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Abstract

This paper examines various unsupervised
pretraining objectives for learning dialog con-
text representations. Two novel methods of
pretraining dialog context encoders are pro-
posed, and a total of four methods are exam-
ined. Each pretraining objective is fine-tuned
and evaluated on a set of downstream dialog
tasks using the MultiWoz dataset and strong
performance improvement is observed. Fur-
ther evaluation shows that our pretraining ob-
jectives result in not only better performance,
but also better convergence, models that are
less data hungry and have better domain
generalizability.

1 Introduction

Learning meaningful representations of multi-turn
dialog contexts is the cornerstone of dialog sys-
tems. In order to generate an appropriate response,
a system must be able to aggregate information
over multiple turns, such as estimating a belief
state over user goals (Williams et al., 2013) and
resolving anaphora co–references (Mitkov, 2014).
In the past, significant effort has gone into de-
veloping better neural dialog architectures to im-
prove context modeling given the same in-domain
training data (Dhingra et al., 2017; Zhou et al.,
2016). Recent advances in pretraining on mas-
sive amounts of text data have led to state-of-the-
art results on a range of natural language pro-
cessing (NLP) tasks (Peters et al., 2018; Radford
et al., 2018; Devlin et al., 2018) including natural
language inference, question answering and text
classification. These promising results suggest a
new direction for improving context modeling by
creating general purpose natural language repre-
sentations that are useful for many different down-
stream tasks.

∗* Equal contribution.

Yet pretraining methods are still in their infancy.
We do not yet fully understand their properties.
For example, many pretraining methods are vari-
ants of language modeling (Howard and Ruder,
2018; Radford et al., 2018; Devlin et al., 2018),
e.g. predicting the previous word, next word or
the masked word, given the sentence context. This
approach treats natural language as a simple
stream of word tokens. It relies on a com-
plex model to discover high-level dependencies,
through the use of massive corpora and expen-
sive computation. Recently the BERT model (De-
vlin et al., 2018) achieved state-of-the-art per-
formance on several NLP benchmarks. It intro-
duces a sentence-pair level pretraining objective,
i.e. predicting whether two sentences should come
after one another. This is a step towards having
pretraining objectives that explicitly consider and
leverage discourse-level relationships. However,
it is still unclear whether language modeling is the
most effective method of pretrained language rep-
resentation, especially for tasks that need to ex-
ploit multi-turn dependencies, e.g. dialog context
modeling. Thornbury and Slade (2006) underline
several discourse-level features which distinguish
dialog from other types of text. Dialog must be
coherent across utterance and a sequence of turns
should achieve a communicative purpose. Fur-
ther, dialog is interactive in nature, with feedback
and back-channelling between speakers, and turn-
taking. These unique features of dialog suggest
that modelling dialog contexts requires pretraining
methods specifically designed for dialog.

Building on this prior research, the goal of this
paper is to study various methods of pretrain-
ing discourse-level language representations, i.e.
modeling the relationship amongst multiple utter-
ances. This paper takes a first step in the cre-
ation of a systematic analysis framework of pre-
training methods for dialog systems. Concretely,
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we pretrain a hierarchical dialog encoder (Serban
et al., 2016) with four different unsupervised pre-
training objectives. Two of the objectives, next-
utterance generation (Vinyals and Le, 2015) and
retrieval (Lowe et al., 2016), have been explored
in previous work. The other two pretraining ob-
jectives, masked-utterance retrieval and inconsis-
tency identification, are novel. The pretrained
dialog encoder is then evaluated on several down-
stream tasks that probe the quality of the learned
context representation by following the typical
pretrain & fine-tune procedure.

Pretraining and downstream evaluation use the
MultiWoz dialog dataset (Budzianowski et al.,
2018), which contains over 10,000 dialogs span-
ning 6 different domains. The downstream tasks
include next-utterance generation (NUG), next-
utterance retrieval (NUR), dialog act prediction
(DAP), and belief state prediction (BSP). The pre-
training objectives are assessed under four differ-
ent hypotheses: (1) that pretraining will improve
downstream tasks with fine-tuning on the entire
available data, (2) that pretraining will result in
better convergence, (3) that pretraining will per-
form strongly with limited data and (4) that pre-
training facilitates domain generalizability. The
results here show that pretraining achieves sig-
nificant performance gains with respect to these
hypotheses. Furthermore, the novel objectives
achieve performance that is on-par with or bet-
ter than the pre-existing methods. The contribu-
tions of this paper are: (1) a study of four differ-
ent pretraining objectives for dialog context rep-
resentation, including two novel objectives. (2) a
comprehensive analysis of the effects of pretrain-
ing on dialog context representations, assessed on
four different downstream tasks.

2 Related Work

This work is closely related to research in auxi-
liary multi-task learning and transfer learning with
pretraining for NLP systems.

Training with Auxiliary Tasks

Incorporating a useful auxiliary loss function to
complement the primary objective has been shown
to improve the performance of deep neural net-
work models, including, but not limited to, error
detection (Rei and Yannakoudakis, 2017), cross-
lingual speech tagging (Plank et al., 2016), do-
main independent sentiment classification (Yu and

Jiang, 2016), latent variable inference for dialog
generation (Zhao et al., 2017) and opinion ex-
traction (Ding et al., 2017). Some auxiliary loss
functions are designed to improve performance
on a specific task. For instance, Yu and Jiang
(2016) pretrained a model for sentiment classifica-
tion with the auxiliary task of identifying whether
a negative or positive word occurred in the sen-
tence. In some cases, auxiliary loss is created
to encourage a model’s general representational
power. Trinh et al. (2018) found that a model can
capture far longer dependencies when pretrained
with a suitable auxiliary task. This paper falls in
line with the second goal by creating learning ob-
jectives that improve a representation to capture
general-purpose information.

Transfer Learning with Pretraining

The second line of related research concerns the
creation of transferable language representation
via pretraining. The basic procedure is typically
to first pretrain a powerful neural encoder on mas-
sive text data with unsupervised objectives. The
second step is to fine-tune this pretrained model on
a specific downstream task using a much smaller
in-domain dataset (Howard and Ruder, 2018).
Recently, several papers that use this approach
have achieved significant results. ELMo (Peters
et al., 2018) trained a two-way language model
with Bidirectional Long Short-Term Memory Net-
works (biLSTM) (Huang et al., 2015) to pre-
dict both the next and previous word. OpenAI’s
GPT created a unidirectional language model
using transformer networks (Radford et al., 2018)
and BERT was trained with two simultaneous ob-
jectives: the masked language model and next sen-
tence prediction (Devlin et al., 2018). Each of
the models has demonstrated state-of-the-art re-
sults on the GLUE benchmark (Wang et al., 2018).
The GPT model has also been adapted to improve
the performance of end-to-end dialog models. In
the 2nd ConvAI challenge (Dinan et al., 2019), the
best models on both human and automated eval-
uations were generative transformers (Wolf et al.,
2019), which were initialized with the weights of
the GPT model and fine-tuned on in-domain di-
alog data. These models, which leveraged large-
scale pretraining, outperformed the systems which
only used in-domain data.

There has been little work on pretraining meth-
ods that learn to extract discourse level informa-
tion from the input text. Next sentence predic-
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tion loss in BERT (Devlin et al., 2018) is a step
in this direction. While these pretraining meth-
ods excel at modelling sequential text, they do not
explicitly consider the unique discourse-level fea-
tures of dialog. We therefore take the first steps in
the study of pretraining objectives that extract bet-
ter discourse-level representations of dialog con-
texts.

3 Pretraining Objectives

This section discusses the unsupervised pretrain-
ing objectives, including two novel approaches
aimed at capturing better representations of di-
alog context. When considering a specific pre-
training method, both the pretraining objective and
the model architecture must facilitate the learn-
ing of strong and general representations. We de-
fine a strong representation as one that captures
the discourse-level information within the entire
dialog history as well as utterance-level informa-
tion in the utterances that constitute that history.
By our definition, a representation is sufficiently
general when it allows the model to perform bet-
ter on a variety of downstream tasks. The next
section describes the pretraining objectives within
the context of the strength and generality of the
learned representations.

For clarity of discussion, the following notation
is used: an arbitrary T -turn dialog segment is rep-
resented by a list of utterances c = [u1, ...uT ],
where ui is an utterance. Further, we denote the
set of all observed dialog responses in the data by
R = {r1, ...rM}.

The pretraining objectives, discussed below,
are next-utterance retrieval (NUR), next-utterance
generation (NUG), masked-utterance retrieval
(MUR), and inconsistency identification (InI).

3.1 Next-Utterance Retrieval

NUR has been extensively explored both as an in-
dependent task (Lowe et al., 2015, 2016) and as an
auxiliary loss in a multi-tasking setup (Wolf et al.,
2019). Given a dialog context, the aim of NUR
is to select the correct next utterance from a set
of k candidate responses. NUR can be thought
of as being analogous to language modelling, ex-
cept that the utterances, rather than the words, are
the indivisible atomic units. Language modelling
pretraining has produced strong representations of
language (Radford et al., 2018; Peters et al., 2018),
thereby motivating the choice of NUR as a pre-

training objective.
For this task we use a hierarchical encoder to

produce a representation of the dialog context by
first running each utterance independently through
a Bidirectional Long-short Term Memory Net-
work (biLSTM) and then using the resulting ut-
terance representations to produce a representa-
tion of the entire dialog context. We use a sin-
gle biLSTM to encode candidate responses. Given
[u1, ...uT−1], the task of NUR is to select the cor-
rect next utterance uT from R. Note that for
large dialog corpora, R is usually very large and
it is more computationally feasible to sample a
subset of R and as such we retrieve K negative
samples for each training example, according to
some distribution pn(r), e.g. uniform distribu-
tion (Mikolov et al., 2013). Concretely, we min-
imize the cross entropy loss of the next utterance
by:

ûi = fu(ui) i ∈ [1, T − 1] (1)

[h1, ...hT−1] = fc(û1, ...ûT−1) (2)

rgt = fr(uT ) (3)

rj = fr(rj) rj ∼ pn(r) (4)

αgt = hT−1
T rgt (5)

αj = hT−1
T rj (6)

where fu, fc and fr are three distinct biLSTM
models that are to be trained. The final loss func-
tion is:

L = − log p(uT |u1, ...uT−1) (7)

= − log

(
exp(αgt)

exp(αgt) +
∑K

j=1 exp(αj)

)
3.2 Next-Utterance Generation
NUG is the task of generating the next utterance
conditioned on the past dialog context. Sequence-
to-sequence models (Sutskever et al., 2014; Bah-
danau et al., 2015) have been used for pretraining
(Dai and Le, 2015; McCann et al., 2017), and have
been shown to learn representations that are useful
for downstream tasks (Adi et al., 2016; Belinkov
et al., 2017).

The hierarchical recurrent encoder-decoder ar-
chitecture (Serban et al., 2016) was used during
NUG pretraining. Although the decoder is used in
pretraining, only the hierarchical context encoder
is transferred to the downstream tasks. Similarly
to NUR, the optimization goal of NUG is to maxi-
mize the log-likelihood of the next utterance given
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the previous utterances. However, it differs in that
it factors the conditional distribution to word-level
in an auto-regressive manner. Specifically, let the
word tokens in uT be [w1, ...wN ]. The dialog con-
text is encoded as in Eq 8 with an utterance and
a context biLSTM. Then the loss function to be
minimized is shown in Eq 9:

L = − log p(uT |u1, ...uT−1) (8)

= −
N∑
k

log p(wk|w<k,hT−1) (9)

3.3 Masked-Utterance Retrieval

MUR is similar to NUR: the input contains a di-
alog context and a set of K candidate responses.
The objective is to select the correct response. The
difference between the two is twofold. First, one
of the utterances in the dialog context has been re-
placed by a randomly chosen utterance. Secondly,
rather than use the final context representation to
select the response that should immediately fol-
low, the goal here is to use the representation of
the replacement utterance to retrieve the correct
utterance. The replacement index t is randomly
sampled from the dialog segment:

t ∼ Uniform[1, T ] (10)

Then ut is randomly replaced by a replacement ut-
terance q that is sampled from the negative dis-
tribution pn(r) defined in NUR. Finally, the goal
is to minimize the negative log-likelihood of the
original ut given the context hidden state at time-
stamp t, i.e. − log p(ugt|u1, ...q, ...uT ), where ugt
is the original utterance at index t.

ûi = fu(ui) i ∈ [1, T ] (11)

[h1, ...hT] = fc(û1, ...ûT) (12)

rgt = fr(ugt) (13)

rj = fr(rj) rj ∼ pn(r) (14)

αgt = ht
T rgt (15)

αj = ht
T rj (16)

The final loss function is:

L = − log p(ut|u1, ...q, ...uT ) (17)

= − log

(
exp(αgt)

exp(αgt) +
∑K

j=1 exp(αj)

)

MUR is analogous to the MLM objective of De-
vlin et al. (2018), which forces model to keep a
distributional contextual representation of each in-
put token. By masking entire utterances, instead of
input tokens, MUR learns to produce strong repre-
sentations of each utterance.

3.4 Inconsistency Identification

InI is the task of finding inconsistent utterances
within a dialog history. Given a dialog context
with one utterance replaced randomly, just like
MUR, InI finds the inconsistent utterance. The
replacement procedure is the same as the one de-
scribed for MUR, where a uniform random index t
is selected in the dialog context and ut is replaced
by a negative sample q.

While MUR strives to create a model that finds
the original utterance, given the replacement index
t, InI aims to train a model that can identify the
replacement position t. Specifically, this is done
via:

ûi = fu(ui) i ∈ [1, T ] (18)

[h1, ...hT] = fc(û1, ...ûT) (19)

αi = hT
Thi i ∈ [1, T ] (20)

Finally, the loss function is to minimize the cross
entropy of the replaced index:

L = − log p(t|u1, ...q, ...uT ) (21)

= − log

(
exp(αt)∑T
j=1 exp(αi)

)

This pretraining objective aims to explicitly
model the coherence of the dialog, which encour-
ages both local representations of each individual
utterance and a global representation of the dialog
context. We believe that this will improve the gen-
erality of the pretrained representations.

4 Downstream Tasks

This section describes the downstream tasks cho-
sen to test the strength and generality of the repre-
sentations produced by the various pretraining ob-
jectives. The downstream evaluation is carried out
on a lexicalized version of the MultiWoz dataset
(Budzianowski et al., 2018). MultiWoz contains
multi-domain conversations between a Wizard-of-
Oz and a human. There are 8422 dialogs for train-
ing, 1000 for validation and 1000 for testing.
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4.1 Belief State Prediction

Given a dialog context, the task is to predict a
1784-dimensional belief state vector. Belief state
prediction (BSP) is a multi-class classification
task, highly dependant on strong dialog context
representations. The belief state vector represents
the values of 27 entities, all of which can be in-
ferred from the dialog context. To obtain the 1784-
dimensional label, the entity values are encoded as
a one-hot encoded vector and concatenated. The
entities are shown in Appendix ??. Performance is
measured using the F-1 score for entities with non-
empty values. This approach is analogous to the
one used in the evaluation of Dialog State Track-
ing Challenge 2 (Henderson et al., 2014).

This task measures the ability of a system to
maintain a complete and accurate state repre-
sentation of the dialog context. With a 1784-
dimensional output, the hidden representation for
this task must be sufficiently general. Therefore,
any pretrained representations that lack generality
will struggle on belief state prediction.

4.2 Dialog Act Prediction

Dialog act prediction (DAP), much like belief state
prediction, is a multi-label task aimed at producing
a 32-dimensional dialog act vector for the system
utterances. The set of dialog acts for a system ut-
terance describes the actions that may be taken by
the system. This might include: informing the user
about an attraction, requesting information about
a hotel query, or informing them about specific
trains. There are often multiple actions taken in a
single utterance, and thus this is a multi-label task.
To evaluate performance on dialog act prediction,
we use the F-1 score.

4.3 Next-Utterance Generation

NUG is the task of producing the next utterance
conditioned on the dialog history. We evaluate the
ability of our models to generate system utterances
using BLEU-4 (Papineni et al., 2002). This task
requires both a strong global context representa-
tion to initialize the decoder’s hidden state and
strong local utterance representations.

4.4 Next-Utterance Retrieval

Given a dialog context, NUR selects the correct
next utterance from a set of k candidate responses.
Though this task was not originally part of the
MultiWoz dataset, we construct the necessary data

for this task by randomly sampling negative ex-
amples. This task is underlined by Lowe et al.
(2016)’s suggestion that using NUR for evaluation
is extremely indicative of performance and is one
of the best forms of evaluation. Hits@1 (H@1) is
used to evaluate our retrieval models. The latter is
equivalent to accuracy.

Although some of these pretraining models had
a response encoder, which would have been useful
to transfer to this task, to ensure a fair comparison
of all of the methods, we only transfer the weights
of the context encoder.

5 Experiments and Results

This section presents the experiments and results
aimed at capturing the capabilities and proper-
ties of the above pretraining objectives by evalu-
ating on a variety of downstream tasks. All unsu-
pervised pretraining objectives are trained on the
full MultiWoz dataset (Budzianowski et al., 2018).
Data usage for downstream fine-tuning differs, de-
pending on the property being measured.

5.1 Experimental Setup

Each model was trained for 15 epochs, with the
validation performance computed at each epoch.
The model achieving the highest validation set
performance was used for the results on the test
data. The hyperparameters and experimental set-
tings are shown in the Appendix ??. The source
code will be open-sourced when this paper is re-
leased.

In the experiments, the performance on each
downstream task was measured for each pretrain-
ing objective. Combinations where the pretraining
objective is the same as the downstream task were
excluded.

The pretraining and finetuning is carried out on
the same dataset. This evaluates the pretraining
objectives as a means of extracting additional in-
formation from the same data, in contrast to eval-
uating their ability to benefit from additional data.
Though pretraining on external data may prove
to be effective, identifying a suitable pretraining
dataset is challenging and this approach more di-
rectly evaluates the pretraining objectives.

5.2 Performance on Full Data

To first examine whether the pretraining objectives
facilitate improved performance on downstream
tasks a baseline model was trained for each down-
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BSP DAP NUR NUG
F-1 F-1 H@1 BLEU

None 18.48 40.33 63.72 14.21
NUR 17.80 43.25 – 15.39
NUG 17.96 42.31 67.34 –
MUR 16.76 44.87 62.38 15.27
InI 16.61 44.84 62.62 15.52

Table 1: Results of evaluating the chosen pretraining
objectives, preceded by the baseline, on the four down-
stream tasks. This evaluation used all of the training
data for the downstream tasks as described in Section
5.2.

stream task, using the entire set of MultiWoz data.
The first row of Table 1 shows the performance of
randomly initialized models for each downstream
task. To evaluate the full capabilities of the pre-
training objectives above, the pretrained models
were used to initialize the models for the down-
stream tasks.

Results are shown on Table 1. This experimen-
tal setup speaks to the strength and the general-
ity of the pretrained representations. Using un-
supervised pretraining, the models produce dia-
log representations that are strong enough to im-
prove downstream tasks. The learned represen-
tations demonstrate generality because the multi-
ple downstream tasks benefit from the same pre-
training. Rather than learning representations that
are useful for just the pretraining objective, or for
a single downstream task, the learned representa-
tions are general and beneficial for multiple tasks.

For the DAP and NUG downstream tasks, the
pretrained models consistently outperformed the
baseline. InI has the highest BLEU score for
NUG. This may be a consequence of the impor-
tance of both global context representations and
local utterance representations in sequence gen-
eration models. Both InI and MUR score much
higher than the baseline and the other methods for
DAP, which may be due to the fact that these two
approaches are trained to learn a representation of
each utterance rather than just an overall context
representation. NUR has significant gains when
pretraining with NUG, possibly because the infor-
mation that must be captured to generate the next
utterance is similar to the information needed to
retrieve the next utterance. Unlike the other down-
stream tasks, BSP did not benefit from pretraining.
A potential justification of this result is that due to
the difficulty of the task, the model needs to resort

to word-level pattern matching. The generality of
the pretrained representations precludes this.

5.3 Convergence Analysis

This experimental setup measures the impact of
pretraining on the convergence of the downstream
training. Sufficiently general pretraining objec-
tives should learn to extract useful representations
of the dialog context. Thus when fine-tuning on a
given downstream task, the model should be able
to use the representations it has already learned
rather than having to learn to extract relevant fea-
tures from scratch. The performance on all down-
stream tasks with the different pretraining objec-
tives is evaluated at every epoch. The results are
presented on Figure 1.

These figures show faster convergence across
all downstream tasks with significant improve-
ment over a random initialization baseline. The re-
sults show that performance on the initial epochs
is considerably better with pretraining than with-
out. In most cases, performance evens out during
training, thus attaining results that are comparable
to the pretraining methods on the full dataset. It is
important to note that performance of the models
after just a single epoch of training is significantly
higher on all downstream tasks when the encoder
has been pretrained. This underlines the useful-
ness of the features learned in pretraining.

The convergence of BSP shown in Figure 1
is very interesting. Though the baseline ulti-
mately outperforms all other methods, the pre-
trained models attain their highest performance in
the early epochs. This suggests that the represen-
tations learned in pretraining are indeed useful for
this task despite the fact that they do not show im-
provement over the baseline.

5.4 Performance on Limited Data

Sufficiently strong and general pretrained repre-
sentations, should continue to succeed in down-
stream evaluation even when fine-tuned on signifi-
cantly less data. The performance on downstream
tasks is evaluated with various amounts of fine-
tuning data (1%, 2%, 5%, 10% and 50%).

The effect of the training data size for each
downstream task is also evaluated. The perfor-
mance of NUR with different amounts of train-
ing data is shown on Figure 2. With 5% of the
fine-tuning data, the NUG pretrained model out-
performs the baseline that used 10%. With 10%



3842

Figure 1: The performance of (from left to right) BSP, DAP, NUR, NUG across epochs with different pretraining
objectives. For the BLEU-4 score in NUG, the results are noisy due to the metric being the BLEU score, however
the general trend is still apparent.

Figure 2: NUR Hits@1 at different training set sizes.
The blue horizontal line is the baseline performance
with 50% of the data. The red horizontal line is the
baseline performance with 10% of the data.

of the fine-tuning data, this model outperforms the
baseline that used 50% of the data.

Table 2 shows all of the results with 1% of the
fine-tuning data, while Table 3 shows the results
with 10% of the fine-tuning data. More results
may be found in the Appendix ??.

BSP DAP NUR NUG
F-1 F-1 H@1 BLEU

None 4.65 16.07 12.28 6.82
NUR 6.44 14.48 – 11.29
NUG 7.63 17.41 28.08 –
MUR 5.89 17.19 23.37 10.47
InI 6.18 12.20 21.84 11.10

Table 2: Performance using 1% of the data; the
rows correspond to the pretraining objectives and the
columns correspond to the downstream tasks.

The results shown here strongly highlight the
effectiveness of pretraining. With a small fraction

BSP DAP NUR NUG
F-1 F-1 H@1 BLEU

None 5.73 18.44 34.88 9.19
NUR 7.30 20.84 – 14.04
NUG 9.62 22.11 45.05 –
MUR 7.08 22.24 39.38 11.63
InI 7.30 20.73 35.26 13.23

Table 3: Results with 10% of the data; the rows cor-
respond to the pretraining objectives and the columns
correspond to the downstream tasks.

of the data, unsupervised pretraining shows com-
petitive performance on downstream tasks.

When the amount of data is very limited, the
best results were obtained by models pretrained
with NUG. This may be indicative of the general-
ity of NUG pretraining. Since the generation task
is difficult, it is likely that the pretrained model
learns to capture the most general context repre-
sentation that it can. This makes the represen-
tations especially suitable for low resource con-
ditions since NUG pretrained representations are
general enough to adapt to different tasks given
even very small amounts of data,

5.5 Domain Generalizability

Sufficiently general pretrained representations
should facilitate domain generalizability on the
downstream tasks, just as pretraining should en-
courage the downstream models to use domain ag-
nostic representations and identify domain agnos-
tic relationships in the data.

This experimental setup is designed to mimic
the scenario of adding a new domain as the down-
stream task. It assumes that there are large quanti-
ties of unlabeled data for unsupervised pretraining
in all domains but that there is a limited set of la-
beled data for the downstream tasks. More specif-
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BSP DAP NUR NUG
F-1 F-1 H@1 BLEU

None 4.07 15.22 13.62 7.80
NUR 19.64 17.88 – 9.97
NUG 17.11 20.53 21.57 –
MUR 15.84 17.45 21.06 9.81
InI 14.61 15.56 19.80 10.87

Table 4: Results of evaluating pretrained objectives
on their capacity to generalize to the restaurant do-
main using only 50 in-domain samples and 2000 out-
of-domain samples during training. The evaluation is
carried out only on the in-domain test samples.

ically, for each downstream task there are 1000 la-
beled out-of-domain examples (2% of the dataset)
and only 50 labeled in-domain examples (0.1%
of the dataset). The performance of the down-
stream models is computed only on the in-domain
test samples, thereby evaluating the ability of our
models to learn the downstream task on the limited
in-domain data. The results on Table 4 show that
pretraining produces more general representations
and facilitates domain generalizability.

6 Discussion

The results with different experimental setups
demonstrate the effectiveness of the pretraining
objectives. Pretraining improves performance,
leads to faster convergence, works well in low-
data scenarios and facilitates domain generaliz-
ability. We now consider the respective strengths
of the different pretraining objectives.

NUR and NUG are complementary tasks.
Over all of the results, we can see that pretrain-
ing with either NUG or NUR, gives strong re-
sults when fine-tuning on the other one. This pro-
perty, which has also been observed by Wolf et al.
(2019), is a consequence of the similarity of the
two tasks. Both for retrieval and generation, con-
text encoding must contain all of the information
that is necessary to produce the next utterance.

NUG learns representations that are very
general. We see that NUG, especially in low data
experiments, effectively transfers to many down-
stream tasks. This speaks to the generality of its
representations. To auto-regressively generate the
next utterance, the context encoder in NUG must
capture a strong and expressive representation of
the dialog context. This representation is all that
the decoder uses to generate its response at word
level so it must contain all of the relevant infor-

< 3 ≥ 3 & < 7 ≥ 7

None 11.02 14.17 15.30
NUR 13.95 15.08 15.88
MUR 12.21 15.36 16.10
InI 11.52 15.40 16.63

Table 5: Results on the downstream task of NUG, with
different dialog context lengths (< 3 utterances, 3-7
utterances, and > 7 utterances.

mation. Despite the similarity of NUG and NUR,
generation is a more difficult task, due to the po-
tential output space of the model. As such, the
representations learned by NUG are more general
and expressive. The representative capabilities of
the encoder in a generation model are also demon-
strated by the work of Adi et al. (2016).

InI and MUR learn strong local representa-
tions of each utterance. The two novel pretrain-
ing objectives, InI and MUR, consistently show
strong improvement for the downstream NUG
task. Both of these objectives learn local repre-
sentations of each utterance in the dialog context
since both of their respective loss functions use the
representation of each utterance instead of just the
final hidden state. In an effort to better understand
the properties of the different objectives, Table 5
shows performance on the NUG task for different
dialog context lengths.

Generating a response to a longer dialog context
requires a strong local representation of each in-
dividual utterance. A model that does not capture
strong representations of each utterance will likely
perform poorly on longer contexts. For example,
for a dialog in which the user requests a restau-
rant recommendation, in order to generate the sys-
tem utterance that recommends a restaurant, the
model must consider all of the past utterances in
order to effectively generate the recommendation.
If the local representations of each utterance are
not strong, it would be difficult to generate the sys-
tem output.

The results in Table 5 demonstrate that both
InI and MUR strongly outperform other methods
on long contexts, suggesting that these methods
are effective for capturing strong representations
of each utterance. Both MUR and InI perform
poorly on shorter contexts. This further demon-
strates that fine-tuned NUG models learn to rely
on strong utterance representations, and therefore
struggle when there are few utterances.

Using the same dataset for pretraining and
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finetuning. The pretraining objectives demon-
strate large improvements over directly training
for the downstream task. No additional data is
used for pretraining, which suggests that the pro-
posed objective allow the model to extract stronger
and more general context representations from the
same data. The reduced data experiments show
that pretraining on a larger corpora (i.e., the full
data), results in strong performance on smaller
task-specific datasets (i.e., the reduced data). As
such, it is likely that pretraining on larger exter-
nal data will result in further performance gains,
however, it is challenging to identify a sufficient
corpus.

7 Conclusion and Future Work

This paper proposes several methods of unsuper-
vised pretraining for learning strong and general
dialog context representations, and demonstrates
their effectiveness in improving performance on
downstream tasks with limited fine-tuning data as
well as out-of-domain data. It proposes two novel
pretraining objectives: masked-utterance retrieval
and inconsistency identification which better cap-
ture both the utterance-level and context-level in-
formation. Evaluation of the learned represen-
tations on four downstream dialog tasks shows
strong performance improvement over randomly
initialized baselines.

In this paper, unsupervised pretraining has been
shown to learn effective representations of dialog
context, making this an important research direc-
tion for future dialog systems. These results open
three future research directions. First, the models
proposed here should be pretrained on larger exter-
nal dialog datasets. Second, it would be interesting
to test the representations learned using unsuper-
vised pretraining on less-related downstream tasks
such as sentiment analysis. Finally, the addition of
word-level pretraining methods to improve the di-
alog context representations should be explored.
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