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Abstract

Most NLP systems make predictions
based solely on linguistic (textual or spo-
ken) input. We show how to usevisual
information to make betterlinguistic pre-
dictions. We focus on selectional prefer-
ence; specifically, determining the plau-
sible noun arguments for particular verb
predicates. For each argument noun, we
extract visual features from corresponding
images on the web. For each verb predi-
cate, we train a classifier to select the vi-
sual features that are indicative of its pre-
ferred arguments. We show that for certain
verbs, using visual information can signif-
icantly improve performance over a base-
line. For the successful cases, visual infor-
mation is useful even in the presence of co-
occurrence information derived from web-
scale text. We assess a variety of training
configurations, which vary over classes of
visual features, methods of image acquisi-
tion, and numbers of images.

1 Introduction

Selectional preferences quantify the plausibility
of predicate-argument pairs. We focus on pre-
dicting the plausibility of a noun argument (e.g.
pasta) occurring as the direct object of a verb
predicate (e.g. eat). Such knowledge is useful
since many NLP tasks require determining the ac-
tual argument from the alternatives that arise be-
cause of syntactic, semantic or anaphoric ambi-
guity. Previous uses of selectional preferences
include prepositional-phrase attachment (Hindle
and Rooth, 1993), word-sense disambiguation
(Resnik, 1997), pronoun resolution (Dagan and
Itai, 1990), and semantic role labeling (Erk, 2007).

The compatibility of a predicate and an argu-
ment can be quantified by counting how often they

occur together in a large text corpus (Hindle and
Rooth, 1993), but many plausible pairs are absent
even from web-scale text (Bergsma et al., 2008).
We therefore seek togeneralizefrom observed
pairs in order to make inferences for unseen com-
binations. Some approaches back off to counts
over argument classes (Resnik, 1996; Rooth et al.,
1999; Clark and Weir, 2002;́O Séaghdha, 2010;
Ritter et al., 2010), Others interpolate over simi-
lar words (Dagan et al., 1999; Erk, 2007). Text-
based approaches work best for arguments that are
frequentin text, but, paradoxically, frequent argu-
ments are the arguments for which generalization
is least needed. This provides motivation to look
beyond text in order to make better predictions for
infrequent or out-of-vocabulary arguments.

We propose usingvisual features to identify a
verb’s preferred arguments. Visual information
may play a role in the human acquisition of word
meaning (Feng and Lapata, 2010b). For com-
puters, there is a massive amount of visual data
to exploit. Billions of images are added to web-
sites like Facebook and Flickr every month. The
challenge of associating words and images is re-
duced because many users label their images as
they post them online, providing an explicit link
between a word and its visual depiction. Bergsma
and Van Durme (2011) used these explicit word-
image connections in order to find words in differ-
ent languages having the same meaning (transla-
tions); pairs of words are proposed as translations
if their visual depictions are visually similar.

In this paper, we use online images to help pre-
dict a predicate’s selectional preferences. For each
verb-noun pair,(v, n), we retrieve labeled images
of n from the web, and apply computer vision
techniques to extract visual features from the im-
ages. We then use the DSP model of Bergsma et
al. (2008) to combine the visual features collected
for n into a single plausibility score for(v, n). In
the original DSP model, each verb has a corre-
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Figure 1: Which out-of-vocabulary nouns are
plausible direct objects for the verbeat? Each row
corresponds to a noun: 1.migas, 2. zeolite, 3.
carillon, 4. ficus, 5. mameyand 6.manioc.

sponding classifier that scores noun arguments on
the basis of varioustextual features. We use this
discriminative framework to incorporate the visual
information as new,visual features.

Our experiments evaluate the ability of these
classifiers to correctly predict the selectional pref-
erences of a small set of verbs. We evaluate two
cases: 1) the case where the nouns are all as-
sumed to be out-of-vocabulary, and the classifiers
must make predictions without any corpus-based
co-occurrence information, and 2) the case where
we assume access to noun-verb co-occurrence in-
formation derived from web-scale N-gram data.

We show that visual features are useful for some
verbs, but not for others. For verbs taking abstract
arguments without definitive visual features, the
classifier can often learn to disregard the visual
data. On the other hand, for verbs takingphysi-
cal arguments (such as food, animals, or people),
the classifier can make accurate predictions using
the nouns’ visual properties. In these cases, visual
information remains useful even after incorporat-
ing the web-scale statistics.

2 Visual Selectional Preference

Consider determining whether the nounscarillon,
migasandmameyare plausible arguments for the

verb eat. Existing systems are unlikely to have
such words in their training data, let alone infor-
mation about their edibility. However, after in-
specting a few images returned by a Google search
for these words (Figure 1), a human might rea-
sonably predict which words are edible. Humans
make this determination by observing both intrin-
sic visual properties (pits, skins, rounded shapes
and fruity colors) and extrinsic visual context (cir-
cular plates, bowls, and other food-related tools)
(Oliva and Torralba, 2007).

We propose using similar information to pre-
dict the plausibility of arbitrary verb-noun pairs.
That is, we aim to learn the distinguishing vi-
sual features of all nouns that are plausible argu-
ments for a given verb. This differs from work
that has aimed to recognize, annotate and retrieve
objects defined by a single phrase, such astreeor
wrist watch(Feng and Lapata, 2010a). These ap-
proaches learn from labeled images during train-
ing in order to assign words to unlabeled images
during testing. In contrast, we analyze labeled im-
ages (during training and testing) in order to deter-
mine their visual compatibility with a given predi-
cate. Our approach does not need labeled training
images for aspecificnoun in order to assess that
noun during testing; e.g. we can make a reason-
able prediction for the plausibility ofeat mamey
even if we’ve never encounteredmameybefore.

We now specify how we automatically 1) down-
load a set of images for each noun, 2) extract vi-
sual features from each image, and 3) combine the
visual features from multiple images into plausi-
bility scores. Scripts, code and data are available
at: www.clsp.jhu.edu/∼sbergsma/ImageSP/.

2.1 Mining noun images from the web

To obtain a set of images for a particular noun ar-
gument, we submit the noun as a query to either
the Flickr photo-sharing website(www.flickr.
com), or Google’s image search(www.google.
com/imghp). In both cases, we download the
thumbnails on the results page directly rather than
downloading the source images. Flickr returns im-
ages by matching the query against user-provided
tags and accompanying text. Google retrieves im-
ages based on the image caption, file-name, and
surrounding text (Feng and Lapata, 2010a). Im-
ages obtained from Google are known to be com-
petitive with “hand prepared datasets” for training
object recognizers (Fergus et al., 2005).
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2.2 Extracting visual features from images

A range of features have been developed in the vi-
sion community, typically with the aim of improv-
ing content-based image retrieval (Deselaers et al.,
2008). We follow previous work in using features
in a bag-of-wordsrepresentation that ignores the
spacial relationship between image components.

Color Histogram Our first set of features are
extracted from the color histogram of the image.
We partition the color space by dividing the R, G,
and B values of the pixel colors into equal-sized
bins. For a given image, we count the number of
pixels that occur within each RGB bin. Each color
bin and its count is used as a feature dimension
and its value, respectively. We describe how we
choose the number of bins in Section 3.

SIFT Keypoints Additional features are derived
from the image’s SIFT (scale-invariant feature
transform) keypoints (Lowe, 2004).SIFT key-
points are detected at visually-distinct image loca-
tions. Each keypoint has a correspondingdescrip-
tor vectorthat identifies a location’s unique visual
properties.SIFT keypoints are conceptually simi-
lar to local features identified by so-calledcorner
detectors. Corner detectors find image locations
that have “large gradients in all directions at a pre-
determined scale” (Lowe, 2004). Unlike typical
corner detectors,SIFT keypoints are invariant to
scaling and rotation. They are also robust to illu-
mination, noise and distortion. We identifySIFT

keypoints using David Lowe’s software:www.cs.
ubc.ca/∼lowe/keypoints/. SIFT keypoints are
taken from images converted to grayscale.

Since each keypoint is itself a vector, we quan-
tize the keypoints by mapping them to a set of K
discrete visual words. This set of words forms the
visual vocabulary of our bag-of-words representa-
tion. The set of words is obtained by clustering a
random selection of keypoints into K cluster cen-
troids using the K-means algorithm. The final fea-
ture representation for an image consists of a fea-
ture dimension for each visual word; each feature
value is the number of keypoints in the image that
have that word as their nearest centroid.

We generate different clusterings (and thus dif-
ferent vocabularies) separately for each verb pred-
icate. For each verb, we randomly sample 500,000
keypoints from the set of downloaded images for
that verb’s potential argument nouns, and run the
clustering over these keypoints. Section 3 de-

scribes how we choose the number of clusters, K.

2.3 Combining features with the DSP model

We use DSP (Bergsma et al., 2008) to generate a
plausibility score for a verb-noun pair,(v, n). Let
Φ be a function that generates features for nouns,
Φ : n → (φ1...φk). We explain below how, for
eachn, we aggregate visual features across multi-
ple images to create features inΦ(n). DSP deter-
mines whethern is a plausible argument ofv by
scoringΦ(n) using a verb-specific set of learned
weights,wv=(w1...wk). The weights are trained
for eachv in order to distinguish the verb’s posi-
tive nouns from its negatives in training data (the
generation of training data is also explained be-
low). The weights can be learned using any bi-
nary classification algorithm; we use logistic re-
gression. At test time, we generate a final compat-
ibility score (prediction) via the logistic function:

Score(v, n) =
exp(wv · Φ(n))

1 + exp(wv · Φ(n))
(1)

Our discriminative model differs from a recent
generative model over words and visual features
by Feng and Lapata (2010b). In that work, includ-
ing visual features resulted in better topic clusters,
which indirectly improved (topic-derived) word-
word associations. In our work, visual features
are directly exploited by a discriminative model,
allowing us to use arbitrary and potentially inter-
dependent visual attributes in our representation.

Generating Examples We follow Bergsma et
al. (2008)’s approach by first calculating the point-
wise mutual information (PMI) between predicate
verbs and (direct object) argument nouns in a large
parsed corpus. For each verb predicate,v, we cre-
ate positive examples,(v, n), by pairing v with
all nouns,n, such thatv and n have a positive
PMI, i.e. PMI(v, n) > 0. For each of these
positives pairs (e.g.eat pasta), we generate two
pseudo-negative examples,(v, n′), by randomly
pairing v with some nounsn′ that either did not
occur with v (and hence PMI is undefined) or
have PMI(v, n′) ≤ 0 (e.g., eat distribution, eat
wheelchair). As in Bergsma et al. (2008), pseudo-
negativesn′ are chosen to have similar corpus fre-
quency to the original positive noun,n.

We use this approach to generate both training
examples for learning the DSP classifier and also
separate test examples for evaluating the model’s
predictions. We train and evaluate a classifier for
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eachv separately from all other verbs. For each
v, we take 85% of examples for training, 7.5% for
development, and 7.5% for final testing.

Generating Features The DSPmodel allows us
to use any information that might indicate a noun’s
compatibility with a verb; we simply encode this
information as features in the noun’s feature rep-
resentation,Φ(n). Bergsma et al. used DSP’s flex-
ibility to include novel string-based features of
the noun argument (e.g., the verbbecomeprefers
lower-case direct objects;accuseprefers capital-
ized ones). We augmentΦ(n) with visual features.

Since we download multiple images for each
noun, n, we have multiple color histograms and
multiple bags ofSIFT keypoints. To generate a sin-
gle feature representation,Φ(n), we first sum the
color andSIFT-keypoint feature vectors, respec-
tively, across all the images inn’s image set. We
then normalize each sum vector to unit length, and
include all of the resulting normalized features as
additional features inΦ(n).

In summary, we can produce a score for a(v, n)
pair at test time as follows: 1) select the appropri-
ate weights,wv, for verbv, 2) generate the com-
posite (normalized) feature vector,Φ(n), for noun
n, and 3) score the features with the weights using
the formula for Score(v, n) (Equation (1) above).
In practice, this score is exactly what is returned
by our logistic regression software package. We
can use this score directly, or, for hard classifica-
tions, predict positive if the returned probability is
greater than 0.5 and otherwise predict negative.

3 Experimental Set-up

Task and Data The task is to predict whether a
particular verb-noun pair, previously unseen dur-
ing training of the DSPclassifier, is a positive or a
negative example, as defined in Section 2.3 above.
We evaluate usingAccuracy: the proportion of ex-
amples correctly classified on test data. We calcu-
late significance usingMcNemar’s test.

Since the negatives are pseudo-negatives, this
kind of evaluation is also known as a pseudo-
disambiguation evaluation. While the set-up of
pseudo-disambiguation evaluations has varied in
NLP (Chambers and Jurafsky, 2010), we use an
identical set-up to Bergsma et al. (2008): we gen-
erate positive and negative examples for DSPfrom
a parsed and processed copy of the AQUAINT cor-
pus, and use the same PMI-threshold (i.e.0) and
positive-to-negative ratio (i.e.1:2).

We evaluate on nouns in the direct object po-
sition of seven verbs:eat, inform, hit, kill , park,
huntandshoot down. The total number of training
examples for these verbs varies from roughly 500
to 10,000 instances, while the number of test in-
stances varies from roughly 50 to 1000 instances.

We chose these seven verbs as test cases be-
cause we speculated they might benefit from vi-
sual information to different degrees (e.g. we ex-
pected indicative food-features foreat, but perhaps
less helpful human-features forinform, etc.). Ide-
ally one would like to automatically categorize all
the verbs for which visual features might be help-
ful, but it is natural to first demonstrate the bene-
fits of visual information in certain cases in order
to motivate further study. Importantly, note that
while we hand-selected a set of verb predicates,
our evaluation data is based on real observed ar-
guments of these predicates, and in particular not
on nouns for which we woulda priori expect vi-
sual information to be predictive. Our evaluation
is thus focused, but realistic.

Classifier In all cases, we use an L2-regularized
logistic regression model for DSP’s base classifier,
and train it viaLIBLINEAR (Fan et al., 2008). We
optimize the regularization parameter on the de-
velopment data.

Visual Features For each noun,1 we take the
first six images returned from both Google and
Flickr, and extract the corresponding visual fea-
tures as described above. While we later discov-
ered that the more images we have, the better
the results (Figure 2), we initially decided to use
only six images mainly for computational reasons;
downloading and processing images is space and
time-intensive.

Rather than selecting fixed values for the size of
the color bins and the number ofSIFT centroids,
we take advantage of our model’s flexibility to use
features over different granularities: we use sepa-
rate features with both 64 and 512 color bins, and
with both 100 and 1000SIFT centroids. The flexi-
bility to include visual information at different lev-
els of granularity is one of the chief advantages of
the discriminative model.

Test Configurations We are primarily inter-
ested in whether visual information can lead to

1For a given verb in our corpus, DSP actually pro-
vides plausibility scores for both nouns and multi-word noun
phrases; we refer to both of these as ‘nouns’ for convenience.
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System eat inform hit kill park hunt shoot down Average
Baseline 68.3 68.0 68.7 67.7 69.9 67.6 70.0 68.6
+ Visual Features via Flickr 75.8 68.0 68.8 67.2 69.9 69.6 70.0 69.9
+ Visual Features via Google79.5 68.2 68.7 68.5 69.9 76.5 72.0 71.9

Table 1: Using visual features from Google significantly improves accuracy (%) over the baseline system
on eat (p<0.001),kill (p<0.1) andhunt (p<0.1).

better predictions on out-of-vocabulary (OOV)
nouns, but obtaining a sufficiently-large test set of
labeled OOV instances is difficult. We therefore
first provide results onsimulatedOOV arguments
(Section 4.1), where we assume no corpus-based
knowledge is available to the DSP classifier. That
is, we initially exclude corpus-based features from
our models. We compare visual models to ones
that only use features for the noun string (such
features are always available). Our string features
are binary features that indicate the ‘shape’ of the
noun via the regular expression maps: [A-Z]+→
A, and [a-z]+→ a. E.g.,Al Unser Jr.will have the
one feature ‘Aa Aa Aa.’.

In the second part of our results (Section 4.2),
we test whether visual information can help even
in the presence of high-quality corpus-based fea-
tures. We use Keller and Lapata (2003)’s approach
to obtain web-scale co-occurrence frequencies for
the verb-noun pair. That is, we retrieve counts for
the pattern “V Det N” from a web-scale Google
N-gram corpus (Lin et al., 2010). Here,V is any
inflection of the verb,Det is the, a, an, or the
empty string, andN is the noun. We include the
log-count of this pattern as a feature, and also in-
clude separate features for the log-counts of the
noun and verb themselves. By multiplying these
features by appropriate weights, a classifier can
generate a (web-based) PMI score.

4 Results

4.1 Results on OOV nouns

We now compare the use of visual features to
string-based features alone (Baseline), simulat-
ing out-of-vocabulary arguments by assuming no
corpus-based knowledge is available for the noun
features. For these verbs, we actually found the
Baseline with only string features to be no better
than picking the majority-class.

Visual features significantly improve perfor-
mance for 3 of the verbs (Table 1). Visual fea-
tures do not improve (but also do not impair) ac-
curacy on the verbs that have mostly abstract or
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Figure 2: The more images, the more accurate:
Performance on the verbseatandhuntas features
are extracted from a varying number of images.

general arguments. For example, one can “hit tur-
bulence,” “ hit record,” or “ hit the slopes,” but there
are no visual features that can help select these
nouns. Macro-averaged accuracy across all verbs
increases from a baseline of 68.6% to 71.9% using
Google-derived visual features.

The features obtained from Google images per-
form better than features from Flickr (Table 1). In-
specting the retrieved image sets, we observe that
compared to Flickr, Google tends to retrieve more
consistent, more canonical images for a particular
noun. For example, Google’s top results for the
query “buffalo” are exclusively images of buffalo
animals. On Flickr, “buffalo” returns images of
the city of Buffalo, buffalo hides, and pictures of
buffalo animals alongside people, cars, birds, etc.
For our purposes, the consistency of the Google
images is better; it makes learning and predicting
easier for the visual classifier.

We provide further analysis using Google im-
ages only. Figure 2 shows that, as we use more im-
ages, accuracy on the verbseatandhunt improves
and is not yet leveling off. With computation only
linear in the number of images, adding even more
images is one possible way to improve accuracy.

Table 2 shows the contribution of the two visual
feature types for classifying arguments involving
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Features Accuracy
All Features 79.5
-Color Histogram 78.4
-SIFT Keypoint 78.1
-Color & -SIFT 68.3

Table 2: Accuracy oneat as different feature
classes are removed.
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Figure 3: Visual selectional preference correlates
well with human judgments: arguments of the
verb eat are plotted using visual and average hu-
man compatibility scores.

the verbeat. Either visual feature type helps a lot
on its own; together they further improve accuracy.

We also tried replacing our logistic classifier
with kernelized SVMs, which have previously
proved useful for object recognition (Chapelle et
al., 1999). While kernel-SVMs can implicitly con-
sider all combinations of features (resulting in the
encoding of richer visual information), we found
the resulting gains over linear classifiers to be min-
imal. The kernelized SVMs also took much longer
to train and apply. The further development of ef-
fective while still efficient visual features remains
an important direction for future work.

Figure 3 compares the scores of the visual
system (computed via Equation (1)) to human
plausibility judgments (described by Padó et al.
(2006)).2 The human scores are the average judg-
ments for the question, “how common is it toeat
X?” where X is a given noun. Participants re-
sponded with scores from 1 (very uncommon) to
7 (very common). These average judgments have
a high correlation with our predicted scores; the

2Available online at http://www.nlpado.de/
∼ulrike/data/pado plausibility.tgz

System eat kill hunt

Baseline 68.3 67.7 67.6
+ Visual Features alone 79.5 68.5 76.5
+ Web Co-occ alone 85.1 74.0 76.5
+ Web Co-occ & Visual 85.7 74.3 78.4

Table 3: Visual features improve accuracy (%)
even when web co-occurrence information is used.

Pearson correlation coefficient is 0.803. The vi-
sual system does a good job on the nounsegg,
meal, pizzaandapple, but ranksdebt above (the
somewhat abstract)lunch. Looking at the Google
images forlunch, we note that clearer pictures of
food occur beyond the top 6 images, and hence us-
ing more images would likely improve scoring.

Finally, we note that foreat, we found the visual
system’s accuracy was consistent across nouns of
different frequencies. This contrasts with systems
using text-based features; these perform much bet-
ter on more frequent nouns (Bergsma et al., 2008).

4.2 Results with web-scale statistics

We have shown that visual information can result
in significantly improved performance in cases
where no corpus-based information is available.
Do these gains hold up when high-quality corpus-
based information is available?

On those verbs where visual information helped
in the OOV setting, visual information remains
helpful even with features encoding web-scale co-
occurrence statistics (Table 3).3 Note the gains
from adding visual features are consistent in all
three cases, but not statistically significant, as the
proportion of nouns where the visual features can
help is now much smaller.

These final results are somewhat sobering. Vi-
sual information is not helpful for every verb, and
even in the positive cases, it is not very helpful
when combined with existing text-based features.
However, the exploitation of visual information is
still in its infancy in NLP. Using search engines to
obtain images for NLP today is perhaps similar to
how search engines were also used to obtain web-
scaletext statistics for NLP a decade ago. While
we leveraged a relatively small number of visual
features from a relatively small number of images,

3Not surprisingly, on the verbs where visual features were
not effective earlier, visual features remains ineffective here;
these features tend to actually impair performance when
added to the web-scale co-occurrence features.
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future advances in computer vision and large-scale
data processing will allow richer visual informa-
tion to be extracted and applied to NLP problems.

5 Conclusion

We have shown that it is possible to predict verb-
noun selectional preference purely on the basis of
visual information. For a given noun, web images
are downloaded, processed, and then analyzed by
classifiers corresponding to different verbs. Each
verb classifier is trained to identify the visual
properties that distinguish the verb’s preferred ar-
guments. Statistically-significant improvements
were obtained on three verbs and visual data re-
mains helpful even in the presence of high-quality
web-scale co-occurrence information.

These results give us a good basis for mov-
ing forward. We know where we should get our
images (Google), which features are useful (both
color andSIFT) and how many images to use (as
many as possible). It remains to be seen which
other predicates, which other predicate-argument
relationships, and which other NLP problems can
benefit from visual information.
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D. Ó Séaghdha. 2010. Latent variable models of se-
lectional preference. InProc. ACL, pages 435–444.

A. Oliva and A. Torralba. 2007. The role of context
in object recognition.Trends in Cognitive Sciences,
11(12):520–527.
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