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Abstract

Asking good questions in large-scale,
open-domain conversational systems is
quite significant yet rather untouched.
This task, substantially different from tra-
ditional question generation, requires to
question not only with various patterns
but also on diverse and relevant topics.
We observe that a good question is a nat-
ural composition of interrogatives, topic
words, and ordinary words. Interroga-
tives lexicalize the pattern of questioning,
topic words address the key information
for topic transition in dialogue, and ordi-
nary words play syntactical and grammat-
ical roles in making a natural sentence. We
devise two typed decoders (soft typed de-
coder and hard typed decoder) in which
a type distribution over the three types is
estimated and used to modulate the final
generation distribution. Extensive exper-
iments show that the typed decoders out-
perform state-of-the-art baselines and can
generate more meaningful questions.

1 Introduction

Learning to ask questions (or, question generation)
aims to generate a question to a given input. De-
ciding what to ask and how is an indicator of ma-
chine understanding (Mostafazadeh et al., 2016),
as demonstrated in machine comprehension (Du
et al., 2017; Zhou et al., 2017b; Yuan et al., 2017)
and question answering (Tang et al., 2017; Wang
et al., 2017). Raising good questions is essen-
tial to conversational systems because a good sys-
tem can well interact with users by asking and re-
sponding (Li et al., 2016). Furthermore, asking
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questions is one of the important proactive behav-
iors that can drive dialogues to go deeper and fur-
ther (Yu et al., 2016).

Question generation (QG) in open-domain con-
versational systems differs substantially from the
traditional QG tasks. The ultimate goal of this
task is to enhance the interactiveness and persis-
tence of human-machine interactions, while for
traditional QG tasks, seeking information through
a generated question is the major purpose. The re-
sponse to a generated question will be supplied in
the following conversations, which may be novel
but not necessarily occur in the input as that in tra-
ditional QG (Du et al., 2017; Yuan et al., 2017;
Tang et al., 2017; Wang et al., 2017; Mostafazadeh
et al., 2016). Thus, the purpose of this task is to
spark novel yet related information to drive the in-
teractions to continue.

Due to the different purposes, this task is unique
in two aspects: it requires to question not only in
various patterns but also about diverse yet rele-
vant topics. First, there are various questioning
patterns for the same input, such as Yes-no ques-
tions and Wh-questions with different interroga-
tives. Diversified questioning patterns make di-
alogue interactions richer and more flexible. In-
stead, traditional QG tasks can be roughly ad-
dressed by syntactic transformation (Andrenucci
and Sneiders, 2005; Popowich and Winne, 2013),
or implicitly modeled by neural models (Du et al.,
2017). In such tasks, the information questioned
on is pre-specified and usually determines the pat-
tern of questioning. For instance, asking Who-
question for a given person, or Where-question for
a given location.

Second, this task requires to address much more
transitional topics of a given input, which is the
nature of conversational systems. For instance, for
the input “I went to dinner with my friends”, we
may question about topics such as friend, cuisine,
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price, place and taste. Thus, this task generally
requires scene understanding to imagine and com-
prehend a scenario (e.g., dining at a restaurant)
that can be interpreted by topics related to the in-
put. However, in traditional QG tasks, the core in-
formation to be questioned on is pre-specified and
rather static, and paraphrasing is more required.

Figure 1: Good questions in conversational sys-
tems are a natural composition of interrogatives,
topic words, and ordinary words.

Undoubtedly, asking good questions in conver-
sational systems needs to address the above is-
sues (questioning with diversified patterns, and
addressing transitional topics naturally in a gen-
erated question). As shown in Figure 1, a good
question is a natural composition of interrogatives,
topic words, and ordinary words. Interrogatives
indicate the pattern of questioning, topic words ad-
dress the key information of topic transition, and
ordinary words play syntactical and grammatical
roles in making a natural sentence.

We thus classify the words in a question into
three types: interrogative, topic word, and or-
dinary word automatically. We then devise two
decoders, Soft Typed Decoder (STD) and Hard
Typed Decoder (HTD), for question generation in
conversational systems1. STD deals with word
types in a latent and implicit manner, while HTD
in a more explicit way. At each decoding position,
we firstly estimate a type distribution over word
types. STD applies a mixture of type-specific gen-
eration distributions where type probabilities are
the coefficients. By contrast, HTD reshapes the
type distribution by Gumbel-softmax and modu-
lates the generation distribution by type probabili-
ties. Our contributions are as follows:

• To the best of our knowledge, this is the first
study on question generation in the setting of

1To simplify the task, as a preliminary research, we con-
sider the one-round conversational system.

conversational systems. We analyze the key
differences between this new task and other
traditional question generation tasks.

• We devise soft and hard typed decoders to ask
good questions by capturing different roles of
different word types. Such typed decoders
may be applicable to other generation tasks
if word semantic types can be identified.

2 Related Work

Traditional question generation can be seen in
task-oriented dialogue system (Curto et al., 2012),
sentence transformation (Vanderwende, 2008),
machine comprehension (Du et al., 2017; Zhou
et al., 2017b; Yuan et al., 2017; Subramanian et al.,
2017), question answering (Qin, 2015; Tang et al.,
2017; Wang et al., 2017; Song et al., 2017), and
visual question answering (Mostafazadeh et al.,
2016). In such tasks, the answer is known and is
part of the input to the generated question. Mean-
while, the generation tasks are not required to pre-
dict additional topics since all the information has
been provided in the input. They are applicable
in scenarios such as designing questions for read-
ing comprehension (Du et al., 2017; Zhou et al.,
2017a; Yuan et al., 2017), and justifying the visual
understanding by generating questions to a given
image (video) (Mostafazadeh et al., 2016).

In general, traditional QG tasks can be ad-
dressed by the heuristic rule-based reordering
methods (Andrenucci and Sneiders, 2005; Ali
et al., 2010; Heilman and Smith, 2010), slot-
filling with question templates (Popowich and
Winne, 2013; Chali and Golestanirad, 2016; Lab-
utov et al., 2015), or implicitly modeled by recent
neural models(Du et al., 2017; Zhou et al., 2017b;
Yuan et al., 2017; Song et al., 2017; Subramanian
et al., 2017). These tasks generally do not require
to generate a question with various patterns: for a
given answer and a supporting text, the question
type is usually decided by the input.

Question generation in large-scale, open-
domain dialogue systems is relatively unexplored.
Li et al. (2016) showed that asking questions in
task-oriented dialogues can offer useful feedback
to facilitate learning through interactions. Several
questioning mechanisms were devised with hand-
crafted templates, but unfortunately not applicable
to open-domain conversational systems. Similar
to our goal, a visual QG task is proposed to gener-
ate a question to interact with other people, given
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an image as input (Mostafazadeh et al., 2016).

3 Methodology

3.1 Overview
The task of question generation in conversational
systems can be formalized as follows: given a
user post X = x1x2 · · ·xm, the system should
generate a natural and meaningful question Y =
y1y2 · · · yn to interact with the user, formally as

Y ∗ = argmax
Y

P(Y |X).

As aforementioned, asking good questions in
conversational systems requires to question with
diversified patterns and address transitional topics
naturally in a question. To this end, we classify
the words in a sentence into three types: interrog-
ative, topic word, and ordinary word, as shown in
Figure 1. During training, the type of each word
in a question is decided automatically2. We man-
ually collected about 20 interrogatives. The verbs
and nouns in a question are treated as topic words,
and all the other words as ordinary words. During
test, we resort to PMI (Church and Hanks, 1990)
to predict a few topic words for a given post.

On top of an encoder-decoder framework, we
propose two decoders to effectively use word
types in question generation. The first model is
soft typed decoder (STD). It estimates a type dis-
tribution over word types and three type-specific
generation distributions over the vocabulary, and
then obtains a mixture of type-specific distribu-
tions for word generation.

The second one is a hard form of STD, hard
typed decoder (HTD), in which we can control the
decoding process more explicitly by approximat-
ing the operation of argmax with Gumbel-softmax
(Jang et al., 2016). In both decoders, the final gen-
eration probability of a word is modulated by its
word type.

3.2 Encoder-Decoder Framework
Our model is based on the general encoder-
decoder framework (Cho et al., 2014; Sutskever
et al., 2014). Formally, the model encodes an in-
put sequence X = x1x2 · · ·xm into a sequence of
hidden states hi, as follows,

ht = GRU(ht−1, e(xt)),

2Though there may be errors in word type classification,
we found it works well in response generation.

where GRU denotes gated recurrent units (Cho
et al., 2014), and e(x) is the word vector of
word x. The decoder generates a word sequence
by sampling from the probability P(yt|y<t, X)
(y<t = y1y2 · · · yt−1, the generated subsequence)
which can be computed via

P(yt|y<t, X) = MLP(st, e(yt−1), ct),
st = GRU(st−1, e(yt−1), ct),

where st is the state of the decoder at the time step
t, and this GRU has different parameters with the
one of the encoder. The context vector ct is an
attentive read of the hidden states of the encoder as
ct =

∑T
i=1 αt,ihi, where the weight αt,i is scored

by another MLP(st−1, hi) network.

3.3 Soft Typed Decoder (STD)

In a general encoder-decoder model, the decoder
tends to generate universal, meaningless questions
like “What’s up?” and “So what?”. In order to
generate more meaningful questions, we propose a
soft typed decoder. It assumes that each word has
a latent type among the set {interrogative, topic
word, ordinary word}. The soft typed decoder
firstly estimates a word type distribution over la-
tent types in the given context, and then computes
type-specific generation distributions over the en-
tire vocabulary for different word types. The fi-
nal probability of generating a word is a mixture
of type-specific generation distributions where the
coefficients are type probabilities.

The final generation distribution P(yt|y<t, X)
from which a word can be sampled, is given by

P(yt|y<t, X) =

k∑
i=1

P(yt|tyt = ci, y<t, X) · P(tyt = ci|y<t, X), (1)

where tyt denotes the word type at time step t
and ci is a word type. Apparently, this formula-
tion states that the final generation probability is a
mixture of the type-specific generation probabili-
ties P(yt|tyt = ci, y<t, X), weighted by the prob-
ability of the type distributionP(tyt = ci|y<t, X).
We name this decoder as soft typed decoder. In
this model, word type is latent because we do not
need to specify the type of a word explicitly. In
other words, each word can belong to any of the
three types, but with different probabilities given
the current context.

The probability distribution over word types
C = {c1, c2, · · · , ck} (k = 3 in this paper) (termed
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Figure 2: Illustration of STD and HTD. STD applies a mixture of type-specific generation distributions
where type probabilities are the coefficients. In HTD, the type probability distribution is reshaped by
Gumbel-softmax and then used to modulate the generation distribution. In STD, the generation distribu-
tion is over the same vocabulary whereas dynamic vocabularies are applied in HTD.

as type distribution) is given by

P(tyt|y<t, X) = softmax(W0st + b0), (2)

where st is the hidden state of the decoder at time
step t, W0 ∈ Rk×d, and d is the dimension of the
hidden state.

The type-specific generation distribution is
given by

P(yt|tyt = ci, y<t, X) = softmax(Wcist + bci),

where Wci ∈ R|V |×d and |V | is the size of the
entire vocabulary. Note that the type-specific gen-
eration distribution is parameterized by Wci , indi-
cating that the distribution for each word type has
its own parameters.

Instead of using a single distribution
P(yt|y<t, X) as in a general Seq2Seq de-
coder, our soft typed decoder enriches the model
by applying multiple type-specific generation
distributions. This enables the model to express
more information about the next word to be gen-
erated. Also note that the generation distribution
is over the same vocabulary, and therefore there is
no need to specify word types explicitly.

3.4 Hard Typed Decoder (HTD)

In the soft typed decoder, we assume that each
word is a distribution over the word types. In this
sense, the type of a word is implicit. We do not
need to specify the type of each word explicitly. In
the hard typed decoder, words in the entire vocab-
ulary are dynamically classified into three types
for each post, and the decoder first estimates a type
distribution at each position and then generates a
word with the highest type probability. This pro-

cess can be formulated as follows:

c∗ = arg max
ci

P(tyt = ci|y<t, X), (3)

P(yt|y<t, X) = P(yt|tyt = c∗, y<t, X). (4)

This is essentially the hard form of Eq. 1, which
just selects the type with the maximal probabil-
ity. However, this argmax process may cause two
problems. First, such a cascaded decision pro-
cess (firstly selecting the most probable word type
and secondly choosing a word from that type) may
lead to severe grammatical errors if the first selec-
tion is wrong. Second, argmax is discrete and non-
differentiable, and it breaks the back-propagation
path during training.

To make best use of word types in hard typed
decoder, we address the above issues by apply-
ing Gumbel-Softmax (Jang et al., 2016) to approx-
imate the operation of argmax. There are several
steps in the decoder (see Figure 2):

First, the type of each word (interrogative,
topic, or ordinary) in a question is decided auto-
matically during training, as aforementioned.

Second, the generation probability distribution
is estimated as usual,

P(yt|y<t, X) = softmax(W0st + b0). (5)

Further, the type probability distribution at each
decoding position is estimated as follows,

P(tyt|y<t, X) = softmax(W1st + b1). (6)

Third, the generation probability for each word
is modulated by its corresponding type probabil-
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ity:

P ′(yt|y<t, X) = P(yt|y<t, X)·m(yt),

m(yt) =

{
1 , c(yt) = c∗

0 , c(yt) 6= c∗
(7)

where c(yt) looks up the word type of word yt,
and c∗ is the type with the highest probability as
defined in Eq. 3. This formulation has exactly the
effect of argmax, where the decoder will only gen-
erate words of type with the highest probability.

To make P∗(yt|y<t, X) a distribution, we nor-
malize these values by a normalization factor Z:

Z =
1∑

yt∈V P ′(yt|y<t, X)

where V is the decoding vocabulary. Then, the
final probability can be denoted by

P∗(yt|y<t, X) = Z · P ′(yt|y<t, X). (8)

As mentioned, in order to have an effect of
argmax but still maintain the differentiability, we
resort to Gumbel-Softmax (Jang et al., 2016),
which is a differentiable surrogate to the argmax
function. The type probability distribution is then
adjusted to the following form:

m(yt) = GS(P(tyt = c(yt)|y<t, X)),

GS(πi) =
e(log(πi)+gi)/τ∑k
j=1 e

(log(πj)+gj)/τ
, (9)

where π1, π2, · · · , πk represents the probabilities
of the original categorical distribution, gj are i.i.d
samples drawn from Gumbel(0,1)3 and τ is a con-
stant that controls the smoothness of the distribu-
tion. When τ → 0, Gumbel-Softmax performs
like argmax, while if τ → ∞, Gumbel-Softmax
performs like a uniform distribution. In our ex-
periments, we set τ a constant between 0 and 1,
making Gumbel-Softmax smoother than argmax,
but sharper than normal softmax.

Note that in HTD, we apply dynamic vocabu-
laries for different responses during training. The
words in a response are classified into the three
types dynamically. A specific type probability will
only affect the words of that type. During test,
for each post, topic words are predicted with PMI,
interrogatives are picked from a small dictionary,
and the rest of words in the vocabulary are treated
as ordinary words.

3If u ∼ Uniform(0, 1), then g = −log(−log(u)) ∼
Gumbel(0, 1).

3.5 Loss Function

We adopt negative data likelihood (equivalent to
cross entropy) as the loss function, and addition-
ally, we apply supervision on the mixture weights
of word types, formally as follows:

Φ1 =
∑
t

− logP(yt = ỹt|y<t, X), (10)

Φ2 =
∑
t

− logP(tyt = t̃yt|y<t, X), (11)

Φ = Φ1 + λΦ2, (12)

where t̃yt represents the reference word type and
ỹt represents the reference word at time t. λ is a
factor to balance the two loss terms, and we set
λ=0.8 in our experiments.

Note that for HTD, we substitute P∗(yt =
wj |y<t, X) (as defined by Eq. 8) into Eq. 10.

3.6 Topic Word Prediction

The only difference between training and infer-
ence is the means of choosing topic words. Dur-
ing training, we identify the nouns and verbs in
a response as topic words; whereas during infer-
ence, we adopt PMI (Church and Hanks, 1990)
and Rel(ki, X) to predict a set of topic words ki
for an input post X , as defined below:

PMI(wx, wy) = log
p(wx, wy)

p1(wx) ∗ p2(wy)
,

Rel(ki, X) =
∑
wx∈X

ePMI(wx,ki),

where p1(w)/p2(w) represent the probability of
word w occurring in a post/response, respectively,
and p(wx, wy) is the probability of word wx oc-
curring in a post and wy in a response.

During inference, we predict at most 20 topic
words for an input post. Too few words will affect
the grammaticality since the predicted set contains
infrequent topic words, while too many words in-
troduce more common topics leading to more gen-
eral responses.

4 Experiment

4.1 Dataset

To estimate the probabilities in PMI, we collected
about 9 million post-response pairs from Weibo.
To train our question generation models, we dis-
tilled the pairs whereby the responses are in ques-
tion form with the help of around 20 hand-crafted
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templates. The templates contain a list of inter-
rogatives and other implicit questioning patterns.
Such patterns detect sentences led by words like
what, how many, how about or sentences ended
with a question mark. After that, we removed the
pairs whose responses are universal questions that
can be used to reply many different posts. This is a
simple yet effective way to avoid situations where
the type probability distribution is dominated by
interrogatives and ordinary words.

Ultimately, we obtained the dataset comprising
about 491,000 post-response pairs. We randomly
selected 5,000 pairs for testing and another 5,000
for validation. The average number of words in
post/response is 8.3/9.3 respectively. The dataset
contains 66,547 different words, and 18,717 words
appear more than 10 times. The dataset is avail-
able at: http://coai.cs.tsinghua.edu.
cn/hml/dataset/.

4.2 Baselines
We compared the proposed decoders with four
state-of-the-art baselines.
Seq2Seq: A simple encoder-decoder with atten-
tion mechanisms (Luong et al., 2015).
MA: The mechanism-aware (MA) model applies
multiple responding mechanisms represented by
real-valued vectors (Zhou et al., 2017a). The
number of mechanisms is set to 4 and we ran-
domly picked one response from the generated re-
sponses for evaluation to avoid selection bias.
TA: The topic-aware (TA) model generates in-
formative responses by incorporating topic words
predicted from the input post (Xing et al., 2017).
ERM: Elastic responding machine (ERM) adap-
tively selects a subset of responding mechanisms
using reinforcement learning (Zhou et al., 2018a).
The settings are the same as the original paper.

4.3 Experiment Settings
Parameters were set as follows: we set the vo-
cabulary size to 20, 000 and the dimension of
word vectors as 100. The word vectors were pre-
trained with around 9 million post-response pairs
from Weibo and were being updated during the
training of the decoders. We applied the 4-layer
GRU units (hidden states have 512 dimensions).
These settings were also applied to all the base-
lines. λ in Eq. 12 is 0.8. We set different val-
ues of τ in Gumbel-softmax at different stages of
training. At the early stage, we set τ to a small
value (0.6) to obtain a sharper reformed distri-

bution (more like argmax). After several steps,
we set τ to a larger value (0.8) to apply a more
smoothing distribution. Our codes are available
at: https://github.com/victorywys/
Learning2Ask_TypedDecoder.

4.4 Automatic Evaluation

We conducted automatic evaluation over the
5, 000 test posts. For each post, we obtained re-
sponses from the six models, and there are 30, 000
post-response pairs in total.

4.4.1 Evaluation Metrics
We adopted perplexity to quantify how well a
model fits the data. Smaller values indicate bet-
ter performance. To evaluate the diversity of the
responses, we employed distinct-1 and distinct-2
(Li et al., 2015). These two metrics calculates the
proportion of the total number of distinct unigrams
or bigrams to the total number of generated tokens
in all the generated responses.

Further, we calculated the proportion of the re-
sponses containing at least one topic word in the
list predicted by PMI. This is to evaluate the abil-
ity of addressing topic words in response. We term
this metric as topical response ratio (TRR). We
predicted 20 topic words with PMI for each post.

4.4.2 Results
Comparative results are presented in Table 1. STD
and HTD perform fairly well with lower perplex-
ities, higher distinct-1 and distinct-2 scores, and
remarkably better topical response ratio (TRR).
Note that MA has the lowest perplexity because
the model tends to generate more universal re-
sponses.

Model Perplexity Distinct-1 Distinct-2 TRR

Seq2Seq 63.71 0.0573 0.0836 6.6%
MA 54.26 0.0576 0.0644 4.5%
TA 58.89 0.1292 0.1781 8.7%
ERM 67.62 0.0355 0.0710 4.5%
STD 56.77 0.1325 0.2509 12.1%
HTD 56.10 0.1875 0.3576 43.6%

Table 1: Results of automatic evaluation.

Our decoders have better distinct-1 and distinct-
2 scores than baselines do, and HTD performs
much better than the strongest baseline TA. No-
ticeably, the means of using topic information in
our models differs substantially from that in TA.
Our decoders predict whether a topic word should
be decoded at each position, whereas TA takes as

http://coai.cs.tsinghua.edu.cn/hml/dataset/
http://coai.cs.tsinghua.edu.cn/hml/dataset/
https://github.com/victorywys/Learning2Ask_TypedDecoder
https://github.com/victorywys/Learning2Ask_TypedDecoder
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Models
Appropriateness Richness Willingness

Win (%) Lose (%) Tie (%) Win (%) Lose (%) Tie (%) Win (%) Lose (%) Tie (%)

STD vs. Seq2Seq 42.0 38.6 19.4 37.2∗∗ 15.2 47.6 45.4∗ 38.6 16.0
STD vs. MA 39.6∗ 31.2 29.2 32.6∗∗ 16.8 50.6 49.4∗∗ 27.0 23.6
STD vs. TA 42.2 40.0 17.8 49.0∗∗ 5.4 45.6 47.6∗ 40.2 12.2
STD vs. ERM 43.4∗ 34.4 22.2 60.6∗∗ 13.2 26.2 43.2∗ 36.8 20.0

HTD vs. Seq2Seq 50.6∗∗ 30.6 18.8 46.0∗∗ 10.2 43.8 58.4∗∗ 33.2 8.4
HTD vs. MA 54.8∗∗ 24.4 20.8 45.0∗∗ 17.0 38.0 67.0∗∗ 18.0 15.0
HTD vs. TA 52.0∗∗ 38.2 9.8 55.0∗∗ 5.4 39.6 62.6∗∗ 31.0 6.4
HTD vs. ERM 64.8∗∗ 23.2 12.0 72.2∗∗ 8.4 19.4 56.6∗∗ 36.6 6.8

HTD vs. STD 52.0∗∗ 33.0 15.0 38.0∗∗ 26.2 35.8 61.8∗∗ 30.6 7.6

Table 2: Annotation results. Win for “A vs. B” means A is better than B. Significance tests with Z-test
were conducted. Values marked with ∗ means p-value < 0.05, and ∗∗ for p-value < 0.01.

input topic word embeddings at all decoding posi-
tions.

Our decoders have remarkably better topic re-
sponse ratios (TRR), indicating that they are more
likely to include topic words in generation.

4.5 Manual Evaluation

We resorted to a crowdsourcing service for manual
annotation. 500 posts were sampled for manual
annotation4. We conducted pair-wise comparison
between two responses generated by two models
for the same post. In total, there are 4,500 pairs to
be compared. For each response pair, five judges
were hired to give a preference between the two
responses, in terms of the following three met-
rics. Tie was allowed, and system identifiers were
masked during annotation.

4.5.1 Evaluation Metrics

Each of the following metrics is evaluated inde-
pendently on each pair-wise comparison:
Appropriateness: measures whether a question is
reasonable in logic and content, and whether it is
questioning on the key information. Inappropriate
questions are either irrelevant to the post, or have
grammatical errors, or universal questions.
Richness: measures whether a response contains
topic words that are relevant to a given post.
Willingness to respond: measures whether a user
will respond to a generated question. This metric
is to justify how likely the generated questions can
elicit further interactions. If people are willing to
respond, the interactions can go further.

4During the sampling process, we removed those posts
that are only interpretable with other context or background.

4.5.2 Results
The label of each pair-wise comparison is decided
by majority voting from five annotators. Results
shown in Table 2 indicate that STD and HTD out-
perform all the baselines in terms of all the met-
rics. This demonstrates that our decoders produce
more appropriate questions, with richer topics.
Particularly, our decoders have substantially better
willingness scores, indicating that questions gen-
erated by our models are more likely to elicit fur-
ther interactions. Noticeably, HTD outperforms
STD significantly, indicating that it is beneficial to
specify word types explicitly and apply dynamic
vocabularies in generation.

We also observed that STD outperforms
Seq2Seq and TA, but the differences are not sig-
nificant in appropriateness. This is because STD
generated about 7% non-question responses which
were judged as inappropriate, while Seq2Seq and
TA generated universal questions (inappropriate
too but beat STD in annotation) to these posts.

4.5.3 Annotation Statistics
The proportion of the pair-wise annotations in
which at least three of five annotators assign the
same label to a record is 90.57%/93.11%/96.62%
for appropriateness/ richness/willingness, respec-
tively. The values show that we have fairly good
agreements with majority voting.

4.6 Questioning Pattern Distribution
To analyze whether the model can question with
various patterns, we manually annotated the ques-
tioning patterns of the responses to 100 sampled
posts. The patterns are classified into 11 types in-
cluding Yes-No, How-, Why-, What-, When-, and
Who- questions. We then calculated the KL diver-
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gence between the pattern type distribution by a
model and that by human (i.e., gold responses).

Results in Table 3 show that the pattern distri-
bution by our model is closer to that in human-
written responses, indicating that our decoders
can better learn questioning patterns from human
language. Further investigation reveals that the
baselines tend to generate simple questions like
What?(什么？) or Really?(真的吗), and con-
stantly focus on using one or two question pat-
terns whereas our decoders use more diversified
patterns as appeared in the human language.

Model Seq2Seq TA MA ERM STD HTD

KLD 0.431 0.416 0.332 0.276 0.072 0.140

Table 3: KL divergence between the questioning
pattern distribution by a model and that by human.

4.7 Examples of the Generated Questions

Table 4 presents some generated questions by our
decoders, which are more appropriate. On the con-
trary, Seq2Seq, MA and ERM tend to generate
more universal questions. These examples also
clearly show that asking questions in open-domain
conversational systems requires scene understand-
ing, which is verified by this scene example of
singing at karaoke(在卡拉ok唱歌).

Post: 我们昨天去唱歌了
We went to karaoke yesterday.

Seq2Seq: 什什什么么么时候?
When?

MA: 你怎怎怎么么么知道我是在问
How did you know I am questioning you?

TA: 什什什么么么?
What?

ERM: 什什什么么么情况?
What happened ?

STD: 去哪哪哪里里里唱歌?
Where did you sing karaoke?

HTD: 你们几几几个人唱歌?
How many people were singing with you?

Table 4: Generated question examples. Interroga-
tive words are bolded and topic words underlined.

To further understand how to ask good ques-
tions in conversational systems, we presented
more generated question examples by human and
our typed decoders. The first example (Post-1) in
Table 5 shows that a good question can be com-
posed of only interrogatives and ordinary words.
This shows the complexity of this task and also the
necessity of modeling interrogatives. Post-2 indi-
cates a typical questioning pattern which is ques-

Post-1: 不好不好。哼！讨厌你啦。
No, no. Humph, I hate you!

Human: 我怎怎怎么么么了?
What is wrong with me?

STD: 我怎怎怎么么么了?
What is wrong with me?

HTD: 我怎怎怎么么么了?
What is wrong with me?

Post-2: 刚用了杀虫剂，现在已经有效果了。
I just sprayed the insecticide, and now the effect appears.

Human: 这么快!效果怎怎怎么么么样?
So quick! What is the effect?

STD: 效果如如如何何何?
What is the effect?

HTD: 效果如如如何何何?
What is the effect?

Post-3: 我在体育中心上班。
I work at the sports center.

Human: 你每天从家过去要多多多久久久?
How long does it take you to go there from home?

STD: 你是什什什么么么部门的啊?
Which department are you from?

HTD: 那你是体育学院的学生吗吗吗?
Are you a student from the College of Physical Education?

Post-4: 今天的寿司真好吃。
The sushi today is so delicious!

Human: 我记得你不喜欢吃日式料理的不是吗吗吗?
I remember you didn’t like eating Japanese food, did you?

STD: 你什什什么么么时候来无锡，我请你。
When will you come to Wuxi? It is my treat.

HTD: 是吗吗吗?改天尝尝!
Really? I will try sometime!

Table 5: Examples for typical questioning pat-
terns. Interrogative words in response are bolded
and topic words are underlined.

tioning on a particular topic word (效果-effect)
of the input. While for Post-3, the questions are
asking about transitional topics of the input (上
班-work → 部门-department; 体育中心-sports
center → 体育学院-college of Physical Educa-
tion), indicating a typical case of topic transition
in our task (also seen in Post-4,寿司-sushi→日式
料理-Japanese food). This example also demon-
strates that for the same input, there are various
questioning patterns: a How-question asked by
human, a Which-question by STD, and a Yes-No
question by HTD. As for Post-4, the gold ques-
tion requires a background that is only shared be-
tween the poster and responder, while STD and
HTD tend to raise more general questions due to
the lack of such shared knowledge.

4.8 Visualization of Type Distribution

To gain more insights into how a word type in-
fluence the generation process, we visualized the
type probability at each decoding position in HTD.
This example (Figure 3) shows that the model can
capture word types well at different positions. For
instance, at the first and second positions, ordinary
words have the highest probabilities for generating
你-you and 喜欢-like, and at the third position, a
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topic word兔子-rabbit is predicted while the last
two positions are for interrogatives (a particle and
a question mark).

Figure 3: Type distribution examples from HTD.
The generated question is “你喜欢兔子吗？do
you like rabbit?”. EOS means end of sentence.

4.9 Error Analysis
We presented error type distribution by manually
analyzing 100 bad responses sampled from STD
and HTD respectively, where bad means the re-
sponse by our model is worse than that by some
baseline during the pair-wise annotation.

There are 4 typical error types: no topic words
(NoT) in a response (mainly universal questions),
wrong topics (WrT) where topic words are irrele-
vant, type generation error (TGE) where a wrong
word type is predicted (See Eq. 2) and it causes
grammatical errors, and other errors.

Error Type NoT WrT TGE Others

STD 34% 34% 29% 3%
HTD 29% 39% 29% 3%

Table 6: Error type distribution.

The error distribution is shown in Table 6. For
STD, most of the errors are attributed to no topic
or wrong topics, while for HTD, the majority of
errors fall into wrong topics.

NoT


Post-1: 今天好开心啊!

I am so happy today!
STD: 你怎怎怎么么么知道?

How do you know ?

WrT



Post-2: 海报非常棒，期待若曦与我们男人的首
度合作。
The poster is great and we look forward to our
first cooperation with Ruoxi.

HTD: 你海报怎怎怎么么么样啊?
How about your poster ?

TGE



Post-3: 又生病啦?吃点药就好了。
Got sick again? Just take some medicine and
you’ll be fine soon.

STD: 我也不知道怎怎怎么么么回事。
I don’t know what happened.

HTD: 肠胃痛了，上火吗吗吗?
Stomach aching, ulcer ?

Table 7: Cases for the error types with interroga-
tive words bolded and topic words underlined.

There are typical cases for these error types: (1)
Posts such as “I am so happy today!” contains

no topic words or rare topic words. In this case,
our method is unable to predict the topic words so
that the models tend to generate universal ques-
tions. This happens more frequently in STD be-
cause the topic words are not specified explicitly.
(2) Posts contains multiple topic words, but the
model sometimes focuses on an inappropriate one.
For instance, for Post-2 in Table 7, HTD focused
on 海报-poster but 合作-cooperation is a proper
one to be focused on. (3) For complex posts, the
models failed to predict the correct word type in
response. For Post-3, STD generated a declarative
sentence and HTD generated a question which,
however, is not adequate within the context.

These cases show that controlling the question-
ing patterns and the informativeness of the content
faces with the compatibility issue, which is chal-
lenging in language generation. These errors are
also partially due to the imperfect ability of topic
word prediction by PMI, which is challenging it-
self in open-domain conversational systems.

5 Conclusion and Future Work

We present two typed decoders to generate ques-
tions in open-domain conversational systems. The
decoders firstly estimate a type distribution over
word types, and then use the type distribution
to modulate the final word generation distribu-
tion. Through modeling the word types in lan-
guage generation, the proposed decoders are able
to question with various patterns and address novel
yet related transitional topics in a generated ques-
tion. Results show that our models can gener-
ate more appropriate questions, with richer topics,
thereby more likely to elicit further interactions.

The work can be extended to multi-turn conver-
sation generation by including an additional detec-
tor predicting when to ask a question. The detector
can be implemented by a classifier or some heuris-
tics. Furthermore, the typed decoders are applica-
ble to the settings where word types can be eas-
ily obtained, such as in emotional text generation
(Ghosh et al., 2017; Zhou et al., 2018b).
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