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Abstract

Word embeddings are supposed to provide
easy access to semantic relations such as
“male of” (man–woman). While this claim
has been investigated for concepts, little
is known about the distributional behavior
of relations of (Named) Entities. We de-
scribe two word embedding-based models
that predict values for relational attributes
of entities, and analyse them. The task is
challenging, with major performance dif-
ferences between relations. Contrary to
many NLP tasks, high difficulty for a re-
lation does not result from low frequency,
but from (a) one-to-many mappings; and
(b) lack of context patterns expressing the
relation that are easy to pick up by word
embeddings.

1 Introduction

A central claim about distributed models of word
meaning (e.g., Mikolov et al. (2013)) is that word
embedding space provides easy access to semantic
relations. E.g., Mikolov et al.’s space was shown
to encode the “male-female relation” linearly, as a
vector ( #       »man− #              »woman =

#       »

king − #          »queen).
The accessibility of semantic relations was sub-

sequently examined in more detail. Rei and Briscoe
(2014) and Melamud et al. (2014) reported success-
ful modeling of lexical relations such as hyper-
nymy and synonymy. Köper et al. (2015) consid-
ered a broader range of relationships,with mixed
results. Levy and Goldberg (2014b) developed an
improved, nonlinear relation extraction method.

These studies were conducted primarily on
concepts and their semantic relations, like
hypernym(politician) = person. Mean-
while, entities and the relations they partake in are

much less well understood.1 Entities are instances
of concepts, i.e., they refer to specific individual ob-
jects in the real world, for example, Donald Trump
is an instance of the concept politician. Conse-
quently, entities are generally associated with a
rich set of numeric and relational attributes (for
politician instances: size, office, etc.). In
contrast to concepts, the values of these attributes
tend to be discrete (Herbelot, 2015): while the
size of politician is best described by a prob-
ability distribution, the size of Donald Trump

is 1.88m. Since distributional representations
are notoriously bad at handling discrete knowl-
edge (Fodor and Lepore, 1999; Smolensky, 1990),
this raises the question of how well such models
can capture entity-related knowledge.

In our previous work (Gupta et al., 2015), we
analysed distributional prediction of numeric at-
tributes of entities, found a large variance in quality
among attributes, and identified factors determin-
ing prediction difficulty. A corresponding analysis
for relational (categorial) attributes of entities is
still missing, even though entities are highly rele-
vant for NLP. This is evident from the highly ac-
tive area of knowledge base completion (KBC), the
task of extending incomplete entity information in
knowledge bases such as Yago or Wikidata (e.g.,
Bordes et al., 2013; Freitas et al., 2014; Neelakan-
tan and Chang, 2015; Guu et al., 2015; Krishna-
murthy and Mitchell, 2015).

In this paper, we assess to what extent re-
lational attributes of entities are easily acces-
sible from word embedding space. To this
end, we define two models that predict, given
a target entity (Star Wars) and a relation
(director), a distributed representation for the
relatum (George Lucas). We carry out a detailed
per-relation analyses of their performance on seven

1The original dataset by Mikolov et al. (2013) did contain
a small number of entity-entity relations.
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Figure 1: Nonlinear model (NonLinM) structure

major FreeBase domains and identify what makes
a relation difficult by correlating performance with
properties of the relations. We find that, contrary
to many other NLP tasks, relations are not difficult
if they are infrequent or sparse, but instead (a) if
they relate one target to multiple relata; (b) if they
do not give rise to linguistic patterns that can be
picked up by bag-of-words distributional models.

2 Two Relatum Prediction Models

Both models predict a vector for a relatum r (plural:
relata) given a target entity vector t and a symbolic
relation ρ.

The Linear Model (LinM) is inspired by
Mikolov et al.’s “phrase analogy” evaluation of
word embeddings ( #       »man − #              »woman =

#       »

king −
#          »queen). However, instead of looking at individ-
ual words, we extract representations of semantic
relations from sets of pairs Tρ = {(ti, ρ, ri)} in-
stantiating the relation ρ. For each relation ρ, LinM
computes the average (or centroid) difference vec-
tor over the set of training pairs:

r̂(t, ρ) = t+
∑

(r,ρ,t)∈Tρ

(r − t)/N (1)

That is, the predicted r̂ for an input (t, ρ) is the
sum of the target vector and the relation’s proto-
type. This model should work well if relations are
represented additively in the embedding space.

The Nonlinear Model (NonLinM) is a feed-
forward network (Figure 1) introducing a nonlin-
earity, inspired by Levy and Goldberg (2014b) and
similar to models used in KBC, e.g., Socher et al.
(2013). The relatum vector is predicted as

r̂θ(t, ρ) = σ(σ(t ·Win + vρ ·Wr) ·Wout) (2)

where vρ is the relation encoded as an m-
dimensional one-hot vector and the three matrices

Win,Wr,Wout form the model parameters θ. For
the nonlinearity σ, we use tanh.

In this model, the hidden layer represents a non-
linearly transformed composition of target and re-
lation from which the relatum can be predicted.
NonLinM can theoretically make accurate predic-
tions even if relations are not additive in embedding
space. Also, its sharing of training data among re-
lations should lead to more reliable learning for
infrequent relations. As objective function, we use

L(θ) =
∑
(t,r)

[ cos(r̂θ(t, ρ), r)

− α · cos(r̂θ(t, ρ), nc(r̂θ(t, ρ)))]
(3)

where nc(v) is the nearest confounder of v, i.e., the
next neighbor of v that is not a relatum for the cur-
rent target-relation pair. Thus, we minimize the co-
sine distance between the predicted vector and the
gold vector for the relatum while maximizing the
cosine distance of the prediction to the closest nega-
tive example. We introduce a weight α ∈ [0, 1] for
the negative sampling term as a hyper-parameter
optimized on the development set. During train-
ing, we apply gradient descent with the adaptive
learning rate method AdaDelta (Zeiler, 2012).

3 Experiments

Data. We extract relation data from FreeBase.
We follow our earlier work Gupta et al. (2015), but
go beyond its limitation to two domains (country,
citytown). We experiment with seven major
FreeBase domains: animal, book, citytown,
country, employer, organization, people.
We limit the number of datapoints of very large
relation types to 3000 with random sampling for
efficiency reasons. We only remove relation types
with fewer than 3 datapoints. This results in a quite
challenging dataset that demonstrates the general-
izability of our models and is roughly comparable,
in variety and size, to the FB15K dataset (Bordes
et al., 2013).

The distributed representations for all entities
come from the 1000-dimensional “Google News”
skip-gram model (Mikolov et al., 2013) for Free-
Base entities2 trained on a 100G token news corpus.
We only retain relation datapoints where both tar-
get and relatum are covered in the Google News
vectors. Table 1 shows the numbers of relations
and unique objects (target plus relata).

2https://code.google.com/p/word2vec/
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Size Performance Relation-level statistics

Domain #R #Ts+Ra. BL LM NLM %R>0.3 %R<0.1 ρ(NLM, #In) ρ(NLM, #RpT)

animal 24 3,428 0.11 0.16 0.29 38% 42% .07 -.34
book 22 7,014 0.11 0.24 0.26 9% 68% .09 -.15
citytown 46 86,551 0.05 0.13 0.26 28% 39% -.12 -.22
country 89 191,196 0.04 0.08 0.18 20% 52% -.32 -.23
employer 76 14,658 0.05 0.15 0.23 30% 45% .01 -.35
organization 53 8,989 0.07 0.17 0.26 34% 42% -.24 -.29
people 91 11,397 0.09 0.19 0.27 34% 23% .23 -.25

Micro average 0.06 0.14 0.22 25% 45% -.12 -.25
Macro average 0.08 0.16 0.23 28% 44% -.05 -.26

Table 1: Test set statistics and results. #R: relations; #Ts+Ra: unique targets and relata; BL/LM/NLM:
Baseline, linear and nonlinear model (macro-average MRR); %R≶x: percent of relations with MRR ≶x;
ρ: Spearman correlation; #In: instances; #RpT: relata per target

We split all domains into training, validation,
and test sets (60%–20%–20%). The split applies to
each relation type: in test, we face no unseen rela-
tion types, but unseen datapoints for each relation.3

Hyperparameter settings. The NonLinM
model uses an L2 norm constraint of s=3. We
adopt the best AdaDelta parameters from Zeiler
(2012), viz. ρ = 0.95 and ε = 10−6. We optimize
the negative sampling weight α (cf. Eq. 3) by
line search with a step size of 0.1 on the largest
domain, country, and find 0.6 to be the optimal
value, which we reuse for all domains. Due to the
varying dimensionality m of the relation vector
per domain, we set the size of the hidden layer
to k = 2n + m/10 (n is the dimensionality of
the word embeddings, cf. Figure 1). We train all
models for a maximum of 1000 epochs with early
stopping.

Evaluation. Models that predict vectors in a con-
tinuous vector space, like ours, cannot expect to
predict the output vector precisely. Thus, we ap-
ply nearest neighbor mapping using the set of all
unique targets and relata in each domain (cf. Ta-
ble 1) to identify the correct relatum name. We
then perform an Information Retrieval-style rank-
ing evaluation: We compute the rank of the correct
relatum r, given the target t and the relation ρ, in
the test set T and aggregate these ranks to compute
the mean reciprocal rank (MRR):

MRR =
1
||T ||

∑
(t,ρ,r)∈T

1
rankt,ρ(r)

(4)

where rank is the nearest neighbor rank of the
relatum vector r given the prediction of the model

3The dataset are available at: http://www.ims.uni-
stuttgart.de/data/RelationPrediction.html

for the input t, ρ. We report results at the relation
level as well as macro- and micro-averaged MRR
for the complete dataset.

Frequency Baseline (BL). Our baseline model
ignores the target. For each relation, it predicts the
frequency-ordered list of all training set relata.

4 Results and Discussion

Overall results. Table 1 shows that the nonlinear
model NonLinM consistently gives the best results
and statistically outperforms the linear model on
all domains according to a Wilcoxon test (α=0.05).
Both LinM and NonLinM clearly outclass the base-
line. Most MRRs are around 0.25 (micro average
0.22), with one outlier, at 0.18, for country, the
largest domain. Overall, the numbers may appear
disappointing at first glance: these MRRs mean that
the correct relatum is typically around the fourth
nearest neighbor of the prediction vector. This in-
dicates that open-vocabulary relatum prediction in
a space of tens of thousands of words is a chal-
lenging task that warrants more detailed analysis.
We observe that the nonlinear model achieves rea-
sonable results even for sparse domains (cf. the
low baseline), which we take as evidence for its
generalization capabilities.

Analysis at relation level. Table 1 shows the
number of relations with good MRRs (greater than
0.3) and bad MRRs (smaller than 0.1) for each rela-
tion. While the numbers vary across domains, the
models tend to do badly on around 40-50% of all
relations, and obtain good scores for less than one
third of all relations.

Figure 2 shows the distribution for the best do-
main (animal) and the worst one (country) .
Both plots show a Zipfian distribution with a rel-

106



5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

relation index (sorted by NonLinM performance)

M
R

R
 fo

r a
ni

m
al

● ●
●

●

●

● ● ● ●
●

● ●

●
●

● ●

● ●
●

● ● ● ● ●

●

NonLinM
LinM

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

relation index (sorted by NonLinM performance)

M
R

R
 fo

r c
ou

nt
ry

●

●
●

●

●

●

●
●
●

●●●

●

●

●
●

●

●
●●

●

●●●

●
●

●

●

●
●

●

●

●●●

●
●
●
●

●

●●

●
●●

●●
●●●

●●
●●

●●●
●
●●●●●●

●
●●●●●●●●

●
●●●●●●●●●●●●●●●

●

NonLinM
LinM

Figure 2: Results by relation for best and worst
domains ( animal, above; people, below), sorted
by NonLinM performance

Target Correct LinM NonLinM

Japan Asia Japan Asia
Kazakhstan Asia Central Asia Asia

c
o
n
t
i
n
e
n
t

Nicaragua North Latin Americas
America America

Nepal Kathmandu Nepal Dhaka
Qatar Doha Qatar Riyadh

c
a
p
i
t
a
l

Venezuela Caracas Caracas Quito

Table 2: Example predictions for two country

relations (correct answer in boldface)

atively small set of well-modelled relations and a
long tail of poorly modelled ones. NonLinM does
better or as well as LinM for almost all relations.
The performances of the two models are very tighly
correlated for difficult relations; they only differ
for the easier ones, where NonLinM’s evidently
captures the data better.

Qualitatively, the two models differ substantially
with regard to prediction patterns at the level of
targets. Table 2 shows the first predictions for three
targets from two relations: continent, where
NonLinM outperforms LinM, and capital, where
it is the other way around. NonLinM’s errors con-
sist almost exclusively in predicting semantically
similar entities of the correct relatum type, e.g.,
predicting Quito (the capital of Ecuador) as capi-
tal of Venezuela. In contrast, the LinM model has
a harder time capturing the correct type, predict-
ing country entities as capitals (e.g., Nepal as the
capital of Nepal).
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Figure 3: Scatterplot: MRR vs. number of relata
per target (above: animal, below: country)

Analysis of Difficulty. So what makes many
FreeBase relations hard to model? To test for spar-
sity problems, we first computed the correlation
between model performance and the “usual sus-
pect” relation frequency (number of instances for
each relation). In NLP applications, this typically
yields a high positive correlation. The second-to-
last column of Table 1 shows that this is not true
for our dataset. We find a substantial positive cor-
relation only for people, correlations around zero
for most domains, and substantial negative ones for
organization and country. For these domains,
therefore, frequent relations are actually harder to
model. Further analysis revealed two main sources
of difficulty:

(1) One-to-many relations. Relations with
many datapoints tend to be one-to-many. We
assume this to be a major source of difficulty,
since the model is presented with multiple re-
lata for the same target during training and will
typically learn to predict a centroid of these re-
lata. As an extreme case, consider a relation like
administrative divisions that relates the US
to all of its federal states: the resulting prediction
will arguably be dissimilar to every individual state.
To test this hypothesis, we computed the rank cor-
relation at the relation level between the number of
relata per target and NonLinM performance, shown
in the last column of Table 1. Indeed, we find a
strong negative correlation for every single domain.
In addition, Figure 3 plots relation performance (y
axis) against the ratio of relata per target (x axis:
one-to-one on the left, one-to-many on the right)
for animal and country.
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Qualitatively, Table 3 shows examples for the
three most easy and difficult relations for country.
The list suggests that relations tend to be easy when
they associate targets with single relata: the rela-
tion country maps territories and colonies onto
their motherlands, and the tournaments relation
is only populated with a few Commonwealth games
(cf. the high baseline). In contrast, relations that
map targets on many relata are difficult, such as
administrative divisions of countries, or a list of
disputed territories. Note that this is not an
evaluation issue, since MRR can deal with multiple
correct answers. Our models do badly because they
lack strategies to address these cases.

(2) Lack of contextual support. One-to-many
relations are not the only culprit. Strikingly, Fig-
ure 2 shows that a low target-relatum ratio is a
necessary condition for good performance (the
upper right corners are empty), but not a suffi-
cient one (the lower left corners are not empty).
Some relations are not modelled well even though
they are (almost) one-to-one. Examples include
currency formerly used or named after for
country and place of origin for animal.
Further analysis indicated that these relations suf-
fer from what Gupta et al. (2015) called lack of
contextual support: Although they are expressed
overtly in the linguistic context of the target and
relatum (and often even frequently so), their real-
izations cannot be tied to individual words or topics.
Instead, they are expressed by relatively specific
linguistic patterns, often predicate-argument struc-
tures (X used to pay with Y, X is named in the honor
of Y). Such structures are hard to pick up by word
embedding models that make the bag-of-words in-
dependence assumption among context words.

5 Conclusion

This paper considers the prediction of related enti-
ties (“relata”) given a pair of a target Named Entity
and a relation (Star Wars, director, ?) on
the basis of distributional information. This task is
challenging due to the more discrete behavior of
attributes of entities as compared to concepts. We
provide an analysis based on two models that use
vector representations for both the targets and the
relata.

Our results yield new insights into how embed-
ding spaces represent entity relations: they are gen-
erally not represented additively, and nonlinearity
helps. They also complement insights on the be-

Relation BL LinM NonLinM

tournaments 0.88 0.82 0.88
continent 0.29 0.29 0.77
country 0.25 0.24 0.77
...
disputed territories 0.00 0.01 0.01
horses from here 0.00 0.01 0.01
2nd level divisions 0.00 0.00 0.01

Table 3: The three most easy and most difficult
relations for the country domain

havior of numeric attributes of entities (Gupta et al.,
2015): Relations, like numeric attributes, are diffi-
cult to model if they are not specifically expressed
in the lingusitic context of target and relatum. A
new challenge specific to relations are situations
where a single target maps onto many relata. If
none of the two problems applies, relations are
easy to model. If one applies, they are difficult.
And if both apply, they are essentially impossible.

Among the two challenges, the problem of one-
to-many relations appears easier to address, since
a continuous output vector is, at least in principle,
able to be similar to many relata. In the future,
we will extend the model to deal better with one-
to-many relations. While the lack of contextual
support seems more fundamental, it could be ad-
dressed by either using syntax-based embeddings
(Levy and Goldberg, 2014a) that can better pick up
the specific context patterns characteristic for these
relations, or by optimizing the input word embed-
dings for the task. This becomes a similar problem
to joint training of representations from knowledge
base structure and textual evidence (Perozzi et al.,
2014; Toutanova et al., 2015).
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