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Abstract

Statistical morphological inflectors are typi-
cally trained on fully supervised, type-level
data. One remaining open research ques-
tion is the following: How can we effec-
tively exploit raw, token-level data to im-
prove their performance? To this end, we
introduce a novel generative latent-variable
model for the semi-supervised learning of
inflection generation. To enable posterior
inference over the latent variables, we de-
rive an efficient variational inference pro-
cedure based on the wake-sleep algorithm.
We experiment on 23 languages, using the
Universal Dependencies corpora in a sim-
ulated low-resource setting, and find im-
provements of over 10% absolute accuracy
in some cases.

1 Introduction

The majority of the world’s languages overtly en-
codes syntactic information on the word form it-
self, a phenomenon termed inflectional morphology
(Dryer et al., 2005). In English, for example, the
verbal lexeme with lemma talk has the four forms:
talk, talks, talked and talking. Other languages, such
as Archi (Kibrik, 1998), distinguish more than a
thousand verbal forms. Despite the cornucopia of
unique variants a single lexeme may mutate into,
native speakers can flawlessly predict the correct
variant that the lexeme’s syntactic context dictates.
Thus, in computational linguistics, a natural ques-
tion is the following: Can we estimate a probability
model that can do the same?

The topic of inflection generation has been the
focus of a flurry of individual attention of late and,
moreover, has been the subject of two shared tasks

* All authors contributed equally.
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Figure 1: A length-4 example of our generative model fac-
torized as in Eq. (1) and overlayed with example values of
the random variables in the sequence. We highlight that all
the conditionals in the Bayesian network are recurrent neural
networks, e.g., we note that m; depends on m; because we
employ a recurrent neural network to model the morphological
tag sequence.

(Cotterell et al., 2016, 2017). Most work, however,
has focused on the fully supervised case—a source
lemma and the morpho-syntactic properties are fed
into a model, which is asked to produce the desired
inflection. In contrast, our work focuses on the
semi-supervised case, where we wish to make use
of unannotated raw text, i.e., a sequence of inflected
tokens.

Concretely, we develop a generative directed
graphical model of inflected forms in context.
A contextual inflection model works as follows:
Rather than just generating the proper inflection for
a single given word form out of context (for exam-
ple walking as the gerund of walk), our generative
model is actually a fully-fledged language model.
In other words, it generates sequences of inflected
words. The graphical model is displayed in Fig. 1
and examples of words it may generate are pasted
on top of the graphical model notation. That our
model is a language model enables it to exploit both
inflected lexicons and unlabeled raw text in a prin-
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SG PL SG PL
NOM Wort Worter Herr Herren
GEN  Wortes Woérter Herrn  Herren
ACC  Wort Worter Herrn  Herren
DAT Worte Woértern Herrn  Herren

Table 1: As an exhibit of morphological inflection, full
paradigms (two numbers and four cases, 8§ slots total) for the
German nouns Wort (“word”) and Herr (“gentleman”), with
abbreviated and tabularized UniMorph annotation.

cipled semi-supervised way. In order to train using
raw-text corpora (which is useful when we have
less annotated data), we marginalize out the unob-
served lemmata and morpho-syntactic annotation
from unlabeled data. In terms of Fig. 1, this refers
to marginalizing out my,...,myq and {1,...,44.
As this marginalization is intractable, we derive
a variational inference procedure that allows for
efficient approximate inference. Specifically, we
modify the wake-sleep procedure of Hinton et al.
(1995). It is the inclusion of raw text in this fashion
that makes our model foken level, a novelty in the
camp of inflection generation, as much recent work
in inflection generation (Dreyer et al., 2008; Durrett
and DeNero, 2013; Nicolai et al., 2015; Ahlberg
et al., 2015; Faruqui et al., 2016), trains a model on
type-level lexicons.

We offer empirical validation of our model’s
utility with experiments on 23 languages from the
Universal Dependencies corpus in a simulated low-
resource setting.! Our semi-supervised scheme im-
proves inflection generation by over 10% absolute
accuracy in some cases.

2 Background: Morphological Inflection

2.1 Inflectional Morphology

To properly discuss models of inflectional morphol-
ogy, we require a formalization. We adopt the
framework of word-based morphology (Aronoff,
1976; Spencer, 1991). Note in the present paper,
we omit derivational morphology.

We define an inflected lexicon as a set of 4-
tuples consisting of a part-of-speech tag, a lexeme,
an inflectional slot, and a surface form. A lexeme
is a discrete object that indexes the word’s core
meaning and part of speech. In place of such an
abstract lexeme, lexicographers will often use a

'We make our code and data available at: https://
github.com/lwolfsonkin/morph-svae.

lemma, denoted by ¢, which is a designated” sur-
face form of the lexeme (such as the infinitive). For
the remainder of this paper, we will use the lemma
as a proxy for the lexeme, wherever convenient,
although we note that lemmata may be ambiguous:
bank is the lemma for at least two distinct nouns
and two distinct verbs. For inflection, this ambigu-
ity will rarely? play a role—for instance, all senses
of bank inflect in the same fashion.

A part-of-speech (POS) tag, denoted ¢, is a
coarse syntactic category such as VERB. Each
POS tag allows some set of lexemes, and also al-
lows some set of inflectional slots, denoted as o,
such as [TNS=PAST, PERSON=3]. Each allowed
(tag, lexeme, slot) triple is realized—in only one
way—as an inflected surface form, a string over
a fixed phonological or orthographic alphabet 3.
(In this work, we take X to be an orthographic
alphabet.) Additionally, we will define the term
morphological tag, denoted by m, which we take
to be the POS-slot pair m = (t, o). We will further
define T as the set of all POS tags and M as the
set of all morphological tags.

A paradigm 7(¢,¢) is the mapping from tag
t’s slots to the surface forms that “fill”” those slots
for lexeme/lemma ¢. For example, in the English
paradigm 7(VERB, talk), the past-tense slot is said
to be filled by talked, meaning that the lexicon con-
tains the tuple (VERB, talk, PAST, talked).

A cheat sheet for the notation is provided in
Tab. 2.

We will specifically work with the UniMorph
annotation scheme (Sylak-Glassman, 2016). Here,
each slot specifies a morpho-syntactic bundle of
inflectional features such as tense, mood, person,
number, and gender. For example, the German
surface form Wortern is listed in the lexicon with
tag NOUN, lemma Wort, and a slot specifying the
feature bundle [NUM=PL, CASE=DAT|. The full
paradigms w(NOUN, Wort) and 7(NOUN, Herr) are
found in Tab. 1.

2.2 Morphological Inflection

Now, we formulate the task of context-free mor-
phological inflection using the notation developed
in §2. Given a set of N form-tag-lemma triples

2A specific slot of the paradigm is chosen, depending on
the part-of-speech tag — all these terms are defined next.

3One example of a paradigm where the lexeme, rather than
the lemma, may influence inflection is hang. If one chooses
the lexeme that licenses animate objects, the proper past tense
is hanged, whereas it is hung for the lexeme that licenses
inanimate objects.


https://github.com/lwolfsonkin/morph-svae
https://github.com/lwolfsonkin/morph-svae

object symbol example

form f talking

lemma J4 talk

POS t VERB

slot o [TNS=GERUND|

morph. tag  m [POS=V, TNS=GERUND|

Table 2: Notational cheat sheet for the paper.

{{fi,ms, £:;)}¥,, the goal of morphological inflec-
tion is to map the pair (m;, ¢;) to the form f;. As
the definition above indicates, the task is tradition-
ally performed at the type level. In this work, how-
ever, we focus on a generalization of the task to
the token level—we seek to map a bisequence of
lemma-tag pairs to the sequence of inflected forms
in context. Formally, we will denote the lemma-
morphological tag bisequence as (£, m) and the
form sequence as f. Foreshadowing, the primary
motivation for this generalization is to enable the
use of raw-text in a semi-supervised setting.

3 Generating Sequences of Inflections

The primary contribution of this paper is a novel
generative model over sequences of inflected words
in their sentential context. Following the nota-
tion laid out in §2.2, we seek to jointly learn a
distribution over sequences of forms f, lemmata
£, and morphological tags m. The generative
procedure is as follows: First, we sample a se-
quence of tags m, each morphological tag com-
ing from a language model over morphological
tags: m; ~ pg(- | m;). Next, we sample the se-
quence of lemmata £ given the previously sampled
sequence of tags m— these are sampled condi-
tioned only on the corresponding morphological
tag: ¢; ~ pg(- | m;). Finally, we sample the se-
quence of inflected words f, where, again, each
word is chosen conditionally independent of other

elements of the sequence: f; ~ pg(- | £;,m;).*
This yields the factorized joint distribution:
p9(.f7£a m) = (D
|f]
1T pe(fil ti,mi) - pa(ts |'ms) |- pa(m)
i=1 M ~—~—
morphological inflector lemma generator m-tag LM

® ® @

“Note that we denote all three distributions as pe to sim-
plify notation and emphasize the joint modeling aspect; con-
text will always resolve the ambiguity in this paper. We will
discuss their parameterization in §4.

We depict the corresponding directed graphical
model in Fig. 1.

Relation to Other Models in NLP. As the
graphical model drawn in Fig. 1 shows, our model
is quite similar to a Hidden Markov Model (HMM)
(Rabiner, 1989). There are two primary differences.
First, we remark that an HMM directly emits a
form f; conditioned on the tag m;. Our model,
in contrast, emits a lemma ¢; conditioned on the
morphological tag m; and, then, conditioned on
both the lemma ¢; and the tag m;, we emit the in-
flected form f;. In this sense, our model resembles
the hierarchical HMM of Fine et al. (1998) with
the difference that we do not have interdependence
between the lemmata ¢;. The second difference
is that our model is non-Markovian: we sample
the i™ morphological tag m; from a distribution
that depends on all previous tags, using an LSTM
language model (§4.1). This yields richer interac-
tions among the tags, which may be necessary for
modeling long-distance agreement phenomena.

Why a Generative Model? What is our interest
in a generative model of inflected forms? Eq. (1)
is a syntax-only language model in that it only
allows for interdependencies between the morpho-
syntactic tags in pg(m). However, given a tag
sequence m, the individual lemmata and forms are
conditionally independent. This prevents the model
from learning notions such as semantic frames and
topicality. So what is this model good for? Our
chief interest is the ability to train a morphological
inflector on unlabeled data, which is a boon in a
low-resource setting. As the model is generative,
we may consider the latent-variable model:

p@(.f) = Z p@(fv‘e7m)7 (2)
(€,m)

where we marginalize out the latent lemmata and
morphological tags from raw text. The sum in
Eq. (2) is unabashedly intractable—given a se-
quence f, it involves consideration of an exponen-
tial (in | f|) number of tag sequences and an infinite
number of lemmata sequences. Thus, we will fall
back on an approximation scheme (see §5).

4 Recurrent Neural Parameterization

The graphical model from §3 specifies a family
of models that obey the conditional independence
assumptions dictated by the graph in Fig. 1. In this
section we define a specific parameterization using



long short-term memory (LSTM) recurrent neu-
ral network (Hochreiter and Schmidhuber, 1997)
language models (Sundermeyer et al., 2012).

4.1 LSTM Language Models

Before proceeding, we review the modeling of
sequences with LSTM language models. Given
some alphabet A, the distribution over sequences
x € A* can be defined as follows:

x|

p(x) = [[ p(z; | x<), (3)
j=1

where X = x1,...,x;_1. The prediction at time
step j of a single element x; is then parametrized
by a neural network:

p(xj | x<j) = softmax (W - h; + b), 4

where W € RI21*4 and b € RIA! are learned pa-
rameters (for some number of hidden units d) and
the hidden state h; € R? is defined through the
recurrence given by Hochreiter and Schmidhuber
(1997) from the previous hidden state and an em-
bedding of the previous character (assuming some
learned embedding function e: A — R¢ for some
number of dimensions c):

h; = LSTM(h;_y, e(zj_1)) (5)

4.2 Our Conditional Distributions

We discuss each of the factors in Eq. (1) in turn.

@ Morphological Tag Language Model: pg(m).
We define pg(m) as an LSTM language model, as
defined in §4.1, where we take A = M, i.e., the
elements of the sequence that are to be predicted are
tags like [POS=V, TNS=GERUND]|. Note that the
embedding function e does not treat them as atomic
units, but breaks them up into individual attribute-
value pairs that are embedded individually and then
summed to yield the final vector representation. To
be precise, each tag is first encoded by a multi-hot
vector, where each component corresponds to a
attribute-value pair in the slot, and then this multi-
hot vector is multiplied with an embedding matrix.

® Lemma Generator: pg(¢; | m;). The next
distribution in our model is a lemma generator
which we define to be a conditional LSTM lan-
guage model over characters (we take A = ), i.e.,
each x; is a single (orthographic) character. The
language model is conditioned on ¢; (the part-of-
speech information contained in the morphological

tag m; = (t;,0;)), which we embed into a low-
dimensional space and feed to the LSTM by con-
catenating its embedding with that of the current
character. Thusly, we obtain the new recurrence
relation for the hidden state:

by = LSTM (b1, [ e([t:)j-1): € () | ), ©

where [¢;]; denotes the j character of the gener-
ated lemma ¢; and €' : T — R¢ for some ¢ is a
learned embedding function for POS tags. Note
that we embed only the POS tag, rather than the
entire morphological tag, as we assume the lemma
depends on the part of speech exclusively.

® Morphological Inflector: po(f; | ¢;i,m;).
The final conditional in our model is a morpho-
logical inflector, which we parameterize as a neural
recurrent sequence-to-sequence model (Sutskever
et al., 2014) with Luong dot-style attention (Luong
et al., 2015). Our particular model uses a single
encoder-decoder architecture (Kann and Schiitze,
2016) for all tag pairs within a language and we
refer to reader to that paper for further details. Con-
cretely, the encoder runs over a string consisting of
the desired slot and all characters of the lemma that
is to be inflected (e.g. <w> V PST t a 1 k
</w>), one LSTM running left-to-right, the other
right-to-left. Concatenating the hidden states of
both RNNs at each time step results in hidden states
hg.enc). The decoder, again, takes the form of an
LSTM language model (we take A = X)), pro-
ducing the inflected form character by character,
but at each time step not only the previous hidden
state and the previously generated token are consid-
ered, but attention (a convex combination) over all
encoder hidden states hg»enc), with the distribution
given by another neural network; see Luong et al.
(2015).

5 Semi-Supervised Wake-Sleep

We train the model with the wake-sleep procedure,
which requires us to perform posterior inference
over the latent variables. However, the exact com-
putation in the model is intractable—it involves
a sum over all possible lemmatizations and tag-
gings of the sentence, as shown in Eq. (2). Thus,
we fall back on a variational approximation (Jor-
dan et al., 1999). We train an inference network
q¢(€,m | f) that approximates the true poste-
rior over the latent variables pg(£,m | f).° The

SInference networks are also known as stochastic inverses
(Stuhlmiiller et al., 2013) or recognition models (Dayan et al.,



variational family we choose in this work will be
detailed in §5.5. We fit the distribution gy using
a semi-supervised extension of the wake-sleep al-
gorithm (Hinton et al., 1995; Dayan et al., 1995;
Bornschein and Bengio, 2014). We derive the al-
gorithm in the following subsections and provide
pseudo-code in Alg. 1.

Note that the wake-sleep algorithm shows struc-
tural similarities to the expectation-maximization
(EM) algorithm (Dempster et al., 1977), and, pre-
saging the exposition, we note that the wake-sleep
procedure is a type of variational EM (Beal, 2003).
The key difference is that the E-step minimizes an
inclusive KL divergence, rather than the exclusive
one typically found in variational EM.

5.1 Data Requirements of Wake-Sleep

We emphasize again that we will train our model in
a semi-supervised fashion. Thus, we will assume
a set of labeled sentences, Dyypeied, represented as
a set of triples (f, £, m), and a set of unlabeled
sentences, Dypiapeled, r€presented as a set of surface
form sequences f.

5.2 The Sleep Phase

Wake-sleep first dictates that we find an approxi-
mate posterior distribution g¢ that minimizes the
KL divergences for all form sequences:

Die( pols) |l
N——
full joint: Eq. (1)

wi1) ) @
—_———

variational approximation

with respect to the parameters ¢, which control
the variational approximation q4. Because gg is
trained to be a variational approximation for any
input f, it is called an inference network. In
other words, it will return an approximate pos-
terior over the latent variables for any observed
sequence. Importantly, note that computation of
Eq. (7) is still hard—it requires us to normalize
the distribution pg, which, in turn, involves a sum
over all lemmatizations and taggings. However,
it does lend itself to an efficient Monte Carlo ap-
proximation. As our model is fully generative and
directed, we may easily take samples from the com-
plete joint. Specifically, we will take K samples
(f. 0, M) ~ pe(-, -, ) by forward sampling and de-
fine them as Dyje.p. We remark that we use a tilde
to indicate that a form, lemmata or tag is sampled,
rather than human annotated. Using K samples,

1995).

we obtain the objective

Sunsup = 1/K Z log qu(za m | })7 3)
<}12)m>€ﬁsleep

which we could maximize by fitting the model ¢
through backpropagation (Rumelhart et al., 1986),
as one would during maximum likelihood estima-
tion.

5.3 The Wake Phase

Now, given our approximate posterior qg (€, m |
f), we are in a position to re-estimate the param-
eters of the generative model pg(f, £, m). Given
a set of unannotated sentences D,;iqpeled, WE again
first consider the objective

Wunsup = 1/M Z lngg(f’zvm) (9)
<f727m>€5wake

where D, . is a set of triples ( f,@,rh) with
f € Dunaveiea and <£,’ﬁl> ~ qu,(-, . | f), maxi-
mizing with respect to the parameters  (we may
stochastically backprop through the expectation
simply by backpropagating through this sum). Note
that Eq. (9) is a Monte Carlo approximation of
the inclusive divergence of the data distribution of
Dunlabeiea times qd¢ with pg.

5.4 Adding Supervision to Wake-Sleep

So far we presented a purely unsupervised training
method that makes no assumptions about the la-
tent lemmata and morphological tags. In our case,
however, we have a very clear idea what the latent
variables should look like. For instance, we are
quite certain that the lemma of talking is talk and
that it is in fact a GERUND. And, indeed, we have
access to annotated examples Djypeieq in the form of
an annotated corpus. In the presence of these data,
we optimize the supervised sleep phase objective,

Ssup = 1/N-Z log gp(£,m | f).
(f£,m) EDiapeted

(10)

which is a Monte Carlo approximation of
Dki.(Diabetea || qp)- Thus, when fitting our varia-
tional approximation q¢, we will optimize a joint
objective S = Sgyp + Vsteep * Sunsup» Where Sy,
to repeat, uses actual annotated lemmata and mor-
phological tags; we balance the two parts of the
objective with a scaling parameter ;. Note that
on the first sleep phase iteration, we set Yyeep = 0
since taking samples from an untrained pg(-, -, -)



Algorithm 1 semi-supervised wake-sleep
1. input Digpejeq
2: input Dypiapeted
3: fori =1to I do
Dsleep — @
if 2 > 1 then
for k = 1to K do
(f€m) ~polse)
Dsleep — ,Dsleep U {(.fa £7 Ifh‘)}
maximize log q¢ ON Diaveiea U 'ZAjS]eep
_ > this corresponds to Eq. (10) + Eq. (8)
10: Dyvake — 0

> labeled training data
> unlabeled training data

R SR AN AN

11: for fN € Diuniabeled do

12: (&m) ~qp (- | f)

13: Dyake < Dyake U {<.f7 ev ’I’h>}
14: maximize log pg on Dypejea U 5wake

> this corresponds to Eq. (11) + Eq. (9)

when we have available labeled data is of little util-
ity. We will discuss the provenance of our data in
§7.2.

Likewise, in the wake phase we can neglect the
approximation g in favor of the annotated latent
variables found in D;,pee4; this leads to the follow-
ing supervised objective

Wap =1/N =Y logpe(f,£,m),
(f £,m)€Diabeiea

(11)

which is a Monte Carlo approximation of
Di1.(Digbetea || po). As in the sleep phase, we
will maximize W = Wy, + Ywake * Wansup» Where
Ywake 1S, again, a scaling parameter.

5.5 Our Variational Family

How do we choose the variational family ¢4? In
terms of NLP nomenclature, g4 represents a joint
morphological tagger and lemmatizer. The open-
source tool LEMMING (Miiller et al., 2015) repre-
sents such an object. LEMMING is a higher-order
linear-chain conditional random field (CRF; Laf-
ferty et al., 2001), that is an extension of the mor-
phological tagger of Miiller et al. (2013). Interest-
ingly, LEMMING is a linear model that makes use
of simple character n-gram feature templates. On
both the tasks of morphological tagging and lemma-
tization, neural models have supplanted linear mod-
els in terms of performance in the high-resource
case (Heigold et al., 2017). However, we are inter-
ested in producing an accurate approximation to
the posterior in the presence of minimal annotated

examples and potentially noisy samples produced
during the sleep phase, where linear models still
outperform non-linear approaches (Cotterell and
Heigold, 2017). We note that our variational ap-
proximation is compatible with any family.

5.6 Interpretation as an Autoencoder

We may also view our model as an autoencoder,
following Kingma and Welling (2013), who saw
that a variational approximation to any generative
model naturally has this interpretation. The crucial
difference between Kingma and Welling (2013)
and this work is that our model is a structured
variational autoencoder in the sense that the space
of our latent code is structured: the inference net-
work encodes a sentence into a pair of lemmata
and morphological tags (£, m). This bisequence
is then decoded back into the sequence of forms f
through a morphological inflector. The reason the
model is called an autoencoder is that we arrive at
an auto-encoding-like objective if we combine the
pe and gy as so:

p(F1F)=)_ po(flL:m) qp(t.m|f) (12)

(&;m)

where } is a copy of the original sentence f.

Note that this choice of latent space sadly pre-
cludes us from making use of the reparametrization
trick that makes inference in VAEs particularly ef-
ficient. In fact, our whole inference procedure is
quite different as we do not perform gradient de-
scent on both g4 and pg jointly but alternatingly
optimize both (using wake-sleep). We nevertheless
call our model a VAE to uphold the distinction be-
tween the VAE as a model (essentially a specific
Helmholtz machine (Dayan et al., 1995), justified
by variational inference) and the end-to-end infer-
ence procedure that is commonly used.

Another way of viewing this model is that it tries
to force the words in the corpus through a syntactic
bottleneck. Spiritually, our work is close to the
conditional random field autoencoder of Ammar
et al. (2014).

We remark that many other structured NLP tasks
can be “autoencoded” in this way and, thus, trained
by a similar wake-sleep procedure. For instance,
any two tasks that effectively function as inverses,
e.g., translation and backtranslation, or language
generation and parsing, can be treated with a simi-
lar variational autoencoder. While this work only



focuses on the creation of an improved morpho-
logical inflector pg(f | €, m), one could imagine
a situation where the encoder was also a task of
interest. That is, the goal would be to improve both
the decoder (the generation model) and the encoder
(the variational approximation).

6 Related Work

Closest to our work is Zhou and Neubig (2017),
who describe an unstructured variational autoen-
coder. However, the exact use case of our re-
spective models is distinct. Our method models
the syntactic dynamics with an LSTM language
model over morphological tags. Thus, in the semi-
supervised setting, we require token-level anno-
tation. Additionally, our latent variables are in-
terpretable as they correspond to well-understood
linguistic quantities. In contrast, Zhou and Neubig
(2017) infer latent lemmata as real vectors. To the
best of our knowledge, we are only the second at-
tempt, after Zhou and Neubig (2017), to attempt
to perform semi-supervised learning for a neural
inflection generator. Other non-neural attempts at
semi-supervised learning of morphological inflec-
tors include Hulden et al. (2014). Models in this
vein are non-neural and often focus on exploiting
corpus statistics, e.g., token frequency, rather than
explicitly modeling the forms in context. All of
these approaches are designed to learn from a type-
level lexicon, rendering direct comparison difficult.

7 Experiments

While we estimate all the parameters in the gen-
erative model, the purpose of this work is to im-
prove the performance of morphological inflectors
through semi-supervised learning with the incorpo-
ration of unlabeled data.

7.1 Low-Resource Inflection Generation

The development of our method was primarily
aimed at the low-resource scenario, where we ob-
serve a limited number of annotated data points.
Why low-resource? When we have access to a
preponderance of data, morphological inflection
is close to being a solved problem, as evinced in
SIGMORPHON’s 2016 shared task. However, the
CoNLL-SIGMORPHON 2017 shared task showed
there is much progress to be made in the low-
resource case. Semi-supervision is a clear avenue.

7.2 Data

As our model requires foken-level morphological
annotation, we perform our experiments on the
Universal Dependencies (UD) dataset (Nivre et al.,
2017). As this stands in contrast to most work
on morphological inflection (which has used the
UniMorph (Sylak-Glassman et al., 2015)° datasets),
we use a converted version of UD data, in which the
UD morphological tags have been deterministically
converted into UniMorph tags.

For each of the treebanks in the UD dataset, we
divide the training portion into three chunks consist-
ing of the first 500, 1000 and 5000 tokens, respec-
tively. These labeled chunks will constitute three
unique sets Dygpereq- The remaining sentences in
the training portion will be used as unlabeled data
Duniavetea for each language, i.e., we will discard
those labels. The development and test portions
will be left untouched.

Languages. We explore a typologically diverse
set of languages of various stocks: Indo-European,
Afro-Asiatic, Turkic and Finno-Ugric, as well as
the language isolate Basque. We have organized
our experimental languages in Tab. 3 by genetic
grouping, highlighting sub-families where possi-
ble. The Indo-European languages mostly exhibit
fusional morphologies of varying degrees of com-
plexity. The Basque, Turkic, and Finno-Ugric lan-
guages are agglutinative. Both of the Afro-Asiatic
languages, Arabic and Hebrew, are Semitic and
have templatic morphology with fusional affixes.

7.3 Evaluation

The end product of our procedure is a morphologi-
cal inflector, whose performance is to be improved
through the incorporation of unlabeled data. Thus,
we evaluate using the standard metric accuracy. We
will evaluate at the type level, as is traditional in the
morphological inflection literature, even though the
UD treebanks on which we evaluate are token-level
resources. Concretely, we compile an incomplete
type-level morphological lexicon from the token-
level resource. To create this resource, we gather
all unique form-lemma-tag triples (f, ¢, m) present

®The two annotation schemes are similar.
For a discussion, we refer the reader to http:
//universaldependencies.org/v2/features.
html; sadly there are differences that render all numbers
reported in this work incomparable with previous work, see
§7.4.
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Figure 2: Violin plots showing the distribution over accuracies. The structured variational autoencoder (SVAE) always
outperforms the neural network (NN), but only outperformed the FST-based approach when trained on 5000 annotated tokens.
Thus, while semi-supervised training helps neural models reduce their sample complexity, roughly 5000 annotated tokens are
still required to boost their performance above more symbolic baselines.

in the UD test data.”

7.4 Baselines

As mentioned before, most work on morphological
inflection has considered the task of estimating sta-
tistical inflectors from type-level lexicons. Here, in
contrast, we require token-level annotation to esti-
mate our model. For this reason, there is neither a
competing approach whose numbers we can make
a fair comparison to nor is there an open-source
system we could easily run in the token-level set-
ting. This is why we treat our token-level data as a
list of “types”® and then use two simple type-based
baselines.

First, we consider the probabilistic finite-state
transducer used as the baseline for the CoNLL-
SIGMORPHON 2017 shared task.” We consider
this a relatively strong baseline, as we seek to gener-
alize from a minimal amount of data. As described
by Cotterell et al. (2017), the baseline performed
quite competitively in the task’s low-resource set-
ting. Note that the finite-state machine is created by
heuristically extracting prefixes and suffixes from
the word forms, based on an unsupervised align-
ment step. The second baseline is our neural in-
flector p(f | ¢,m) given in §4 without the semi-
supervision; this model is state-of-the-art on the

"Some of these form-lemma-tag triples will overlap with
those seen in the training data.

8Typical type-based inflection lexicons are likely not i.i.d.
samples from natural utterances, but we have no other choice
if we want to make use of only our token-level data and not
additional resources like frequency and regularity of forms.

‘https://sites.google.com/view/
conll-sigmorphon2017/

high-resource version of the task.

We will refer to our baselines as follows: FST
is the probabilistic transducer, NN is the neu-
ral sequence-to-sequence model without semi-
supervision, and SVAE is the structured variational
autoencoder, which is equivalent to NN but also
trained using wake-sleep and unlabeled data.

7.5 Results

We ran the three models on 23 languages with
the hyperparameters and experimental details de-
scribed in App. A. We present our results in Fig. 2
and in Tab. 3. We also provide sample output of the
generative model created using the dream step in
App. B. The high-level take-away is that on almost
all languages we are able to exploit the unlabeled
data to improve the sequence-to-sequence model
using unlabeled data, i.e., SVAE outperforms the
NN model on all languages across all training sce-
narios. However, in many cases, the FST model is
a better choice—the FST can sometimes generalize
better from a handful of supervised examples than
the neural network, even with semi-supervision
(SVAE). We highlight three finer-grained observa-
tions below.

Observation 1: FST Good in Low-Resource.
As clearly evinced in Fig. 2, the baseline FST is still
competitive with the NN, or even our SVAE when
data is extremely scarce. Our neural architecture is
quite general, and lacks the prior knowledge and
inductive biases of the rule-based system, which
become more pertinent in low-resource scenarios.
Even though our semi-supervised strategy clearly
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‘ 500 tokens 1000 tokens 5000 tokens

lang ‘ FST NN SVAE AFST ANN FST NN SVAE AFST ANN FST NN SVAE AFST ANN

E c 81.0 28.11 71.76 -9.24 43.65 | 85.0 4258 78.46 -6.54 3588 | 84.0 7422 8577 1.77 11.55

fr 84.0 3625 7475 -9.25 385 | 85.0 47.04 7997 -5.03 3293 | 85.0 79.21 8396 -1.04 475

8 it 81.0 3130 6748 -13.52 36.18 | 81.0 43.58 77.37 -3.63 3379 | 82.0 71.09 73.11 -8.89 2.02
g [d Ia 21.0 14.02 29.12 8.12 15.10 | 26.0 19.62 27.06 1.06 744 | 300 41.00 4732 1732 632
< pt 81.0 31.58 7254 -8.46 4096 | 83.0 4727 73.24 976 2597 | 82.0 74.17 86.13 413 11.96
o 56.0 2256 5248 @ -3.52 2992 | 62.0 3468 5830 -370 23.62| 68.0 51.77 7549 749 2372

E s 57.0 3434 7532 1832 4098 | 60.0 46.14 80.97 2097 3483 | 72.0 7199 8444 1244 1245

nl 63.0 19.22 49.14 -13.86 2992 | 65.0 26.05 53.12 -11.88 27.07 | 70.0 53.70 6597 -4.03 12.27

2 da | 68.0 3125 6558 -242 3433 | 73.0 4451 7282 -0.18 2831 | 79.0 67.92 80.12 1.12 12.20
% B2 no | 69.0 3251 6546 -354 3295 | 71.0 4626 74.49 349 2823 | 79.0 7131 8125 225 994
S EE mn | 640 2029 5462 938 3433 | 650 2432 6097 -403 36.65| 720 5040 73.35 1.35 2295
sV 63.0 19.02 58.15 -485 39.13 | 66.0 3635 67.18 1.18 30.83 | 740 59.82 7823 423 1841

B bg 44.0 1551 4722 322 31.71 | 51.0 21.00 57.18 6.18 36.18 | 59.0 49.06 71.15 12.15 22.09
UE} el pl 50.0 1275 48.62 -1.38 3587 | 57.0 19.88 5590 -1.10 36.02 | 64.0 5444 67.15 3.15 1271
si 520 15.60 55.69 3.69 40.09 | 61.0 2639 61.22 022 3483 | 68.0 66.65 7540 740 875

E B ar 140 3147 6353 4953 3206 | 17.0 4853 7152 5452 2299 | 340 68.16 80.72 46.72 12.56
s &= he 60.0 37.61 71.11 11.11 3350 | 66.0 5028 7632 1032 26.04 | 72.0 6437 86.60 146 2223
5'-“ hu 53.0 2256 48.64 -436 26.08 | 56.0 28.62 60.74 4.74 3212 | 61.0 6645 7284 11.84 6.39
g et 39.0 21.81 42.16 3.16 2035 | 450 29.66 51.75 6.75 22.09 | 490 46.82 5891 991 12.09
& H= fi 37.0 1297 35.78 -1.22 2281 | 420 19.03 47.65 5.65 28.62 | 49.0 46.75 62776 13.76 16.01
. Iv 570 17.16 4829 -871 31.13 | 63.0 1830 5358 -942 3528 | 66.0 51.84 66.12 0.12 14.28
é; eu 50.0 2446 4872 -1.28 2426 | 540 35.14 5339 -0.61 1825| 560 5629 6233 633 6.04
tr 340 20.67 37.92 392 1725 | 37.0 2433 49.67 12.67 2534 | 48.0 6326 69.35 2135 6.09
avg ‘ 55.57 24.04 55.83 0.26 31.79 ‘ 59.61 33.89 62.73 312 6.90 ‘ 65.35 60.90 7341 8.06 1251

Table 3: Type-level morphological inflection accuracy across different models, training scenarios, and languages

improves the performance of NN, we cannot al-
ways recommend SVAE for the case when we only
have 500 annotated tokens, but on average it does
slightly better. The SVAE surpasses the FST when
moving up to 1000 annotated tokens, becoming
even more pronounced at 5000 annotated tokens.

Observation 2: Agglutinative Languages. The
next trend we remark upon is that languages of
an agglutinating nature tend to benefit more from
the semi-supervised learning. Why should this
be? Since in our experimental set-up, every lan-
guage sees the same number of tokens, it is natu-
rally harder to generalize on languages that have
more distinct morphological variants. Also, by the
nature of agglutinative languages, relevant mor-
phemes could be arbitrarily far from the edges of
the string, making the (NN and) SVAE’s ability to
learn more generic rules even more valuable.

Observation 3: Non-concatenative Morphology.
One interesting advantage that the neural models
have over the FSTs is the ability to learn non-
concatenative phenomena. The FST model is based
on prefix and suffix rewrite rules and, naturally,
struggles when the correctly reinflected form is
more than the concatenation of these parts. Thus
we see that for the two semitic language, the SVAE
is the best method across all resource settings.

8 Conclusion

We have presented a novel generative model for
morphological inflection generation in context.
The model allows us to exploit unlabeled data in
the training of morphological inflectors. As the
model’s rich parameterization prevents tractable in-
ference, we craft a variational inference procedure,
based on the wake-sleep algorithm, to marginal-
ize out the latent variables. Experimentally, we
provide empirical validation on 23 languages. We
find that, especially in the lower-resource condi-
tions, our model improves by large margins over
the baselines.
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A Hyperparameters and Experimental
Details

Here, we list all the hyperparameters and other ex-
perimental details necessary for the reproduction
of the numbers presented in Tab. 3. The final ex-
periments were produced with the follow setting.
We performed a modest grid search over various
configurations in the search of the best option on
development for each component.

LSTM Morphological Tag Language Model.
The morphological tag language model is a 2-layer
vanilla LSTM trained with hidden size of 200. It is
trained to for 40 epochs using SGD with a cross en-
tropy loss objective, and an initial learning rate of
20 where the learning rate is quartered during any
epoch where the loss on the validation set reaches
a new minimum. We regularize using dropout of
0.2 and clip gradients to 0.25. The morphological
tags are embedded (both for input and output) with
a multi-hot encoding into R?%°, where any given
tag has an embedding that is the sum of the em-
bedding for its constituent POS tag and each of its
constituent slots.

Lemmata Generator. The lemma generator is
a single-layer vanilla LSTM, trained for 10000
epochs using SGD with a learning rate of 4, using
a batch size of 20000. The LSTM has 50 hidden
units, embeds the POS tags into R and each to-
ken (i.e., character) into R®. We regularize using
weight decay (1e-6), no dropout, and clip gradients
to 1. When sampling lemmata from the model, we
cool the distribution using a temperature of 0.75 to
generate more “conservative” values. The hyper-
parameters were manually tuned on Latin data to
produce sensible output and fit development data
and then reused for all languages of this paper.

Morphological Inflector. The reinflection
model is a single-layer GRU-cell seq2seq model
with a bidirectional encoder and multiplicative
attention in the style of Luong et al. (2015), which
we train for 250 iterations of AdaDelta (Zeiler,
2012). Our search over the remaining hyperparam-
eters was as follows (optimal values in bold): input
embedding size of [50, 100, 200, 300 |, hidden size
of [50, 100, 150, 200], and a dropout rate of [0.0,
0.1,0.2,0.3, 0.4, 0.5].

Lemmatizer and Morphological Tagger. The
joint lemmatizer and tagger is LEMMING as de-
scribed in §5.5. It is trained with default parame-
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ters, the pretrained word vectors from Bojanowski
et al. (2016) as type embeddings, and beam size 3.

Wake-Sleep We run two iterations (I = 2) of
wake-sleep. Note that each of the subparts of wake-
sleep: estimating pg and estimating g are trained
to convergence and use the hyperparameters de-
scribed in the previous paragraphs. We set y,ake
and Yyeep to 0.25, so we observe roughly 1/4 as
many dreamt samples as true samples. The samples
from the generative model often act as a regularizer,
helping the variational approximation (as measured
on morphological tagging and lemmatization accu-
racy) on the UD development set, but sometimes
the noise lowers performance a mite. Due to a lack
of space in the initial paper, we did not deeply ex-
amine the performance of the tagger-lemmatizer
outside the context of improving inflection predic-
tion accuracy. Future work will investigate ques-
tion of how much tagging and lemmatization can
be improved through the incorporation of samples
from our generative model. In short, our efforts
will evaluate the inference network in its own right,
rather than just as a variational approximation to
the posterior.

B Fake Data from the Sleep Phase

An example sentence f sampled via (f, £, m) ~
pe (-, -, ) in Portuguese:
dentremeticamente » isso Procusas
Da Fase » pos a acorditica
Maisringeringe Ditudis A ana ,
Urevirao Da De O linsith.muital ,
E que chegou interalionalmente Da
anundica De mépinsuriormentais
and in Latin:

inpremcret ita sacrum super annum
pronditi avocere quo det tuam
nunsidebus quod puela ?



