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Abstract

We link the weighted maximum entropy
and the optimization of the expected Fβ-
measure, by viewing them in the frame-
work of a general common multi-criteria
optimization problem. As a result, each
solution of the expected Fβ-measure max-
imization can be realized as a weighted
maximum likelihood solution - a well un-
derstood and behaved problem. The spe-
cific structure of maximum entropy mod-
els allows us to approximate this charac-
terization via the much simpler class-wise
weighted maximum likelihood. Our ap-
proach reveals any probabilistic learning
scheme as a specific trade-off between dif-
ferent objectives and provides the frame-
work to link it to the expectedFβ-measure.

1 Introduction

In many NLP classification applications, the
classes are not symmetric and the user has some
preference towards a high Precision or Recall of
a particular target class. Thus, appropriate tun-
ing of the model is often necessary, depending
on the particular tolerance of the application to
false positive or false negative results. This pref-
erence can be expressed by requiring a large Fβ
measure for a particular β describing the desired
Precision/Recall trade-off. Ideally, the parameters
of the linear model should be estimated such that
a desired Fβ measure is maximized. However,
directly maximizing Fβ is hard, due to its non-
concave shape.

Maximum likelihood-based classifiers such as
the maximum entropy are relatively easy to fit,

but they are rigid and cannot be tuned to a de-
sired Precision and Recall trade-off. In this ar-
ticle, we consider a more flexible maximum en-
tropy model, which optimizes a weighted likeli-
hood function. If appropriate weights are chosen,
then the maximum weighted likelihood model co-
incides with the optimal Fβ model. The advantage
of the weighted likelihood as a loss function is that
it is concave and standard gradient methods can be
used for its optimization. In fact an existing maxi-
mum entropy implementation can be easily gener-
alized to the weighted case.

To the best of our knowledge, such a link be-
tween the maximum likelihood and the Fβ has not
been established before. The article is focused on
the intuition of the relation and the sketch of the
proof of the main result. We also present numeri-
cal experiment supporting the theoretical findings.
Additional value of our theoretical observation is
that it establishes the methodology of viewing a
particular probabilistic model as a specific solu-
tion of a common multi-criteria optimization prob-
lem.

This article is organized as follows. In Sec-
tion 2 we present related work, Sections 3 to 6
present the theoretical aspects of link between the
weighted maxent and F measure. Section 7 intro-
duces the algorithm, Section 8 explains the steps
for evaluation of the algorithm, Section 9 presents
the datasets. Sections 10 and 11 present aspects
of performance of our method on the datasets and
Section 12 concludes the paper.

2 Related work

The most popular heuristic for Precision-Recall
trade-off is based on adjusting the acceptance
threshold given by maximum entropy models (or
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any learning framework). However, this procedure
amounts to a simple translation of the maximum
likelihood hyperplane towards or away from the
target class and does not fit the model anew.

The expected F measure F̃ is also considered
in (Nan et al., 2012), where also its consistency is
studied and even a Hoeffding bound for the con-
vergence is given. However, the authors there
mainly concentrate on the acceptance threshold to
optimize the F -measure.

(Dembczyn’ski et al., 2011) gave a general al-
gorithm for F measure optimization for a partic-
ular parametrization involving m2 + 1 parameters
where m is the number of examples in the binary
classification case. Determining the parameters of
the models however can be very hard. A very in-
teresting result in (Dembczyn’ski et al., 2011) is
that in the worst case there is a lower bound on the
discrepancy between the optimal solution and the
solution obtained by means of optimal acceptance
threshold, which further motivates our approach.
In our approach we directly find the parameters
of the model that maximize the expected F mea-
sure using the link to the weighted maximum like-
lihood.

(Jansche, 2005) describe a maximum entropy
model that optimizes directly an expected Fβ-
based loss. However the expected Fβ is not
concave and is rather cumbersome to deal with.
Therefore the standard gradient methods do not
guarantee optimality of the solution.

(Minkov et al., 2006) introduce another heuris-
tics, which is based on changing the weight of a
special feature, which indicates if a sample is in
the complementary class or not.

The weighted logistic regression is well known,
see for example (Vandev and Neykov, 1998), and
the corresponding estimation is barely harder than
in the standard case without weights. See also
(Simecková, 2005) for an interesting discussion.

3 The Maximum Entropy Model

The maximum entropy modeling framework as in-
troduced in the NLP domain by (Berger et al.,
1996) has become the standard for various NLP
tasks. To fix notations consider a training set of m
samples {(x(i), y(i)) : i ∈ 1, . . .m} where x(i)
is a sample with class y(i), where y(i) takes val-
ues in some finite set Y . In this paper we aim at
explaining the main idea of the link between the
weighted maximum entropy and the expected Fβ;

to keep things technically simple we restrict to the
case |Y| = 2. Each observation is represented by
a set of features {fj(x(i), y(i)) : j ∈ 1, . . . , N}.

The maximum entropy principle forces the
model conditional probabilities p(y|x, λ) to have
the form:

p(y|x, λ) =
1

Zλ(x)
exp

∑
j

λj · fj(x, y),

where λ ∈ RN are the model parameters and
Zλ(x) is a normalization constant. The calibra-
tion of the model amounts to (see (Berger et al.,
1996)) maximizing the log-likelihood

l(λ : x, y) =
m∑
i=1

log p(y(i)|x(i), λ).

In the following for a weight vector w ∈ Rm we
will make use of the weighted log-likelihood func-
tion

lW (λ : w, x, y) =
m∑
i=1

w(i) log p(y(i)|x(i), λ).

In our case the weights will be defined mostly
class-wise, i.e. examples from the same class will
always have the same weights.

4 Precision/Recall trade off. Expected
Fβ-measure.

The performance of a classifier is typically mea-
sured using the Precision and Recall metrics, and
in particular their tradeoff described by a constant
β ∈ [0, 1] and expressed as the β-weighted har-
monic mean called Fβ-measure:

Fβ :=

(
β

P
+

1− β
R

)−1

.

The larger the β the greater the influence of the
Precision as compared to the Recall on the Fβ-
measure. The Precision and Recall are defined in
terms of the true/false positive/negative counts.

For a given example with attributes x the max-
imum entropy model will produce the conditional
probabilities p(y|x, λ) of the example being into
one of the classes y ∈ Y . When used for classi-
fication however, one would typically choose the
class y(x) having the largest probability i.e.

y(x) = argmaxyp(y|x, λ).
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This means that we would completely disregard
the additional information incorporated into the
model. A more probabilistic approach would
be to draw the class y(x) randomly out of
the model distribution given by the probability
weights {p(y|x, λ) : y ∈ Y}. This way the classes
y(x) as well as the true/false positive/negative
counts would be random variables. However if
we perform this sampling many times and take
the average we will end up having the expected
true/false positive/negative counts. For example
the expected true positive and true negative counts
are given by

Ãu = E#true pos =
∑

i:y(i)=1

p(1|x(i), λ);

D̃u = E#true neg =
∑

i:y(i)=0

p(0|x(i), λ)
(1)

Using the expected counts instead of the realized
ones we can define the mean field approximation
P̃ and R̃ of the precision and recall metrics and
consequently define the mean field approximation
F̃β of the standard Fβ measure

F̃β :=

(
β

P̃
+

1− β
R̃

)−1

.

As in (Jansche, 2005) with a slight abuse of no-
tation we will call F̃β the expected Fβ measure.
For a large training set and a good model the ex-
pected Fβ measure on the training set will be close
to the standard one since the model probabilities
p(y(i)|x(i), λ) will be close to one for the training
examples.

5 Weighted maximum likelihood vs.
expected Fβ-measure maximization.

Clearly the log-likelihood and the expected Fβ
measure are two different, however one would
hope, not orthogonal objectives.

Intuitively every reasonable machine learning
model would try to set the model parameters λ in
such a manner that for all training examples the
model conditional probabilities of the observed
classes y(i) given the example’s attributes x(i),
namely p(y(i)|x(i), λ), are as large as possible.
In general if the used model is not overfitting it
would not be possible for all conditional probabil-
ities to be close to one simultaneously, and implic-
itly every particular model would handle the trade-
offs in its own manner. In this sense the important

difference between the log-likelihood and the ex-
pected Fβ measure seen as objective functions is
that, while the log-likelihood approach gives equal
importance to all training examples on the loga-
rithmic scale the (expected) Fβ measure has a pa-
rameter controlling this trade-off on a class-wise
level. On the other hand, as noted in (Jansche,
2005) the flexibility in F̃β comes at a price - the
F̃β is by far not that nice function to optimize as
the log-likelihood is. The next proposition gives
a useful link between the F̃β and the weighted
log-likelihood enabling us to find F̃β optimizers
by solving the very well behaved and understood
weighted maximum likelihood problem.

Proposition 1. Let λ̂β be the maximizer of the ex-
pected Fβ measure F̃β . Then there exists a vector
of weightsw(β) ∈ Rm such that λ̂β coincides with
the weighted maximum likelihood estimator

λ̂
w(β)
ML = arg max lW (λ : w(β), x, y)

Moreover, we can approximate the β-implied
weights w(β) with a class-wise weight vector
w̄(β) (i.e., the weights of training examples from
the same class have the same weights) , that is

λ̂β = λ̂
w(β)
ML and λ̂β ≈ λ̂

w̄(β)
ML

Below we give the intuition of the proof and
some formal arguments, without presenting all
technical details, due to lack of space.

Sketch of proof:
The proof makes use of multicriteria optimiza-

tion techniques (Ehrgott, 2005), which are typi-
cally applied when two or more conflicting ob-
jectives need to be optimized simultaneously. In
our case, the number of true positives and the
number of true negatives need to be maximized at
the same time, but most classifiers (at least those
that do not overfit badly) trade-off between them.
The solutions of multicriteria optimization prob-
lem are called Pareto optimal solutions. A solution
is Pareto optimal if none of the objectives can be
improved without deteriorating at least one of the
other objectives.

Intuitively, the maximum likelihood optimizes
simultaneously the conditional probabilities
p(y(i)|x(i), λ) via implicitly setting some trade-
offs between them. Therefore our idea is to
adjust these trade-offs using the weights in such
a manner that the F̃β is optimized rather than
the likelihood. The most natural and general
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way to look at these trade-offs is to consider
the multicriteria optimization problem (MOP)
max{log p(y(1)|x(1), λ), ..., log p(y(m)|x(m), λ)}.
It turns out that both the max likelihood and the
F̃β optimizer are particular solutions of the MOP.
On the other hand all solutions of the MOP can be
obtained by maximizing nonnegative linear com-
binations of the objectives (Ehrgott, 2005). How-
ever a nonnegative combination of the objectives
{log p(y(1)|x(1), λ), ..., log p(y(m)|x(m), λ}
is precisely the weighted maximum entropy
objective function.

Technically, for each β the F̃β maximizer λ̂β
can actually be seen as an element of the Pareto
optimal set of the multi-criteria optimization prob-
lem

max
λ
{Ã(λ), D̃(λ)}, (2)

where Ã(λ) and D̃(λ) are the model expected true
positive and true negative counts on the training
set. This follows from the fact that we can rewrite
F̃β as follows:

F̃β(λ) =
Ã(λ)

β(Ã(λ)− D̃(λ)) + (1− β)m1 + βm0

,

where m1 is the total number of positive exam-
ples and m0 the number of negative ones. Fur-
thermore the Pareto optimal set of (2) is a subset
of the Pareto optimal set of the finer granularity
multi-criteria optimization problem

max
λ
{p(y(1)|x(1), λ), ..., p(y(m)|x(m), λ)}.

Clearly, because of the strict monotonicity of
the logarithm the above optimization problem is
equivalent to

max
λ
{log p(y(1)|x(1), λ), ..., log p(y(m)|x(m), λ)}.

(3)
On the other hand each element of the Pareto op-
timal set of (3) can be realized as a weighted
maximum likelihood estimator associated to some
weight vector w ∈ Rm, which concludes the
proof. The pass to approximate class-wise weights
is achieved using a linearization of the log-
conditional probabilities of the training examples.
�

6 Interpretation of the weights

Apart from the obvious technical generalization of
the likelihood function the weights could on aver-

age be interpreted as a modification of the train-
ing set by adding new examples with intensity
w(i) while keeping the attributes and the classes
(x(i), y(i)). In particular for w(i) < 1 the ith
example is deleted with probability 1 − w(i). If
w(i) > 1, say w(i) = q + wf (i) for some integer
q ≥ 1 and 0 ≤ wf (i) < 1 then generate q identi-
cal training examples (x(i), y(i)) and additionally
clone it with probability wf (i).

This view highlights yet another interpretation
of the weights: an asymmetric regularization. Re-
moving some examples when the weight is smaller
than 1 is a well known regularization technique
called drop-out. When it is applied to features
involving only a subset of the classes then ob-
viously it is an asymmetric regularization. The
case of weights larger than 1 can be viewed in the
same light by simple renormalization. If we have
an exogenous L2 regularization, adding class-wise
weights would alter the influence of the regulariza-
tion on the parameters corresponding to different
classes, yet again we achieve an asymmetric regu-
larization.

7 The algorithm

We search for a value w in a predefined inter-
val [wmin, wmax] which gives maximum Fβ(w).
Our experiments on artificial and real data suggest
that the expected Fβ(w) is unimodal on intervals
like [ε, wmax], for a small ε close to zero. This
suggests that a golden section search algorithm
(Kiefer, 1953) can find the maximum efficiently,
i.e. with a minimum number of trained weighted
likelihood models.

In practice however the estimate of Fβ(w)
may not be unimodal, because numerical meth-
ods are used for training weighted maximum en-
tropy models and the optimal model is only ap-
proximately identified. It is safe to assume how-
ever that deviation from unimodality is not consid-
erable, for example, we can accept that the func-
tion Fβ(w) is δ - unimodal (as defined in (Brent,
1973)) for some δ. Then, (Brent, 1973) show that
the golden section search approximates the loca-
tion of the maximum with a tolerance of 5.236δ.

Below we describe the steps of the algorithm:

8 Evaluation of the algorithm

In order to demonstrate that our algorithm is an
efficient tool for optimizing the Fβ measure, we
performed the following tests, the results of which
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Algorithm 1 Golden Section Search
Require: Unimodal function f , interval [a, b]
Ensure: x∗ = arg maxx f(x)

1: φ← 1+
√

5
2

2: function GSS(f , a, b, p1, p2)
3: if |b− a| < ε then
4: return a
5: else
6: if f(p1) > f(p2) then
7: b← p2

8: p2 ← p1

9: p1 ← (2− φ)(b− a)
10: else
11: a← p1

12: p1 ← p2

13: p2 ← (2− φ)(b− a)
14: end if
15: return GSS(f, a, b, p1, p2)
16: end if
17: end function
18: p1 ← a+ (2− φ)(b− a)
19: p2 ← b− (2− φ)(b− a)
20: x∗ ← GSS(f, a, b, p1, p2)

are described in the Results section.
First, we evaluated Precision and Recall at dif-

ferent values of the class weight w in the interval
[0.1, 5] and show that they are antagonistic, which
demonstrates that weighted maxent can trade-off
Precision and Recall.

Second, we show that our golden section search
algorithm finds a good approximation of the op-
timum class-weight w, necessary for maximizing
a specific Fβ(w), despite the violation of the uni-
modality of Fβ(w). We can identify the optimum
weights by means of a brute-force approach, by
which we try a large number of values for the
weight of the target class (in practice, 50 values
evenly distributed in [0.1, 5]). The brute-force
is infeasible practical applications, because it re-
quires training a large number of weighted max-
ent models. The comparison to the brute-force
method is carried on the training set, because find-
ing the appropriate class weight w is part of model
fitting, together with the estimation of the model
weights λ.

Third, we demonstrate that the models that we
fit are superior (i.e. yield better test Fβ) than the
maxent model. To this end, we compute Fβ for a
range of values of β ∈ [0, 1]. We compare these
results with the test Fβ that our algorithm deliv-
ers. For a reliable comparison, we also estimate
the variance of theFβ values – both for our method
and for the baseline – by training on 20 bootstrap
samples of the training set instead of the original

(a)

(b)

Figure 1: Distribution of the samples in the space of fea-
tures for the synthetic datasets: a) dataset A ; b) dataset B

train set.

9 Datasets

9.1 Synthetic datasets

We simulated two datasets, A and B, of 600
samples each of them with two equally popu-
lated classes and only two features. In dataset
A the samples from class 0 are distributed as
N (µA0 ,Σ

A
0 ), with µA0 = (2, 1) and ΣA

0 =
(1, 0.3)>I2. Class 1 is generated by N (µA1 ,Σ

A
1 ),

with µA1 = (1, 2) and ΣA
1 = (0.3, 1)>I2.

Dataset B consists of two symmetric spheri-
cal Gaussians - N (µB0 ,Σ

B
0 ) and N (µB1 ,Σ

B
1 ) with

µB0 = (0.5, 1), ΣB
0 = (0.3, 0.3)>I2, µB1 =

(1, 0.8) and ΣB
1 = (0.3, 0.3)>I2.

In Figure 1 we visualize both synthetic datasets.
We used 400 of the samples for training and 200
for testing.
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9.2 Twitter sentiment corpus

We used the Sanders Twitter Sentiment Cor-
pus (http://www.sananalytics.com/lab/twitter-
sentiment/), from which we filtered 3425 tweets,
labeled as either positive, negative or neutral.
We classified tweets that expressed a sentiment
(either positive or negative), versus neutral tweets.
The neutral tweets are about twice more than the
positive and negative tweets together. For the
experiments, we used 3081(90%) tweets for train-
ing and 343 (10%) for testing. We processed the
tweets and obtained about 6095 features. In order
to avoid overfitting and speed up computations,
we used a filter method based on Information
Gain to remove uninformative features. We kept
60 (10%) of the features for our experiments.

10 Experiments and results

By varying the weight of the target class, the
weighted maximum entropy achieves Precision-
Recall trade-off. Figure 2 clearly illustrates the
trade-off, for the synthetic data A and the twitter
sentiment data. Additionally, note that Precision
and Recall are in equilibrium for a a weight that
reflects the ratio of the class cardinalities, namely
w = 1 for the balanced synthetic dataset A and
w = 2, for the twitter corpus.

The brute force method reveals the shape of the
Fβ(w), as a function of β and w (see Figure 4 a)
and c)). Both of our datasets suggest that there is
a critical value of w which marks a switch point
in the monotony of the Fβ(w) (regarded as a func-
tion of β). For w smaller than the critical switch,
Fβ(w) increases with β, and for w larger than the
switch, Fβ(w) decreases with β. This switch is
probably directly related to the ratio of the class
cardinalities and deserves further theoretical in-
vestigation.

Figures 4 a) and c) show also the ‘path’ that
marks the maximum Fβ achievable for each β, in
solid black line. The path corresponding to our
golden search algorithm falls fairly close to that
of the brute force, as shown by the dotted lines
(marking the mean and one standard deviation to
each side). Even if sometimes the optimal w is not
found exactly by the golden search, the Fβ is still
very close to the optimum, as shown in Figures 4
b) and d). In fact, the optimum Fβ is always within
one standard deviation from the expected value of
our golden search algorithm.

Finally, we demonstrate that our method per-

(a)

(b)

Figure 2: Precision-Recall trade-off on the train set by
changing class-weights: a) synthetic dataset A; b) sentiment
tweeter dataset.

forms very well on the test set, compared to the
simple maxent baseline. Figure 3 a) and b) show
that the test Fβ is superior to the baseline, due to
its ability to adapt the fitted model to the specific
Precision - Recall trade-off, expressed by a value
of β.

11 Limits and merits of the weighted
maximum entropy

In this section we compare the weighted maximum
entropy and the acceptance threshold method with
the help of the two artificial data sets A and B
shown on Figure 1. The acceptance threshold cor-
responds to a translation of the separating hyper-
plane obtained by the standard maximum entropy
model. We show that acceptance threshold fails to
fit the data well for most values of β, if the data
resemble more dataset A than dataset B. In con-
trast, the weighted maxent is more adaptive, fitting
nicely both datasets for all values of β.

It is rather clear that with translation we can
achieve an optimal Precision/Recall trade-off for
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(a)

(b)

Figure 3: Test Fβ for our method, compared to the maxent
baseline. One standard deviation bars are added. a) synthetic
data; b) twitter corpus.

the synthetic data set B. Indeed, Figure 5 b) shows
that the acceptance threshold and the weighted
maximum entropy do result in virtually the same
optimal Fβ values.

The optimal Precision/Recall trade-off for
dataset A however requires additional rota-
tion/tilting of the separating hyperplane that can-
not be produced by adjusting the acceptance
threshold. In line with this intuition Figure 5 a)
demonstrates that the weighted likelihood settles
at a better Precision-Recall pairs and consequently
results in larger Fβ values.

Clearly, in the general case the optimal shift of
the separating plane is expected to have a rotation
component that is unaccessible by simply adjust-
ing the acceptance threshold.

12 Conclusion and future work

The main result of the paper is that the weighted
maximum likelihood and the expected Fβ mea-
sure are simply two different ways to specify a
particular trade-off between the objectives of the
same multi-criteria optimization problem. Techni-
cally we unify these two approaches by viewing
them as methods to pick a particular point from

(a)

(b)

(c)

(d)

Figure 4: Heatmap showing in grayscale the Fβ(w) val-
ues obtained by the brute force method. The solid black line
shows the optimal models for each beta. The dotted lines
show the estimates given by the golden search: a) synthetic
data; c) sentiment corpus. Comparison of the train Fβ ob-
tained with the brute force (solid line) and with the golden
section search (dotted line, with standard deviation): b) syn-
thetic data; d) sentiment corpus.
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(a)

(b)

Figure 5: Comparison of the acceptance threshold versus
the weighted maximum likelihood on the stylized synthetic
data: a) dataset A ; b) dataset B

the Pareto optimal set associated with a common
multi-criteria optimization problem.

As a consequence each expected Fβ maximizer
can be realized as a weighted maximum likeli-
hood estimator and approximated via a class-wise
weighted maximum likelihood estimator.

The presented results can be generalized to the
regularized and multi-class case which is a subject
for future work.

Furthermore, the proposed approach to view
any probabilistic learning scheme as a specific
trade-off between different objectives and thus
to link it to the expected Fβ measure is general
and can be applied beyond the maximum entropy
framework.

The difficulty in exploiting the statement of
Proposition 1 lies in the fact that it is not apriori
clear how to choose the weights w(β) for a given
β. In a larger paper the authors will present algo-
rithms maximizing the F̃β measure exploiting the
theoretical results from this paper via adaptively
finding the right weights. Even without a pre-

cise estimate for the weights the presented results
give the qualitative connection between the Preci-
sion/Recall trade-off and the weights: if one aims
at higher Precision then smaller weights are appro-
priate and conversely larger Recall is achieved via
larger weights.

We showed with experiments on artificial and
real data that using weighted maximum entropy
we can achieve a desired Precision - Recall trade-
off. We also presented an efficient algorithm based
on golden section search, that approximates well
the class weights at which the maximum Fβ is at-
tained. We showed that on the test set, we achieve
larger Fβ than the simple maximum entropy base-
line.
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