se-
quence of tokens as inputs, and then projects word
information 𝐻𝐻 = (ℎ1,ℎ2, … . , ℎ𝑇𝑇), where ℎ𝑡𝑡 de-
notes the hidden state of GRU at a timestep (𝑡𝑡). It
captures the temporal and abstract information of
sequences in a forward (ℎ𝑓𝑓) or reverse (ℎ𝑏𝑏) man-
ner. After that, we concatenate forward and back-
ward representations; e.g. ℎ𝑡𝑡 = ℎ𝑡𝑡

𝑓𝑓|| ℎ𝑡𝑡𝑏𝑏.
Attention mechanism. Words do not have

equal valence weights in sentences. Towards that,
we use an attention mechanism to signify the rela-
tively important words.

Attention is used to compute the compatibility
between a given source (𝑥𝑥𝑖𝑖) and query (𝑞𝑞). It uses
an alignment function 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑞𝑞) to measure the level
of dependency of 𝑞𝑞 to 𝑥𝑥𝑖𝑖. This function produces
an attention weight 𝑎𝑎 = 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑞𝑞)𝑖𝑖=1𝑇𝑇 . Then, a soft-
max function is applied to produce a probability
distribution 𝑝𝑝(𝑧𝑧|𝑥𝑥, 𝑞𝑞) for each word (𝑡𝑡) of an input
(𝑥𝑥). Hence, a bigger weight of 𝑥𝑥𝑖𝑖 indicates a higher
importance than other words.

The attention alignment approaches have the
same implementation, but they mainly differ on
how they compute weights. This can be either in an
additive manner 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑞𝑞) = tanh (𝑊𝑊𝑇𝑇𝐵𝐵(𝑊𝑊𝑥𝑥𝑖𝑖 +
 𝑊𝑊𝑞𝑞)) (Bahdanau, Cho, & Bengio, 2014), or a mul-
tiplicative manner 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑞𝑞) = tanh (�𝑊𝑊𝑥𝑥𝑖𝑖 .𝑊𝑊𝑞𝑞�)
(Vaswani et al., 2017). In our model training, we
use an additive attention mechanism, as it helped
improve the prediction performance.

Self-Attention mechanism. In our model train-
ing, we have a small number of corpora, which are
not sufficient to train an efficient word embedding
or alleviate well-known problems such as poly-
semy. In an effort to overcome such limitations, we
use a self-attention mechanism. This approach
measures the dependency of different tokens in the
same input embedding (𝑥𝑥𝑖𝑖). It mainly computes at-
tention for each word by replacing 𝑞𝑞 and 𝑥𝑥𝑖𝑖 with a
set of token pairs (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗).

4.3 Character-level CNN

The CNN encoding layer (Figure 3) takes an input
of a sequence (𝑆𝑆) of characters, where 𝑆𝑆 =
 [𝑠𝑠1, 𝑠𝑠2, … . , 𝑠𝑠𝑡𝑡] such that 𝑡𝑡 denotes the timestep. 𝑆𝑆𝑖𝑖
is a one-hot input (𝑖𝑖) vector of a fixed length (𝑇𝑇) of
characters.

Figure 3: Character-level CNN.

CNN usually uses temporal convolutions

(timestep-based) rather than spatial convolutions
with text analysis.

We mainly use convolutions to extract low-level
character information such as misspellings, slangs,
and so on.

Character encoding. We define a charset of the
size 95, including the upper and lower cases of the
English alphabet, special characters, padding, and
the start and end of a given input sequence. We
need this charset to build a vocabulary, which is
used to encode a character sequence. Similarly to
the word embedding, we handle the variable length
through padding and truncating (Section 4.1).

Character embedding layer. We build a char-
acter embedding of 32 dimensions. We use a uni-
form distribution scheme of a range (-0.5 to +0.5)
to initialize its weight matrix.

We apply 3 convolutions of 100 features, as well
as different filter lengths 2, 3, and 4. Each one-di-
mensional operation is used, where 𝐶𝐶𝑖𝑖𝑛𝑛 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝑑𝑑(𝑆𝑆𝑖𝑖), and 𝐶𝐶 is the filter length. After that,
a max-pooling layer is applied on the feature map
to extract abstract information, 𝐶𝐶𝚤𝚤𝑛𝑛� = max(𝐶𝐶𝑖𝑖𝑛𝑛).
Then, we concatenate these feature representations
into one output.

As opposed to recurrent layers (Section 4.2),
convolutional operations with max-pooling are
helpful to extract word features without paying at-
tention to their sequence order (Kalchbrenner,
Grefenstette, & Blunsom, 2014). These features are
combined with recurrent features to improve the
performance of our model.

183

4.4 Attention with Context

Output vectors received from previous steps are
concatenated, and then fed into an attention with
context.

We use a context-aware attention mechanism
(Yang et al., 2016) to compute a fixed representa-
tion (𝑟𝑟 = ∑ 𝑎𝑎𝑖𝑖ℎ𝑖𝑖𝑇𝑇

𝑖𝑖=1) of a sequence as the weighted
sum of all tokens in that sequence. This representa-
tion is used as a classification feature vector to be
fed to the final fully-connected sigmoid layer. This
layer outputs a continuous value representing the
valence of a given sentence.

4.5 Training

In our training, we use mini batch stochastic gra-
dient of the size 32, to minimize the mean-squared
error using back-propagation. We use Adam opti-
mizer with a learning rate of 0.001 (Kingma & Ba,
2014). For training, we use 80% of the training set
and 20% for validation. We test and report our re-
sults on both development and test sets.

Regularization. We use dropout to randomly
drop neurons off the network, which helps prevent-
ing co-adaptation of neurons (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014).
Dropout is also applied on the recurrent connection
of our GRU-based layers. Additionally, we apply a
weight decay approach through setting an L2 regu-
larization penalty (Cortes, Mohri, &
Rostamizadeh, 2012).

Hyperparameters. The size of the embedding
layer is 200, and of the GRU layers is 150, which
becomes 300 for bidirectional GRU. We apply a
dropout of 0.4, and a dropout of 0.2 on the recurrent
connections. Finally, an L2 regularization of
0.00001 is applied at the loss function.

5 Results

We report our results using the Pearson correla-
tion between the prediction and gold rating sets on
the test set (all instances). The other one (gold in
0.5-1 shown in Table 2) differs in including tweets
only with intensity greater than or equal to 0.5.

Our model performed well on the development
set scoring 0.869, while on the testing set, the per-
formance degraded to 0.752. This degradation
could be related to the size of the corpus we used
to train our word embedding. We also trained only
on 80% of the training set.

Dataset

Valence task
Pearson

correlation
(all instances)

Pearson
correlation

(gold in 0.5-1)
Development 0.869 0.692
Testing 0.752 0.559

Table 2: Results of valence intensity regression (Eng-
lish).

6 Conclusion

In this paper, we presented a self-attentive hybrid
GRU-based network for predicting valence in-
tensity for short text.

We used a hybrid approach combining low-char-
acter-level features with self-attentive word em-
bedding. Our network uses two different attention
mechanisms to signify the relevant and important
words, and hence optimize feature representation.

With limited corpora and vocabulary of the size
8152, our model still managed to achieve an opti-
mized feature representation, which achieved ex-
cellent results on the development set. However,
our model failed to maintain the same performance
on the testing set.

For future work, we will explore the perfor-
mance of our model with larger corpora against the
testing set. It would also be interesting to see if the
model performs well on other long-text NLP tasks
such as topic classification.

Acknowledgments
This research is funded by Natural Sciences and
Engineering Research Council of Canada
(NSERC), Ontario Centres of Excellence (OCE)
and VISR.co.

References
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural
Machine Translation by Jointly Learning to Align
and Translate. Retrieved from
http://arxiv.org/abs/1409.0473

Cortes, C., Mohri, M., & Rostamizadeh, A. (2012).
L2 Regularization for Learning Kernels. Retrieved
from http://arxiv.org/abs/1205.2653

Finkel, J. R., Grenager, T., & Manning, C. (2005).
Incorporating non-local information into information
extraction systems by Gibbs sampling. In
Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics - ACL
’05 (pp. 363–370). Morristown, NJ, USA:
Association for Computational Linguistics.
https://doi.org/10.3115/1219840.1219885

184

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000).
Learning to Forget: Continual Prediction with
LSTM. Neural Computation, 12(10), 2451–2471.
https://doi.org/10.1162/089976600300015015

Hochreiter, S., & Schmidhuber, J. (1997). Long
Short-Term Memory. Neural Computation, 9(8),
1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Kalchbrenner, N., Grefenstette, E., & Blunsom, P.
(2014). A Convolutional Neural Network for
Modelling Sentences. In Proceedings of the 52nd
Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers)
(pp. 655–665). Stroudsburg, PA, USA: Association
for Computational Linguistics.
https://doi.org/10.3115/v1/P14-1062

Kingma, D. P., & Ba, J. (2014). Adam: A Method for
Stochastic Optimization. Retrieved from
http://arxiv.org/abs/1412.6980

Mohammad, S. M., Bravo-Marquez, F., Salameh, M.,
& Kiritchenko, S. (2018). Semeval-2018 Task 1:
Affect in tweets. In International Workshop on
Semantic Evaluation (SemEval-2018), New Orleans,
LA, USA.

Mohammad, S. M., & Kiritchenko, S. (2018).
Understanding Emotions: A Dataset of Tweets to
Study Interactions between Affect Categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference (LREC-2018).

Mohammad, S. M., Kiritchenko, S., & Zhu, X.
(2013). NRC-Canada: Building the State-of-the-Art
in Sentiment Analysis of Tweets. Retrieved from
http://arxiv.org/abs/1308.6242

Pennington, J., Socher, R., & Manning, C. (2014).
Glove: Global Vectors for Word Representation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP)
(pp. 1532–1543). Stroudsburg, PA, USA:
Association for Computational Linguistics.
https://doi.org/10.3115/v1/D14-1162

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever,
I., & Salakhutdinov, R. (2014). Dropout: a simple
way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, 15(1), 1929–
1958.

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., &
Stede, M. (2011). Lexicon-Based Methods for
Sentiment Analysis. Computational Linguistics,
37(2), 267–307.
https://doi.org/10.1162/COLI_a_00049

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., … Polosukhin, I. (2017).
Attention is All you Need. In Advances in Neural
Information Processing Systems 30 (NIPS).

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., &

Hovy, E. (2016). Hierarchical Attention Networks
for Document Classification. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies (pp. 1480–1489).
Stroudsburg, PA, USA: Association for
Computational Linguistics.
https://doi.org/10.18653/v1/N16-1174

Yin, W., Kann, K., Yu, M., & Schütze, H. (2017).
Comparative Study of CNN and RNN for Natural
Language Processing. Retrieved from
http://arxiv.org/abs/1702.01923

Young, T., Hazarika, D., Poria, S., & Cambria, E.
(2017). Recent Trends in Deep Learning Based
Natural Language Processing. Retrieved from
http://arxiv.org/abs/1708.02709

185

