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Abstract

We present a joint model of three core tasks
in the entity analysis stack: coreference res-
olution (within-document clustering), named
entity recognition (coarse semantic typing),
and entity linking (matching to Wikipedia en-
tities). Our model is formally a structured con-
ditional random field. Unary factors encode
local features from strong baselines for each
task. We then add binary and ternary factors
to capture cross-task interactions, such as the
constraint that coreferent mentions have the
same semantic type. On the ACE 2005 and
OntoNotes datasets, we achieve state-of-the-
art results for all three tasks. Moreover, joint
modeling improves performance on each task
over strong independent baselines.1

1 Introduction

How do we characterize the collection of entities
present in a document? Two broad threads exist
in the literature. The first is coreference resolution
(Soon et al., 2001; Ng, 2010; Pradhan et al., 2011),
which identifies clusters of mentions in a document
referring to the same entity. This process gives us ac-
cess to useful information about the referents of pro-
nouns and nominal expressions, but because clusters
are local to each document, it is often hard to situate
document entities in a broader context. A separate
line of work has considered the problem of entity
linking or “Wikification” (Cucerzan, 2007; Milne
and Witten, 2008; Ji and Grishman, 2011), where
mentions are linked to entries in a given knowledge

1System available at http://nlp.cs.berkeley.edu

base. This is useful for grounding proper entities,
but in the absence of coreference gives an incom-
plete picture of document content itself, in that nom-
inal expressions and pronouns are left unresolved.

In this paper, we describe a joint model of corefer-
ence, entity linking, and semantic typing (named en-
tity recognition) using a structured conditional ran-
dom field. Variables in the model capture deci-
sions about antecedence, semantic type, and entity
links for each mention. Unary factors on these vari-
ables incorporate features that are commonly em-
ployed when solving each task in isolation. Bi-
nary and higher-order factors capture interactions
between pairs of tasks. For entity linking and NER,
factors capture a mapping between NER’s seman-
tic types and Wikipedia’s semantics as described by
infoboxes, categories, and article text. Coreference
interacts with the other tasks in a more complex
way, via factors that softly encourage consistency of
semantic types and entity links across coreference
arcs, similar to the method of Durrett et al. (2013).
Figure 1 shows an example of the effects such fac-
tors can capture. The non-locality of coreference
factors make exact inference intractable, but we find
that belief propagation is a suitable approximation
technique and performs well.

Our joint modeling of these three tasks is moti-
vated by their heavy interdependencies, which have
been noted in previous work (discussed more in
Section 7). Entity linking has been employed for
coreference resolution (Ponzetto and Strube, 2006;
Rahman and Ng, 2011; Ratinov and Roth, 2012)
and coreference for entity linking (Cheng and Roth,
2013) as part of pipelined systems. Past work has
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Revenues of $14.5 billion were posted by Dell1. The company1 ...

en.wikipedia.org/wiki/Dell

en.wikipedia.org/wiki/Michael_Dell

Infobox type: company

Infobox type: person

ORGANIZATION
PERSON

Figure 1: Coreference can help resolve ambiguous cases
of semantic types or entity links: propagating information
across coreference arcs can inform us that, in this context,
Dell is an organization and should therefore link to the
article on Dell in Wikipedia.

shown that tighter integration of coreference and
entity linking is promising (Hajishirzi et al., 2013;
Zheng et al., 2013); we extend these approaches and
model the entire process more holistically. Named
entity recognition is improved by simple coreference
(Finkel et al., 2005; Ratinov and Roth, 2009) and
knowledge from Wikipedia (Kazama and Torisawa,
2007; Ratinov and Roth, 2009; Nothman et al.,
2013; Sil and Yates, 2013). Joint models of corefer-
ence and NER have been proposed in Haghighi and
Klein (2010) and Durrett et al. (2013), but in neither
case was supervised data used for both tasks. Tech-
nically, our model is most closely related to that of
Singh et al. (2013), who handle coreference, named
entity recognition, and relation extraction.2 Our sys-
tem is novel in three ways: the choice of tasks to
model jointly, the fact that we maintain uncertainty
about all decisions throughout inference (rather than
using a greedy approach), and the feature sets we
deploy for cross-task interactions.

In designing a joint model, we would like to
preserve the modularity, efficiency, and structural
simplicity of pipelined approaches. Our model’s
feature-based structure permits improvement of fea-
tures specific to a particular task or to a pair of tasks.
By pruning variable domains with a coarse model
and using approximate inference via belief propaga-
tion, we maintain efficiency and our model is only a
factor of two slower than the union of the individual

2Our model could potentially be extended to handle relation
extraction or mention detection, which has also been addressed
in past joint modeling efforts (Daumé and Marcu, 2005; Li and
Ji, 2014), but that is outside the scope of the current work.

models. Finally, as a structured CRF, it is concep-
tually no more complex than its component models
and its behavior can be understood using the same
intuition.

We apply our model to two datasets, ACE 2005
and OntoNotes, with different mention standards
and layers of annotation. In both settings, our joint
model outperforms our independent baseline mod-
els. On ACE, we achieve state-of-the-art entity link-
ing results, matching the performance of the system
of Fahrni and Strube (2014). On OntoNotes, we
match the performance of the best published coref-
erence system (Björkelund and Kuhn, 2014) and
outperform two strong NER systems (Ratinov and
Roth, 2009; Passos et al., 2014).

2 Motivating Examples

We first present two examples to motivate our ap-
proach. Figure 1 shows an example of a case where
coreference is beneficial for named entity recogni-
tion and entity linking. The company is clearly
coreferent to Dell by virtue of the lack of other possi-
ble antecedents; this in turn indicates that Dell refers
to the corporation rather than to Michael Dell. This
effect can be captured for entity linking by a fea-
ture tying the lexical item company to the fact that
COMPANY is in the Wikipedia infobox for Dell,3

thereby helping the linker make the correct decision.
This would also be important for recovering the fact
that the mention the company links to Dell; how-
ever, in the version of the task we consider, a men-
tion like the company actually links to the Wikipedia
article for Company.4

Figure 2 shows a different example, one where
the coreference is now ambiguous but entity linking
is transparent. In this case, an NER system based
on surface statistics alone would likely predict that
Freddie Mac is a PERSON. However, the Wikipedia
article for Freddie Mac is unambiguous, which al-
lows us to fix this error. The pronoun his can then be
correctly resolved.

These examples justify why these tasks should be
handled jointly: there is no obvious pipeline order
for a system designer who cares about the perfor-

3Monospaced fonts indicate titles of Wikipedia articles.
4This decision was largely driven by a need to match the

ACE linking annotations provided by Bentivogli et al. (2010).
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ORGANIZATION
PERSON

Donald Layton1 took the helm of Freddie Mac2 after his1 ...

NIL

en.wikipedia.org/wiki/Freddie_Mac

PERSON

Figure 2: Entity links can help resolve ambiguous cases
of coreference and entity types. Standard NER and
coreference systems might fail to handle Freddie Mac
correctly, but incorporating semantic information from
Wikipedia makes this decision easier.

mance of the model on all three tasks.

3 Model

Our model is a structured conditional random field
(Lafferty et al., 2001). The input (conditioning con-
text) is the text of a document, automatic parses,
and a set of pre-extracted mentions (spans of text).
Mentions are allowed to overlap or nest: our model
makes no structural assumptions here, and in fact we
will show results on datasets with two different men-
tion annotation standards (see Section 6.1 and Sec-
tion 6.3).

Figure 3 shows the random variables in our
model. We are trying to predict three distinct types
of annotation, so we naturally have one variable per
annotation type per mention (of which there are n):

• Coreference variables a = (a1, . . . , an) which
indicate antecedents: ai ∈ {1, . . . , i−1, NEW},
indicating that the mention refers to some pre-
vious mention or that it begins a new cluster.

• Named entity type variables t = (t1, . . . , tn)
which take values in a fixed inventory of se-
mantic types.5

• Entity link variables e = (e1, . . . , en) which
take values in the set of all Wikipedia titles.

In addition we have variables q = (q1, . . . , qn)
which represent queries to Wikipedia. These are ex-
plained further in Section 3.1.3; for now, it suffices

5For the next few sections, we assume a fixed-mention ver-
sion of the NER task, which looks like multi-way classification
of semantic types. In Section 6.3.1, we adapt the model to the
standard non-fixed-mention setting for OntoNotes.

}

Dell posted revenues ... The company ...

}

Dell
Michael_Dell
...

NEW CLUSTER
DellNEW CLUSTER

} Company
Company (song)
...

}

}PERSON
ORGANIZATION
...

}PERSON
ORGANIZATION
...

}the company
company
Company

}Dell
dell

N
ER
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f
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q1 q2

e2e1

a1 a2

t1 t2

Figure 3: Random variables and task-specific factors
present in our model. The ai model coreference an-
tecedents, the ti model semantic types, the ei model en-
tity links, and the qi are latent Wikipedia queries. Factors
shown for each task integrate baseline features used when
that task is handled in isolation. Coreference factors are
described in Section 3.1.1, NER factors are described in
Section 3.1.2, and entity linking factors are described in
Section 3.1.3.

to remark that they are unobserved during both train-
ing and testing.

We place a log-linear probability distribution over
these variables as follows:

p(a, t, e|x; θ) ∝
∑

q

exp
(
θ>f(a, t, e,q, x)

)

where θ is a weight vector, f is a feature function,
and x indicates the document text, automatic parses,
and mention boundaries.

We represent the features in this model with stan-
dard factor graph notation; features over a particular
set of output variables (and x) are associated with
factors connected to those variables. Figure 3 shows
the task-specific factors in the model, discussed next
in Section 3.1. Higher-order factors coupling vari-
ables between tasks are discussed in Section 3.2.

3.1 Independent Model
Figure 3 shows a version of the model with
only task-specific factors. Though this framework
is structurally simple, it is nevertheless powerful
enough for us to implement high-performing models
for each task. State-of-the-art approaches to coref-
erence (Durrett and Klein, 2013) and entity linking
(Ratinov et al., 2011) already have this independent
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structure and Ratinov and Roth (2009) note that it is
a reasonable assumption to make for NER as well.6

In this section, we describe the features present in
the task-specific factors of each type (which also
serve as our three separate baseline systems).

3.1.1 Coreference

Our modeling of the coreference output space
(as antecedents chosen for each mention) follows
the mention-ranking approach to coreference (De-
nis and Baldridge, 2008; Durrett and Klein, 2013).
Our feature set is that of Durrett and Klein, target-
ing surface properties of mentions: for each men-
tion, we examine the first word, head word, last
word, context words, the mention’s length, and
whether the mention is nominal, proper or pronom-
inal. Anaphoricity features examine each of these
properties in turn; coreference features conjoin var-
ious properties between mention pairs and also use
properties of the mention pair itself, such as the dis-
tance between the mentions and whether their heads
match. Note that this baseline does not rely on hav-
ing access to named entity chunks.

3.1.2 Named Entity Recognition

Our NER model places a distribution over possi-
ble semantic types for each mention, which corre-
sponds to a fixed span of the input text. We define
the features of a span to be the concatenation of stan-
dard NER surface features associated with each to-
ken in that chunk. We use surface token features
similar to those from previous work (Zhang and
Johnson, 2003; Ratinov and Roth, 2009; Passos et
al., 2014): for tokens at offsets of {−2,−1, 0, 1, 2}
from the current token, we fire features based on 1)
word identity, 2) POS tag, 3) word class (based on
capitalization, presence of numbers, suffixes, etc.),
4) word shape (based on the pattern of uppercase and
lowercase letters, digits, and punctuation), 5) Brown
cluster prefixes of length 4, 6, 10, 20 using the clus-
ters from Koo et al. (2008), and 6) common bigrams
of word shape and word identity.

6Pairwise potentials in sequence-based NER are useful for
producing coherent output (e.g. prohibiting configurations like
O I-PER), but since we have so far defined the task as operating
over fixed mentions, this structural constraint does not come
into play for our system.

3.1.3 Entity Linking

Our entity linking system diverges more sub-
stantially from past work than the coreference or
NER systems. Most entity linking systems oper-
ate in two distinct phases (Cucerzan, 2007; Milne
and Witten, 2008; Dredze et al., 2010; Ratinov
et al., 2011). First, in the candidate generation
phase, a system generates a ranked set of possi-
ble candidates for a given mention by querying
Wikipedia. The standard approach for doing so is
to collect all hyperlinks in Wikipedia and associate
each hyperlinked span of text (e.g. Michael Jor-
dan) with a distribution over titles of Wikipedia ar-
ticles it is observed to link to (Michael Jordan,
Michael I. Jordan, etc.). Second, in the dis-
ambiguation phase, a learned model selects the cor-
rect candidate from the set of possibilities.

As noted by Hachey et al. (2013) and Guo et al.
(2013), candidate generation is often overlooked and
yet accounts for large gaps in performance between
different systems. It is not always clear how to best
turn the text of a mention into a query for our set
of hyperlinks. For example, the phrase Chief Exec-
utive Michael Dell has never been hyperlinked on
Wikipedia. If we query the substring Michael Dell,
the highest-ranked title is correct; however, querying
the substring Dell returns the article on the company.

Our model for entity linking therefore includes
both predictions of final Wikipedia titles ei as well
as latent query variables qi that model the choice of
query. Given a mention, possible queries are all pre-
fixes of the mention containing the head with op-
tional truecasing or lemmatization applied. Unary
factors on the qi model the appropriateness of a
query based on surface text of the mention, in-
vestigating the following properties: whether the
mention is proper or nominal, whether the query
employed truecasing or lemmatization, the query’s
length, the POS tag sequence within the query and
the tag immediately preceding it, and whether the
query is the longest query to yield a nonempty set of
candidates for the mention. This part of the model
can learn, for example, that queries based on lemma-
tized proper names are bad, whereas queries based
on lemmatized common nouns are good.

Our set of candidates links for a mention is the
set of all titles produced by some query. The bi-
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Figure 4: Factors that tie predictions between variables
across tasks. Joint NER and entity linking factors (Sec-
tion 3.2.1) tie semantic information from Wikipedia ar-
ticles to semantic type predictions. Joint coreference
and NER factors (Section 3.2.2) couple type decisions
between mentions, encouraging consistent type assign-
ments within an entity. Joint coreference and entity link-
ing factors (Section 3.2.3) encourage relatedness between
articles linked from coreferent mentions.

nary factors connecting qi and ei then decide which
title a given query should yield. These include:
the rank of the article title among all possible ti-
tles returned by that query (sorted by relative fre-
quency count), whether the title is a close string
match of the query, and whether the title matches
the query up to a parenthetical (e.g. Paul Allen and
Paul Allen (editor)).

We could also at this point add factors between
pairs of variables (ei, ej) to capture coherence be-
tween choices of linked entities. Integration with the
rest of the model, learning, and inference would re-
main unchanged. However, while such features have
been employed in past entity linking systems (Rati-
nov et al., 2011; Hoffart et al., 2011), Ratinov et
al. found them to be of limited utility, so we omit
them from the present work.

3.2 Cross-task Interaction Factors
We now add factors that tie the predictions of multi-
ple output variables in a feature-based way. Figure 4
shows the general structure of these factors. Each

couples variables from one pair of tasks.

3.2.1 Entity Linking and NER
We want to exploit the semantic information in

Wikipedia for better semantic typing of mentions.
We also want to use semantic types to disambiguate
tricky Wikipedia links. We use three sources of
semantics from Wikipedia (Kazama and Torisawa,
2007; Nothman et al., 2013):

• Categories (e.g. American financiers);
used by Ponzetto and Strube (2006; Kazama
and Torisawa (2007; Ratinov and Roth (2012)

• Infobox type (e.g. Person, Company)

• Copula in the first sentence (is a British
politician); used for coreference previously in
Haghighi and Klein (2009)

We fire features that conjoin the information from
the selected Wikipedia article with the selected NER
type. Because these types of information from
Wikipedia are of a moderate granularity, we should
be able to learn a mapping between them and NER
types and exploit Wikipedia as a soft gazetteer.

3.2.2 Coreference and NER
Coreference can improve NER by ensuring con-

sistent semantic type predictions across coreferent
mentions; likewise, NER can help coreference by
encouraging the system to link up mentions of the
same type. The factors we implement for these pur-
poses closely resemble the factors employed for la-
tent semantic clusters in Durrett et al. (2013). That
structure is as follows:

logFi−j(ai, ti, tj) =

{
0 if ai 6= j

f(i, j, ti, tj) otherwise

That is, the features between the type variables for
mentions i and j does not come into play unless i
and j are coreferent. Note that there are quadrati-
cally many such factors in the graph (before prun-
ing; see Section 5), one for each ordered pair of
mentions (j, i) with j < i. When scoring a partic-
ular configuration of variables, only a small subset
of the factors is active, but during inference when
we marginalize over all settings of variables, each of
the factors comes into play for some configuration.
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This model structure allows us to maintain uncer-
tainty about coreference decisions but still propagate
information along coreference arcs in a soft way.

Given this factor definition, we define features
that should fire over coreferent pairs of entity types.
Our features target:

• The pair of semantic types for the current and
antecedent mention

• The semantic type of the current mention and
the head of the antecedent mention, and the
type of the antecedent and head of the current

We found such monolexical features to improve over
just type pairs and while not suffering from the spar-
sity problems of bilexical features.

3.2.3 Coreference and Entity Linking
As we said in Section 2, coreferent mentions can

actually have different entity links (e.g. Dell and
Company), so encouraging equality alone is less ef-
fective for entity linking than it is for NER. Our fac-
tors have the same structure as those for coreference-
NER, but features now target overall semantic relat-
edness of Wikipedia articles using the structure of
Wikipedia by computing whether the articles have
the same title, share any out links, or link to each
other. More complex relatedness schemes such as
those described in Ratinov et al. (2011) can be im-
plemented in this framework. Nevertheless, these
basic features still promise to help identify related
articles as well as name variations by exploiting the
abundance of entity mentions on Wikipedia.

4 Learning

Our training data consists of d documents, where a
given document consists of a tuple (x,C∗, t∗, e∗).
Gold-standard labels for types (t∗) and entity links
(e∗) are provided directly, while supervision for
coreference is provided in the form of a clustering
C∗. Regardless, we can simply marginalize over the
uncertainty about a∗ and form the conditional log-
likelihood of the training labels as follows:

L(θ) =

d∑

i=1

log
∑

a∗∈A(C∗
i )

p(a∗, t∗i , e
∗
i |x; θ)

whereA(C∗) is the set of antecedent structures con-
sistent with the gold annotation: the first mention in

a cluster must pick the NEW label and subsequent
mentions must pick an antecedent from the set of
those preceding them in the cluster. This marginal-
ization over latent structure has been employed in
prior work as well (Fernandes et al., 2012; Durrett
and Klein, 2013).

We adapt this objective to exploit parameterized
loss functions for each task by modifying the distri-
bution as follows:

p′(a, t, e|x; θ) ∝ p(a, t, e, x) exp [αc`c(a, C
∗)

+αt`t(t, t
∗) + αe`e(e, e

∗)]

where `c, `t, and `e are task-specific loss functions
with weight parameters α. This technique, softmax-
margin, allows us to shape the distribution learned
by the model and encourage the model to move
probability mass away from outputs that are bad ac-
cording to our loss functions (Gimpel and Smith,
2010). As in Durrett and Klein (2013), we take
αc = 1 and use `c as defined there, penalizing the
model by αc,FA = 0.1 for linking up a mention that
should have been nonanaphoric, by αc,FN = 3 for
calling nonanaphoric a mention that should have an
antecedent, and by αc,WL = 1 for picking the wrong
antecedent for an anaphoric mention. `t and `e are
simply Hamming distance, with αt = 3 and αe = 0
for all experiments. We found that the outcome of
learning was not particularly sensitive to these pa-
rameters.7

We optimize our objective using AdaGrad (Duchi
et al., 2011) with L1 regularization and λ = 0.001.
Our final objective is

L(θ) =

d∑

i=1

log
∑

a∗∈A(C∗
i )

p′(a∗, t∗i , e
∗
i |x; θ)+λ‖θ‖1

This objective is nonconvex, but in practice we have
found that it is very stable. One reason is that for
any mention that has fewer than two antecedents in
its cluster, all elements of A(C∗) only contain one
possibility for that mention, and even for mentions
with ambiguity, the parameters that the model ends
up learning tend to place almost all of the probability
mass consistently on one antecedent.

7These parameters allow us to trade off contributions to
the objective from the different tasks, addressing Singh et al.
(2013)’s objection to single objectives for joint models.
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Dev Test
MUC B3 CEAFe Avg. NER Link MUC B3 CEAFe Avg. NER Link

INDEP. 77.95 74.81 71.84 74.87 83.04 73.07 81.03 74.89 72.56 76.16 82.35 74.71
JOINT 79.41 75.56 73.34 76.10 85.94 75.69 81.41 74.70 72.93 76.35 85.60 76.78

∆ +1.46 +0.75 +1.50 +1.23 +2.90 +2.62 +0.42 −0.19 +0.37 +0.19 +3.25 +2.07

Table 1: Results on the ACE 2005 dev and test sets for the INDEP. (task-specific factors only) and JOINT models.
Coreference metrics are computed using their reference implementations (Pradhan et al., 2014). We report accuracy
on NER because the set of mentions is fixed and all mentions have named entity types. Coreference and NER are
compared to prior work in a more standard setting in Section 6.3. Finally, we also report accuracy of our entity linker
(including links to NIL); entity linking is analyzed more thoroughly in Table 2. Bolded values represent statistically
significant improvements with p < 0.05 according to a bootstrap resampling test.

5 Inference

For both learning and decoding, inference consists
of computing marginals for individual variables or
for sets of variables adjacent to a factor. Exact infer-
ence is intractabile due to our factor graph’s loopi-
ness; however, we can still perform efficient infer-
ence using belief propagation, which has been suc-
cessfully employed for a similar model (Durrett et
al., 2013) as well as for other NLP tasks (Smith and
Eisner, 2008; Burkett and Klein, 2012). Marginals
typically converge in 3-5 iterations of belief propa-
gation; we use 5 iterations for all experiments.

However, belief propagation would still be quite
computationally expensive if run on the full fac-
tor graph as described in Section 3. In particu-
lar, the factors in Section 3.2.2 and Section 3.2.3
are costly to sum over due to their ternary struc-
ture and the fact that there are quadratically many
of them in the number of mentions. The solu-
tion to this is to prune the domains of the corefer-
ence variables using a coarse model consisting of
the coreference factors trained in isolation. Given
marginals p0(ai|x), we prune values ai such that
log p0(ai|x) < log p0(a

∗
i |x) − k for a threshold pa-

rameter k, which we set to 5 for our experiments;
this is sufficient to prune over 90% of possible coref-
erence arcs while leaving at least one possible gold
link for 98% of mentions.8 With this optimization,
our full joint model could be trained for 20 iterations
on the ACE 2005 corpus in around an hour.

We use minimum Bayes risk (MBR) decoding,

8In addition to inferential benefits, pruning an arc allows us
to prune entire joint coreference factors and avoid instantiating
their associated features, which reduces the memory footprint
and time needed to build a factor graph.

where we compute marginals for each variable un-
der the full model and independently return the most
likely setting of each variable. Note that for coref-
erence, this implies that we produce the MBR an-
tecedent structure rather than the MBR clustering;
the latter is much more computationally difficult to
find and would be largely the same, since the poste-
rior distributions of the ai are quite peaked.

6 Experiments

We present results on two corpora. First, we use the
ACE 2005 corpus (NIST, 2005): this corpus anno-
tates mentions complete with coreference, semantic
types (per mention), and entity links (also per men-
tion) later added by Bentivogli et al. (2010). We
evaluate on gold mentions in this setting for com-
parability with prior work on entity linking; we lift
this restriction in Section 6.3.

Second, we evaluate on the OntoNotes 5 corpus
(Hovy et al., 2006) as used in the CoNLL 2012
coreference shared task (Pradhan et al., 2012). This
corpus does not contain gold-standard entity links,
so we cannot evaluate this portion of our model,
though the model still exploits the information from
Wikipedia to make coreference and named entity de-
cisions. We will compare to prior coreference and
named entity work in the system mentions setting.

6.1 ACE Evaluation

We tokenize and sentence-split the ACE dataset us-
ing the tools bundled with Reconcile (Stoyanov et
al., 2010) and parse it using the Berkeley Parser
(Petrov et al., 2006). We use the train/test split from
Stoyanov et al. (2009), Haghighi and Klein (2010),
and Bansal and Klein (2012).
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Non-NILS NILS

Prec. Rec. F1 Prec. Rec. F1 Accuracy
FAHRNI 81.15 78.10 79.60 41.25 61.10 49.25 76.87
INDEP. 80.26 76.30 78.23 33.39 54.47 41.40 74.71
JOINT 83.26 77.67 80.37 35.19 65.42 45.77 76.78

∆ over INDEP. +3.00 +1.37 +2.14 +1.80 +10.95 +3.37 +2.07

Table 2: Detailed entity linking results on the ACE 2005 test set. We evaluate both our INDEP. (task-specific factors
only) and JOINT models and compare to the results of the FAHRNI model, a state-of-the-art entity linking system. We
compare overall accuracy as well as performance at predicting NILS (mentions not in the knowledge base) and non-
NILS. The JOINT model roughly matches the performance of FAHRNI and gives strong gains over the INDEP. system.

Table 1 shows our results. Coreference results are
reported using MUC (Vilain et al., 1995),B3 (Bagga
and Baldwin, 1998), and CEAFe (Luo, 2005), as
well as their average, the CoNLL metric, all com-
puted from the reference implementation of the
CoNLL scorer (Pradhan et al., 2014). We see that
the joint model improves all three tasks compared to
the individual task models in the baseline.

More in-depth entity linking results are shown in
Table 2. We both evaluate on overall accuracy (how
many mentions are correctly linked) as well as two
more specific criteria: precision/recall/F1 of non-
NIL9 predictions, and precision/recall/F1 of NIL pre-
dictions. This latter measure may be important if a
system designer is trying to identify new entities in
a document. We compare to the results of the best
model from Fahrni and Strube (2014), which is a
sophisticated discriminative model incorporating a
latent model of mention scope.10

Our performance is similar to that of Fahrni and
Strube (2014), though the results are not exactly
comparable for two reasons. First, our models are
trained on different datasets: Fahrni and Strube
(2014) train on Wikipedia data whereas we train on
the ACE training set. Second, they make use of the
annotated head spans in ACE whereas we only use
detected heads based on automatic parses. Note that
this information is particularly beneficial for locat-
ing the right query because “heads” may be multi-
word expressions such as West Bank as part of the
phrase southern West Bank.

9NIL is a placeholder for mentions which do not link to an
article in Wikipedia.

10On the TAC datasets, this FAHRNI model substantially out-
performs Ratinov et al. (2011) and has comparable performance
to Cheng and Roth (2013), hence it is quite competitive.

Coref NER Link
INDEP. 74.87 83.04 73.07

INDEP+LINKNER +1.85 +2.41
INDEP+COREFNER +0.56 +1.15
INDEP+COREFLINK +0.48 −0.16

JOINT−LINKNER +0.79 +1.28 −0.06
JOINT−COREFNER +0.56 +1.94 +2.07
JOINT−COREFLINK +0.85 +2.68 +2.57

JOINT +1.23 +2.90 +2.62
JOINT/LATENTLINK +1.26 +3.47 −18.8

Table 3: Results of model ablations on the ACE devel-
opment set. We hold out each type of factor in turn
from the JOINT model and add each in turn over the IN-
DEP. model. We evaluate the coreference performance
using the CoNLL metric, NER accuracy, and entity link-
ing accuracy.

6.2 Model Ablations

To evaluate the importance of the different parts of
the model, we perform a series of ablations on the
model interaction factors. Table 3 shows the results
of adding each interaction factor in turn to the base-
line and removing each of the three interaction fac-
tors from the full joint model (see Figure 4).

Link–NER interactions. These joint factors are
the strongest out of any considered here and give
large improvements to entity linking and NER. Their
utility is unsurprising: effectively, they give NER ac-
cess to a gazetteer that it did not have in the baseline
model. Moreover, our relatively rich featurization
of the semantic information on Wikipedia allows the
model to make effective use of it.

Coref–NER interactions. These are moderately
beneficial to both coreference and NER. Having re-
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liable semantic types allows the coreference system
to be bolder about linking up mention pairs that do
not exhibit direct head matches. Part of this is due
to our use of monolexical features, which are fine-
grained enough to avoid the problems with coarse
semantic type matching (Durrett and Klein, 2013)
but still effectively learnable.

Coref–Link interactions. These are the least use-
ful of any of the major factors, providing only a
small benefit to coreference. This is likely a re-
sult of the ACE entity linking annotation standard:
a mention like the company is not linked to the spe-
cific company it refers to, but instead the Wikipedia
article Company. Determining the relatedness of
Company to an article like Dell is surprisingly
difficult: many related articles share almost no out-
links and may not explicitly link to one another.
Further feature engineering could likely improve the
utility of these factors.

The last line of Table 3 shows the results of an ex-
periment where the entity links were not observed
during training, i.e. they were left latent. Unsur-
prisingly, the system is not good at entity linking;
however, the model is still able to do as well or
even slightly better on coreference and named entity
recognition. A possible explanation for this is that
even the wrong Wikipedia link can in many cases
provide correct semantic information: for example,
not knowing which Donald Layton is being referred
to is irrelevant for the question of determining that
he is a PERSON and may also have little impact on
coreference performance. This result indicates that
the joint modeling approach is not necessarily de-
pendent on having all tasks annotated. The model
can make use of cross-task information even when
that information comes via latent variables.

6.3 OntoNotes Evaluation

The second part of our evaluation uses the datasets
from the CoNLL 2012 Shared Task (Pradhan et al.,
2012), specifically the coreference and NER anno-
tations. All experiments use the standard automatic
parses from the shared task and mentions detected
according to the method of Durrett and Klein (2013).

Evaluating on OntoNotes carries with it a few
complications. First, gold-standard entity linking
annotations are not available; we can handle this by

a1 a2

e1 e2

q1 q2

t1 t2

Dell     

}O	

B-ORG	

I-ORG	

...

...

NER+Core
f

Link
+Core

f

NER+Link

The company  ... 

t8 t9

posted ...

Figure 5: Modified factor graph for OntoNotes-style an-
notations, where NER chunks can now diverge from men-
tions for the other two tasks. NER is now modeled with
token-synchronous random variables taking values in a
BIO tagset. Factors coupling NER and the other tasks
now interact with the NER chain via the NER nodes as-
sociated with the heads of mentions.

leaving the ei variables in our model latent. Second,
and more seriously, NER chunks are no longer the
same as coreference mentions, so our assumption of
fixed NER spans no longer holds.

6.3.1 Divergent Coreference and NER
Our model can be adapted to handle NER chunks

that diverge from mentions for the other two tasks, as
shown in Figure 5. We have kept the coreference and
entity linking portions of our model the same, now
defined over system predicted mentions. However,
we have replaced mention-synchronous type vari-
ables with standard token-synchronous BIO-valued
variables. The unary NER features developed in
Section 3.1.2 are now applied in the standard way,
namely they are conjoined with the BIO labels at
each token position. Binary factors between adja-
cent NER nodes enforce appropriate structural con-
straints and fire indicator features on transitions. In
order to maintain tractability in the face of a larger
number of variables and factors in the NER portion
of our model, we prune the NER variables’ domains
using the NER model trained in isolation, similar to
the procedure that we described for pruning corefer-
ence arcs in Section 5.
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MUC B3 CEAFe Avg.
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1

BERKELEY 72.85 65.87 69.18 63.55 52.47 57.48 54.31 54.36 54.34 60.33
FERNANDES − − 70.51 − − 57.58 − − 53.86 60.65

BJORKELUND 74.30 67.46 70.72 62.71 54.96 58.58 59.40 52.27 55.61 61.63
INDEP. 72.25 69.30 70.75 60.92 55.73 58.21 55.33 54.14 54.73 61.23
JOINT 72.61 69.91 71.24 61.18 56.43 58.71 56.17 54.23 55.18 61.71

Table 4: CoNLL metric scores for our systems on the CoNLL 2012 blind test set, compared to Durrett and Klein
(2013) (the Berkeley system), Fernandes et al. (2012) (the winner of the CoNLL shared task), and Björkelund and
Kuhn (2014) (the best reported results on the dataset to date). INDEP. and JOINT are the contributions of this work;
JOINT improves substantially over INDEP. (these improvements are statistically significant with p < 0.05 according
to a bootstrap resampling test) and achieves state-of-the-art results.

Cross-task factors that previously would have
fired features based on the NE type for a whole men-
tion now instead consult the NE type of that men-
tion’s head.11 In Figure 5, this can be seen with fac-
tors involving e2 and a2 touching t9 (company), the
head of the second mention. Since the chain struc-
ture enforces consistency between adjacent labels,
features that strongly prefer a particular label on one
node of a mention will implicitly affect other nodes
in that mention and beyond.

Training and inference proceed as before, with a
slight modification: instead of computing the MBR
setting of every variable in isolation, we instead
compute the MBR sequence of labeled NER chunks
to avoid the problem of producing inconsistent tag
sequences, e.g. O I-PER or B-PER I-ORG.

6.3.2 Results
Table 4 shows coreference results from our IN-

DEP. and JOINT models compared to three strong
systems: Durrett and Klein (2013), Fernandes et al.
(2012) (the winner of the CoNLL shared task), and
Björkelund and Kuhn (2014) (the best reported re-
sults on the dataset). Our JOINT method outper-
forms all three as well as the INDEP. system.12

Next, we report results on named entity recogni-
tion. We use the same OntoNotes splits as for the
coreference data; however, the New Testament (NT)

11The NER-coreference portion of the model now resembles
the skip-chain CRF from Finkel et al. (2005), though with soft
coreference.

12The systems of Chang et al. (2013) and Webster and Curran
(2014) perform similarly to the FERNANDES system; changes
in the reference implementation of the metrics make exact com-
parison to printed numbers difficult.

Prec. Rec. F1

ILLINOIS 82.00 84.95 83.45
PASSOS − − 82.24
INDEP. 83.79 81.53 82.64
JOINT 85.22 82.89 84.04

∆ over INDEP. +1.43 +1.36 +1.40

Table 5: Results for NER tagging on the OntoNotes 5.0
/ CoNLL 2011 test set. We compare our systems to the
Illinois system (Ratinov and Roth, 2009) and the system
of Passos et al. (2014). Our model outperforms both other
systems in terms of F1, and once again joint modeling
gives substantial improvements over our baseline system.

portion of the CoNLL 2012 test set does not have
gold-standard named entity annotations, so we omit
it from our evaluation. This leaves us with exactly
the CoNLL 2011 test set. We compare to two ex-
isting baselines from the literature: the Illinois NER
system of Ratinov and Roth (2009) and the results
of Passos et al. (2014). Table 5 shows that we out-
perform both prior systems in terms of F1, though
the ILLINOIS system features higher recall while our
system features higher precision.

7 Related Work

There are two closely related threads of prior work:
those that address the tasks we consider in a dif-
ferent way and those that propose joint models for
other related sets of tasks. In the first category,
Hajishirzi et al. (2013) integrate entity linking into
a sieve-based coreference system (Raghunathan et
al., 2010), the aim being to propagate link deci-
sions throughout coreference chains, block corefer-
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ence links between different entities, and use seman-
tic information to make additional coreference links.
Zheng et al. (2013) build coreference clusters greed-
ily left-to-right and maintain entity link information
for each cluster, namely a list of possible targets in
the knowledge base as well as a current best link tar-
get that is used to extract features (though that might
not be the target that is chosen by the end of infer-
ence). Cheng and Roth (2013) use coreference as a
preprocessing step for entity linking and then solve
an ILP to determine the optimal entity link assign-
ments for each mention based on surface properties
of that mention, other mentions in its cluster, and
other mentions that it is related to. Compared to
these systems, our approach maintains greater un-
certainty about all random variables throughout in-
ference and uses features to capture cross-task in-
teractions as opposed to rules or hard constraints,
which can be less effective for incorporating seman-
tic knowledge (Lee et al., 2011).

The joint model most closely related to ours is that
of Singh et al. (2013), modeling coreference, named
entity recognition, and relation extraction. Their
techniques differ from ours in a few notable ways:
they choose a different objective function than we
do and also opt to freeze the values of certain vari-
ables during the belief propagation process rather
than pruning with a coarse pass. Sil and Yates (2013)
jointly model NER and entity linking in such a way
that they maintain uncertainty over mention bound-
aries, allowing information from Wikipedia to in-
form segmentation choices. We could strengthen
our model by integrating this capability; however,
the primary cause of errors for mention detection
on OntoNotes is parsing ambiguities rather than
named entity ambiguities, so we would be unlikely
to see improvements in the experiments presented
here. Beyond maintaining uncertainty over men-
tion boundaries, we might also consider maintain-
ing uncertainty over the entire parse structure, as in
Finkel and Manning (2009), who consider parsing
and named entity recognition together with a PCFG.

8 Conclusion

We return to our initial motivation for joint model-
ing, namely that the three tasks we address have the
potential to influence one another. Table 3 shows

that failing to exploit any of the pairwise interac-
tions between the tasks causes lower performance on
at least one of them. Therefore, any pipelined sys-
tem would necessarily underperform a joint model
on whatever task came first in the pipeline, which is
undesirable given the importance of these tasks. The
trend towards broader and deeper NLP pipelines will
only exacerbate this problem and make it more dif-
ficult to find a suitable pipeline ordering. In addition
to showing that joint modeling is high-performing,
we have also shown that it can be implemented with
relatively low overhead, requiring no fundamentally
new learning or inference techniques, and that it is
extensible, due to its modular structure and natural
partitioning of features. Taken together, these as-
pects make a compelling case that joint models can
provide a way to integrate deeper levels of process-
ing, particularly for semantic layers of annotation,
and that this modeling power does not need to come
at the expense of computational efficiency, structural
simplicity, or modularity.

The Berkeley Entity Resolution System is avail-
able at http://nlp.cs.berkeley.edu.
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