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A b s t r a c t  

This paper describes an extension to the hidden 
Markov model for part-of-speech tagging using 
second-order approximations for both contex- 
tual and lexical probabilities. This model in- 
creases the accuracy of the tagger to state of 
the art levels. These approximations make use 
of more contextual information than standard 
statistical systems. New methods of smoothing 
the estimated probabilities are also introduced 
to address the sparse data  problem. 

1 I n t r o d u c t i o n  

Part-of-speech tagging is the act of assigning 
each word in a sentence a tag that  describes 
how that  word is used in the sentence. Typ- 
ically, these tags indicate syntactic categories, 
such as noun or verb, and occasionally include 
additional feature information, such as number 
(singular or plural) and verb tense. The Penn 
Treebank documentation (Marcus et al., 1993) 
defines a commonly used set of tags. 

Part-of-speech tagging is an important  re- 
search topic in Natural Language Processing 
(NLP). Taggers are often preprocessors in NLP 
systems, making accurate performance espe- 
cially important .  Much research has been done 
to improve tagging accuracy using several dif- 
ferent models and methods, including: hidden 
Markov models (HMMs) (Kupiec, 1992), (Char- 
niak et al., 1993); rule-based systems (Brill, 
1994), (Brill, 1995); memory-based systems 
(Daelemans et al., 1996); maximum-entropy 
systems (Ratnaparkhi, 1996); path voting con- 
straint systems (Tiir and Oflazer, 1998); linear 
separator systems (Roth and Zelenko, 1998); 
and majority voting systems (van Halteren et 
al., 1998). 

This paper describes various modifications 
to an HMM tagger that  improve the perfor- 
mance to an accuracy comparable to or better 
than the best current single classifier taggers. 
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This improvement comes from using second- 
order approximations of the Markov assump- 
tions. Section 2 discusses a basic first-order 
hidden Markov model for part-of-speech tagging 
and extensions to that  model to handle out-of- 
lexicon words. The new second-order HMM is 
described in Section 3, and Section 4 presents 
experimental results and conclusions. 

2 H i d d e n  M a r k o v  M o d e l s  

A hidden Markov model (HMM) is a statistical 
construct that  can be used to solve classification 
problems that  have an inherent state sequence 
representation. The model can be visualized 
as an interlocking set of states. These states 
are connected by a set of transition probabili- 
ties, which indicate the probability of traveling 
between two given states. A process begins in 
some state, then at discrete time intervals, the 
process "moves" to a new state as dictated by 
the transition probabilities. In an HMM, the 
exact sequence of states that  the process gener- 
ates is unknown (i.e., hidden). As the process 
enters each state, one of a set of output symbols 
is emitted by the process. Exactly which symbol 
is emitted is determined by a probability distri- 
bution that  is specific to each state. The output  
of the HMM is a sequence of output  symbols. 

2.1 Bas ic  De f in i t i ons  and  N o t a t i o n  
According to (Rabiner, 1989), there are five el- 
ements needed to define an HMM: 

1. N, the number of distinct states in the 
model. For part-of-speech tagging, N is 
the number of tags that  can be used by the 
system. Each possible tag for the system 
corresponds to one state of the HMM. 

2. M, the number of distinct output  symbols 
in the alphabet of the HMM. For part-of- 
speech tagging, M is the number of words 
in the lexicon of the system. 



3. A = {a/j}, the state transition probabil- 
ity distribution. The probability aij is the 
probability that  the process will move from 
state i to state j in one transition. For 
part-of-speech tagging, the states represent 
the tags, so aij is the probability that  the 
model will move from tag ti to tj - -  in other 
words, the probability that  tag tj follows 
ti. This probability can be estimated using 
data  from a training corpus. 

4. B = {bj(k)),  the observation symbol prob- 
ability distribution. The probability bj(k) 
is the probability that  the k-th output  sym- 
bol will be emitted when the model is in 
state j .  For part-of-speech tagging, this is 
the probability that  the word Wk will be 
emitted when the system is at tag tj (i.e., 
P(wkltj)).  This probability can be esti- 
mated using da ta  from a training corpus. 

5. 7r = {Tri}, the initial state distribution. 7ri 
is the probability that  the model will start  
in state i. For part-of-speech tagging, this 
is the probability that  the sentence will be- 
gin with tag ti. 

When using an HMM to perform part-of- 
speech tagging, the goal is to determine the 
most likely sequence of tags (states) that  gen- 
erates the words in the sentence (sequence of 
output  symbols). In other words, given a sen- 
tence V, calculate the sequence U of tags that  
maximizes P(VIU ). The Viterbi algorithm is a 
common method for calculating the most likely 
tag sequence when using an HMM. This algo- 
rithm is explained in detail by Rabiner (1989) 
and will not be repeated here. 

2.2 Calculat ing Probabi l i t ies  for 
U n k n o w n  Words  

In a standard HMM, when a word does not 
occur in the training data,  the emit probabil- 
ity for the unknown word is 0.0 in the B ma- 
trix (i.e., bj(k) = 0.0 if wk is unknown). Be- 
ing able to accurately tag unknown words is 
important ,  as they are frequently encountered 
when tagging sentences in applications. Most 
work in the area of unknown words and tagging 
deals with predicting part-of-speech informa- 
tion based on word endings and affixation infor- 
mation, as shown by work in (Mikheev, 1996), 
(Mikheev, 1997), (Weischedel et al., 1993), and 
(Thede, 1998). This section highlights a method 
devised for HMMs, which differs slightly from 
previous approaches. 

To create an HMM to accurately tag 
unknown words, it is necessary to deter- 
mine an estimate of the probability P(wklti) 
for use in the tagger. The probabil- 
ity P(word contains sjl tag is ti) is estimated, 
where sj is some "suffix" (a more appropri- 
ate term would be word ending, since the sj 's 
are not necessarily morphologically significant, 
but this terminology is unwieldy). This new 
probability is stored in a matrix C = {cj(k)),  
where cj(k) = P(word has suffix ski tag is tj), 
replaces bj(k) in the HMM calculations for un- 
known words. This probability can be esti- 
mated by collecting suffix information from each 
word in the training corpus. 

In this work, suffixes of length one to four 
characters are considered, up to a maximum suf- 
fix length of two characters less than the length 
of the given word. An overall count of the num- 
ber of times each suffix/tag pair appears in the 
training corpus is used to estimate emit prob- 
abilities for words based on their suffixes, with 
some exceptions. When estimating suffix prob- 
abilities, words with length four or less are not 
likely to contain any word-ending information 
that  is valuable for classification, so they are 
ignored. Unknown words are presumed to be 
open-class, so words that  are not tagged with 
an open-class tag are also ignored. 

When constructing our suffix predictor, 
words that  contain hyphens, are capitalized, or 
contain numeric digits are separated from the 
main calculations. Estimates for each of these 
categories are calculated separately. For ex- 
ample, if an unknown word is capitalized, the 
probability distribution estimated from capital- 
ized words is used to predict its part of speech. 
However, capitalized words at the beginning 
of a sentence are not classified in this way--  
the initial capitalization is ignored. If a word 
is no t  capitalized and does not contain a hy- 
phen or numeric digit, the general distribution 
is used. Finally, when predicting the possible 
part of speech for an unknown word, all possible 
matching suffixes are used with their predictions 
smoothed (see Section 3.2). 

3 T h e  S e c o n d - O r d e r  M o d e l  for 
P a r t - o f - S p e e c h  T a g g i n g  

The model described in Section 2 is an exam- 
ple of a first-order hidden Markov model. In 
part-of-speech tagging, it is called a bigram tag- 
ger. This model works reasonably well in part- 
of-speech tagging, but captures a more limited 
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amount of the contextual information than is 
available. Most of the best statistical taggers 
use a t r igram model, which replaces the bigram 
transition probability aij = P ( r p  = tjITp_ 1 -~ 
ti) with a trigram probability aijk : P(7"p = 
t k l rp_ l  = t j ,  rp-2 = ti). This section describes 
a new type of tagger that uses trigrams not only 
for the context probabilities but also for the lex- 
ical (and suffix) probabilities. We refer to this 
new model as a f u l l  s econd-order  hidden Markov 
model. 

3.1 Def in ing N e w  P r o b a b i l i t y  
Dis tr ibut ions  

The full second-order HMM uses a notation 
similar to a standard first-order model for the 
probability distributions. The A matrix con- 
tains state transition probabilities, the B matrix 
contains output symbol distributions, and the 
C matrix contains unknown word distributions. 
The rr matrix is identical to its counterpart in 
the first-order model. However, the definitions 
of A, B, and C are modified to enable the full 
second-order HMM to  use more contextual in- 
formation to model part-of-speech tagging. In 
the following sections, there are assumed to be 
P words in the sentence with rp and Vp being the 
p-th tag and word in the sentence, respectively. 

3.1.1 C o n t e x t u a l  Probabi l i t i es  
The A matrix defines the contextual probabil- 
ities for the part-of-speech tagger. As in the 
trigram model, instead of limiting the context 
to a first-order approximation, the A matrix is 
defined as follows: 

A = { a i j k ) ,  where" 

a i j a =  P(rp = tklrp_l  = t j ,  rp-2 = tl) ,  1 < p < P 

Thus, the transition matrix is now three dimen- 
sional, and the probability of transitioning to 
a new state depends not only on the current 
state, but also on the previous state. This al- 
lows a more realistic context-dependence for the 
word tags. For the boundary cases of p = 1 and 
p = 2, the special tag symbols NONE and SOS 
are used. 

3.1.2 Lexieal  and Suffix Probabi l i t ies  
The B matrix defines the lexical probabilities 
for the part-of-speech tagger, while the C ma- 
trix is used for unknown words. Similarly to the 
trigram extension to the A matrix, the approx- 
imation for the lexical and suffix probabilities 
can also be modified to include second-order in- 
formation as follows: 

B = {bi j (k ) )  and C = {vi i (k)} ,  where 

= 

= 

P ( v p  = wklrp  = r p - 1  = t i )  

P(vp has suffix sklrp = t j ,  rp-1 = tl) 

f o r l < p < P  

In these equations, the probability of the model 
emitting a given word depends not only on the 
current state but also on the previous state. To 
our knowledge, this approach has not been used 
in tagging. SOS is again used in the p = 1 case. 

3.2 S m o o t h i n g  Issues  

While the full second-order HMM is a more pre- 
cise approximation of the underlying probabil- 
ities for the model, a problem can arise from 
sparseness of data, especially with lexical esti- 
mations. For example, the size of the B ma- 
trix is T 2 W ,  which for the WSJ corpus is ap- 
proximately 125,000,000 possible tag/ tag/word 
combinations. In an at tempt to avoid sparse 
data estimation problems, the probability esti- 
mates for each distribution is smoothed. There 
are several methods of smoothing discussed in 
the literature. These methods include the ad- 
ditive method (discussed by (Gale and Church, 
1994)); the Good-Turing method (Good, 1953); 
the Jelinek-Mercer method (Jelinek and Mercer, 
1980); and the Katz method (Katz, 1987). 

These methods are all useful smoothing al- 
gorithms for a variety of applications. However, 
they are not appropriate for our purposes. Since 
we are smoothing trigram probabilities, the ad- 
ditive and Good-Turing methods are of limited 
usefulness, since neither takes into account bi- 
gram or unigram probabilities. Katz smooth- 
ing seems a little too granular to be effective in 
our application--the broad spectrum of possi- 
bilities is reduced to three options, depending 
on the number of times the given event occurs. 
It seems that  smoothing should be based on a 
function of the number of occurances. Jelinek- 
Mercer accommodates this by smoothing the 
n-gram probabilities using differing coefficients 
(A's) according to the number of times each n- 
gram occurs, but this requires holding out train- 
ing data for the A's. We have implemented a 
model that smooths with lower order informa- 
tion by using coefficients calculated from the 
number of occurances of each trigram, bigram, 
and unigram without training. This method is 
explained in the following sections. 

3.2.1 State  Transi t ion Probabi l i t ies  
To estimate the state transition probabilities, 
we want to use the most specific information. 
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However, tha t  information may not always be 
available. Rather  than using a fixed smooth- 
ing technique, we have developed a new method 
that  uses variable weighting. This method at- 
taches more weight to triples tha t  occur more 
often. 

The 
tklrp-1 

P = k a  

formula for the est imate /3 of P(rp  = 
= tj ,  rp-2 = tl) is: 

Na + (1 - ka)k2 N2 + (1 - k3)(1 - -  k2). N: 
c ,  Yoo 

which depends on the following numbers: 

g l  = 
N 2  --~ 

N3 = 
Co = 
C :  - -  

C o  = 

number of times tk occurs 
number of times sequence tjta occurs 
number of times sequence t i t j tk occurs 
total number of tags that appear 
number of times tj occurs 
number of times sequence t i t j  occurs 

where: 

log(N2 + 1) + 1 
k~. = log(Ng. + 1) + 2' 

log(Na + I) + 1 
and ka = log(Na + 1) + 2 

The formulas for k2 and k3 a r e  chosen so tha t  
the weighting for each element in the equation 
for /3  changes based on how often tha t  element 
occurs in the training data.  Notice tha t  the 
sum of the coefficients of the probabilities in the 
equation for /3  sum to one. This guarantees tha t  
the value returned f o r / 3  is a valid probability. 
After this value is calculated for all tag triples, 
the values are normalized so tha t  ~ /3 -- 1, 

tkET 
creating a valid probability distribution. 

The value of this smoothing technique be- 
comes clear when the triple in question occurs 
very infrequently, if at all. Consider calculating 
/3 for the tag triple CD R B  VB. The informa- 
tion for this triple is: 

N1 = 33,277 (number of times VB appears) 
N2 = 4,335 (number of times R B  VB appears) 
Na = 0 (number of times CD R B  VB appears) 
Co = 1,056,892 (total number of tags) 
C: = 46,994 (number of times RB appears) 
C2 = 160 (number of times CD RB appears) 

Using these values, we calculate the coeffi- 
cients k2 and k3: 

log(4,335 + 1) + 1 4.637 
k2 = - - - - 0 . 8 2 3  

log(4,335 + 1) + 2 5.637 

ka = l o g ( 0 + l ) + l  =-1 =0.500 
log(0 + 1) + 2 2 

Using these values, we calculate the probability 
/3: 

15 = k3 • ~-~-N3 q_ (1 - ka)k2 • -~lN° q_ (1 - k3)(1 - k2 ) .  NxC.._o 

= 0.500 • 0.000 Jr 0.412 • 0.092 + 0.088 • 0.031 

= 0.041 

If smoothing were not applied, the probabil- 
ity would have been 0.000, which would create 
problems for tagger generalization. Smoothing 
allows tag triples tha t  were not encountered in 
the training da ta  to be assigned a probability of 
occurance. 

3.2 .2  Lexica l  and  Suff ix  Probab i l i t i e s  
For the lexical and suffix probabilities, we do 
something somewhat  different than for context 
probabilities. Initial experiments tha t  used a 
formula similar to tha t  used for the contextual 
estimates performed poorly. This poor perfor- 
mance was traced to the fact tha t  smoothing al- 
lowed too many words to be incorrectly tagged 
with tags tha t  did not occur with tha t  word in 
the training da ta  (over-generalization). As an 
alternative, we calculated the smoothed proba- 
bi l i ty/3 for words as follows: 

(log(N3 + i) + i. N3 1 N2 
t5 __ "log(N3 + 1) + 2)C-22 + (log(N3 + 1) + 2)C-T 

where: 

N2 = number of times word wk occurs with 
tag tj  

N3 = number of times word wk occurs with 
tag tj preceded by tag tl 

C1 = number of times tj  occurs 
C2 = number of times sequence t i t j  occurs 

Notice tha t  this method assigns a probability 
of 0.0 to a word / t ag  pair tha t  does not appear 
in the training data.  This prevents the tagger 
from trying every possible combination of word 
and tag, something which both increases run- 
ning time and decreases the accuracy. We be- 
lieve the low accuracy of the original smoothing 
scheme emerges from the fact tha t  smoothing 
the lexical probabilities too far allows the con- 
textual  information to dominate  at the expense 
of the lexical information. A bet ter  smooth- 
ing approach for lexical information could pos- 
sibly be created by using some sort of word class 
idea, such as the genotype idea used in (Tzouk- 
ermann and Radev, 1996), to improve our /5 
estimate.  
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In addition to choosing the above approach 
for smoothing the C matrix for unknown words, 
there is an additional issue of choosing which 
suffix to use when predicting the part of speech. 
There are many possible answers, some of which 
are considered by (Thede, 1998): use the longest 
matching suffix, use an entropy measure to de- 
termine the "best" affix to use, or use an av- 
erage. A voting technique for c i j ( k )  was deter- 
mined that  is similar to that  used for contextual 
smoothing but is based on different length suf- 
fixes. 

Let s4 be the length four suffix of the given 
word. Define s3 ,  s2 ,  and sl to be the length 
three, two, and one suffixes respectively. If the 
length of the word is six or more, these four suf- 
fixes are used. Otherwise, suffixes up to length 
n - 2 are used, where n is the length of the 
word. Determine the longest suffix of these that  
matches a suffix in the training data, and cal- 
culate the new smoothed probability: 

~ / ( g k ) e ~ , ( s k )  + (1  - -  f (Y*))P~j(sk- , ) ,  1 < k < 4 

where: 
log(~+l/+l 

• / ( x )  = log( +lj+2 

• Ark = the number of times the suffix sk  oc -  
curs in the training data. 

• ~ i j ( S k )  - -  the estimate of Cij(8k) from the 
previous lexical smoothing. 

After calculating/5, it is normalized. Thus, suf- 
fixes of length four are given the most weight, 
and a suffix receives more weight the more times 
it appears. Information provided by suffixes of 
length one to four are used in estimating the 
probabilities, however. 

3.3 T h e  N e w  V i t e r b i  A l g o r i t h m  
Modification of the lexical and contextual 

probabilities is only the first step in defining 
a full second-order HMM. These probabilities 
must also be combined to select the most likely 
sequence of tags that  generated the sentence. 
This requires modification of the Viterbi algo- 
rithm. First, the variables ~ and ¢ from (Ra- 
biner, 1989) are redefined, as shown in Figure 
1. These new definitions take into account the 
added dependencies of the distributions of A, 
B, and C. We can then calculate the most 
likely tag sequence using the modification of the 

Viterbi algorithm shown in Figure 1. The run- 
ning time of this algorithm is O (NT3), where N 
is the length of the sentence, and T is the num- 
ber of tags. This is asymptotically equivalent to 
the running time of a standard trigram tagger 
that  maximizes the probability of the entire tag 
sequence. 

4 E x p e r i m e n t  a n d  C o n c l u s i o n s  

The new tagging model is tested in several 
different ways. The basic experimental tech- 
nique is a 10-fold cross validation. The corpus 
in question-is randomly split into ten sections 
with nine of the sections combined to train the 
tagger and the tenth for testing. The results of 
the ten possible training/test ing combinations 
are merged to give an overall accuracy mea- 
sure. The tagger was tested on two corpora--  
the Brown corpus (from the Treebank II CD- 
ROM (Marcus et al., 1993)) and the Wall Street 
Journal corpus (from the same source). Com- 
paring results for taggers can be difficult, es- 

pecially across different researchers. Care has 
been taken in this paper that ,  when comparing 
two systems, the comparisons are from experi- 
ments that  were as similar as possible and that  
differences are highlighted in the comparison. 

First, we compare the results on each corpus 
of four different versions of our HMM tagger: a 
standard (bigram) HMM tagger, an HMM us- 
ing second-order lexical probabilities, an HMM 
using second-order contextual probabilities (a 
standard trigram tagger), and a full second- 
order HMM tagger. The results from both cor- 
pora for each tagger are given in Table 1. As 
might be expected, the full second-order HMM 
had the highest accuracy levels. The model us- 
ing only second-order contextual information (a 
standard trigram model) was second best, the 
model using only second-order lexical informa- 
tion was third, and the standard bigram HMM 
had the lowest accuracies. The full second- 
order HMM reduced the number of errors on 
known words by around 16% over bigram tag- 
gers (raising the accuracy about 0.6-0.7%), and 
by around 6% over conventional trigram tag- 
gets (accuracy increase of about 0.2%). Similar 
results were seen in the overall accuracies. Un- 
known word accuracy rates were increased by 
around 2-3% over bigrams. 

The full second-order HMM tagger is also 
compared to other researcher's taggers in Ta- 
ble 2. It is important  to note that  both SNOW, 
a linear separator model (Roth and Zelenko, 
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THE SECOND-ORDER VITERBI ALGORITHM 

The  variables: 
• gp(i , j )= max P(rl , . . . , rp-2,  rp-1 =ti ,  r p = t j , v l , . . . v p ) , 2 < p < P  

Tl ~...rTp--2 

• Cp(i,j) = arg max P(rl , . . . , rp-2,  rp-1 = ti,rp = t j ,v l , . . . vp) ,2  < p < P 
Tl~...iTp--2 

The  p rocedure :  

1. 6,(i,j) = { ~ribij(vl), i f v l i sknown  } 
?ricij (Vl)  , if vl is unknown ,1 _< i, j < N 

¢l( i , j )  = O, 1 < i , j  < N 
{ lma<xN[Jp-l(i,j)aljk]bjk(vp), if vp is known } 

2. ~p(j, k) = m~xN[Jp_~(i,j)ai~k]c~k(v,), if vp is unknown ,1 < i,j, k < N, 2 < p < P 

Cp (j, k) = arg l~_ia<_Xg[Sp_l (i, j)aijk], 1 < i, j, k < N, 2 g p < P 

3. P* = max 6p(i,j) 
l <i,j<_N 

rt~ = argj max 6p(i,j) l <i,j<N 
r],_ 1 = arg i max Jp(i,j)  

l<_i,j<N 

4. r; = Cp+l (r~+l, r;+2),p = P - 2 ,  P - 3 , . . . , 2 , 1  

Figure 1: Second-Order Viterbi Algori thm 

Compar i son  on Brown 
Tagger  T y p e  Known 
Standard Bigram 95.94% 
Second-Order Lexical only 96.23% 
Second-Order Contextual only 96.41% 
Full Second-Order HMM 96.62% 

Corpus  
U n k n o w n  Overal l  

80.61% 95.60% 
81.42% 95.90% 
82.69% 96.11% 
83.46% 96.33% 

Compar i son  on W S J  Corpus  
Tagger  T y p e  Known U n k n o w n  
Standard Bigram 96.52% 82.40% 
Second-Order Lexical only 96.80% 83.63% 
Second-Order Contextual only 96.90% 84.10% 
Full Second-Order HMM 97.09% 84.88% 

Overal l  
96.25% 
96.54% 
96.65% 
96.86% 

% Er ro r  R e d u c t i o n  of  Second-Orde r  H M M  
Sys t em T y p e  C o m p a r e d  Brown W S J  

Bigram 16.6% 16.3% 
Lexical Trigrams Only 10.5% 9.2% 
Contextual Trigrams Only 5.7% 6.3% 

Table 1: Comparison between Taggers on the Brown and WSJ Corpora  

1998), and the voting constraint  tagger (Tiir 
and Oflazer, 1998) used training da ta  tha t  con- 
t a ined  full lexical information (i.e., no unknown 
words), as well as training and testing da ta  tha t  
did not cover the entire WSJ corpus. This use of 

a full lexicon may have increased their accuracy 
beyond what  it would have been if the model 
were tested with unknown words. The stan- 
dard tr igram tagger da ta  is from (Weischedel et 
al., 1993). The MBT (Daelemans et al., 1996) 
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Tagger  Type 
Standard Trigram 
(Weischedel et al., 1993) 
MBT 
(Daelemans et al., 1996) 
Rule-based 
(Brill, 1994) 
Maximum-Entropy 
(Ratnaparkhi, 1996) 

Full Second-Orde r  H M M  

SNOW 
(Roth and Zelenko, 1998) 
Voting Constraints 
(Tiir and Oflazer, 1998) 

Full Second-Orde r  H M M  

Known Unknown Overal l  
O p e n / C l o s e d  

Lexicon? 

96.7% 85.0% 96.3% open 

96.7% 90.6% 2 96.4% open 

82.2% 96.6% open 

97.1% 

97.2% 

85.6% 

84.9% 

97.5% 

96.6% 

96.9% 

98.05% 

open 

open  

closed 

closed 

closed 

Testing 
Method 

full WSJ 1 

fixed WSJ 
cross-validation 

fixed 
full WSJ 3 

fixed 
full WSJ 3 
full W S J  

cross-val idat ion 
fixed subset 

of WSJ 4 
subset of WSJ 

cross-validation 5 
full W S J  

cross-val idat ion 

Table 2: Comparison between Full Second-Order HMM and Other Taggers 

did not include numbers in the lexicon, which 
accounts for the inflated accuracy on unknown 
words. Table 2 compares the accuracies of the 
taggers on known words, unknown words, and 
overall accuracy. The table also contains two 
additional pieces of information. The first indi- 
cates if the corresponding tagger was tested us- 
ing a closed lexicon (one in which all words ap- 
pearing in the testing da ta  are known to the tag-  
ger) or an open lexicon (not all words are known 
to. the system).  The second indicates whether a 
hold-out method (such as cross-validation) was 
used, and whether the tagger was tested on the 
entire WSJ  corpus or a reduced corpus. 

Two cross-validation tests with the full 
second-order HMM were run: the first with an 
open lexicon (created from the training data) ,  
and the second where the entire WSJ  lexicon 
was used for each test  set. These two tests al- 
low more direct comparisons between our sys- 
tem and the others. As shown in the table, the 
full second-order HMM has improved overall ac- 
curacies on the WSJ  corpus to state-of-the-art  

1The full WSJ is used, but the paper does not indicate 
whether a cross-vaiidation was performed. 

2MBT did not place numbers in the lexicon, so all 
numbers were treated as unknown words. 

aBoth the rule-based and maximum-entropy models 
use the full WSJ for training/testing with only a single 
test set. 

4SNOW used a fixed subset of WSJ for training and 
testing with no cross-validation. 

5The voting constraints tagger used a subset of WSJ 
for training and testing with cross-validation. 

levels--96.9% is the greatest  accuracy reported 
on the full WSJ  for an experiment using an 
open lexicon. Finally, using a closed lexicon, the 
full second-order HMM achieved an accuracy of 
98.05%, the highest reported for the WSJ  cor- 
pus for this type  of experiment.  

The accuracy of our system on unknown 
words is 84.9%. This accuracy was achieved by 
creating separate  classifiers for capitalized, hy- 
phenated, and numeric digit words: tests on the 
Wall Street Journal  corpus with the full second- 
order HMM show tha t  the accuracy rate on un- 
known words without  separating these types of 
words is only 80.2%. 6 This is below the perfor- 
mance of our bigram tagger tha t  separates the 
classifiers. Unfortunately,  unknown word accu- 
racy is still below some of the other systems. 
This may be due in part  to experimental dif- 
ferences. It should also be noted that  some of 
these other  systems use hand-crafted rules for 
unknown word rules, whereas our system uses 
only statistical data.  Adding additional rules 
to our system could result in comparable per- 
formance. Improving our model on unknown 
words is a major  focus of future research. 

In conclusion, a new statistical model, the full 
second-order HMM, has been shown to improve 
part-of-speech tagging accuracies over current 
models. This model makes use of second-order 
approximations for a hidden Markov model and 

8Mikheev (1997) also separates suffix probabilities 
into different estimates, but fails to provide any data 
illustrating the implied accuracy increase. 
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improves the state of the art for taggers with no 
increase in asymptotic running time over tra- 
ditional trigram taggers based on the hidden 
Markov model. A new smoothing method is also 
explained, which allows the use of second-order 
statistics while avoiding sparse data problems. 
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