
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 2009–2019
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

2009

Semi-supervised User Geolocation via Graph Convolutional Networks

Afshin Rahimi Trevor Cohn Timothy Baldwin
School of Computing and Information Systems

The University of Melbourne
arahimi@student.unimelb.edu.au
{t.cohn,tbaldwin}@unimelb.edu.au

Abstract

Social media user geolocation is vital to
many applications such as event detection.
In this paper, we propose GCN, a multiview
geolocation model based on Graph Con-
volutional Networks, that uses both text
and network context. We compare GCN
to the state-of-the-art, and to two base-
lines we propose, and show that our model
achieves or is competitive with the state-
of-the-art over three benchmark geoloca-
tion datasets when sufficient supervision is
available. We also evaluate GCN under a
minimal supervision scenario, and show it
outperforms baselines. We find that high-
way network gates are essential for control-
ling the amount of useful neighbourhood
expansion in GCN.

1 Introduction

User geolocation, the task of identifying the “home”
location of a user, is an integral component of many
applications ranging from public health monitor-
ing (Paul and Dredze, 2011; Chon et al., 2015;
Yepes et al., 2015) and regional studies of senti-
ment, to real-time emergency awareness systems
(De Longueville et al., 2009; Sakaki et al., 2010),
which use social media as an implicit information
resource about people.

Social media services such as Twitter rely on
IP addresses, WiFi footprints, and GPS data to ge-
olocate users. Third-party service providers don’t
have easy access to such information, and have to
rely on public sources of geolocation information
such as the profile location field, which is noisy and
difficult to map to a location (Hecht et al., 2011),
or geotagged tweets, which are publicly available
for only 1% of tweets (Cheng et al., 2010; Morstat-
ter et al., 2013). The scarcity of publicly available

location information motivates predictive user ge-
olocation from information such as tweet text and
social interaction data.

Most previous work on user geolocation takes
the form of either supervised text-based approaches
(Wing and Baldridge, 2011; Han et al., 2012) re-
lying on the geographical variation of language
use, or graph-based semi-supervised label propa-
gation relying on location homophily in user–user
interactions (Davis Jr et al., 2011; Jurgens, 2013).

Both text and network views are critical in geolo-
cating users. Some users post a lot of local content,
but their social network is lacking or is not repre-
sentative of their location; for them, text is the dom-
inant view for geolocation. Other users have many
local social interactions, and mostly use social me-
dia to read other people’s comments, and for inter-
acting with friends. Single-view learning would
fail to accurately geolocate these users if the more
information-rich view is not present. There has
been some work that uses both the text and network
views, but it either completely ignores unlabelled
data (Li et al., 2012a; Miura et al., 2017), or just
uses unlabelled data in the network view (Rahimi
et al., 2015b; Do et al., 2017). Given that the 1%
of geotagged tweets is often used for supervision,
it is crucial for geolocation models to be able to
leverage unlabelled data, and to perform well under
a minimal supervision scenario.

In this paper, we propose GCN, an end-to-end
user geolocation model based on Graph Convo-
lutional Networks (Kipf and Welling, 2017) that
jointly learns from text and network information
to classify a user timeline into a location. Our con-
tributions are: (1) we evaluate our model under
a minimal supervision scenario which is close to
real world applications and show that GCN outper-
forms two strong baselines; (2) given sufficient
supervision, we show that GCN is competitive, al-
though the much simpler MLP-TXT+NET outper-
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forms state-of-the-art models; and (3) we show that
highway gates play a significant role in controlling
the amount of useful neighbourhood smoothing in
GCN.1

2 Model

We propose a transductive multiview geolocation
model, GCN, using Graph Convolutional Networks
(“GCN”: Kipf and Welling (2017)). We also in-
troduce two multiview baselines: MLP-TXT+NET
based on concatenation of text and network, and
DCCA based on Deep Canonical Correlation Anal-
ysis (Andrew et al., 2013).

2.1 Multivew Geolocation
Let X ∈ R|U |×|V | be the text view, consisting of
the bag of words for each user in U using vo-
cabulary V , and A ∈ 1

|U |×|U | be the network
view, encoding user–user interactions. We partition
U = US ∪ UH into a supervised and heldout (un-
labelled) set, US and UH , respectively. The goal
is to infer the location of unlabelled samples YU ,
given the location of labelled samples YS , where
each location is encoded as a one-hot classification
label, yi ∈ 1

c with c being the number of target
regions.

2.2 GCN

GCN defines a neural network model f(X,A) with
each layer:

Â = D̃−
1
2 (A+ λI)D̃−

1
2

H(l+1) = σ
(
ÂH(l)W (l) + b

)
,

(1)

where D̃ is the degree matrix of A + λI; hyper-
parameter λ controls the weight of a node against
its neighbourhood, which is set to 1 in the orig-
inal model (Kipf and Welling, 2017); H0 = X
and the din × dout matrix W (l) and dout × 1 ma-
trix b are trainable layer parameters; and σ is an
arbitrary nonlinearity. The first layer takes an aver-
age of each sample and its immediate neighbours
(labelled and unlabelled) using weights in Â, and
performs a linear transformation using W and b
followed by a nonlinear activation function (σ). In
other words, for user ui, the output of layer l is
computed by:

~hl+1
i = σ

(∑
j∈nhood(i)

Âij
~hljW

l + bl
)
, (2)

1Code and data available at https://github.com/
afshinrahimi/geographconv
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Figure 1: The architecture of GCN geolocation
model with layer-wise highway gates (W i

h, bih).
GCN is applied to a BoW model of user content
over the @-mention graph to predict user location.

where W l and bl are learnable layer parameters,
and nhood(i) indicates the neighbours of user ui.
Each extra layer in GCN extends the neighbour-
hood over which a sample is smoothed. For ex-
ample a GCN with 3 layers smooths each sample
with its neighbours up to 3 hops away, which is
beneficial if location homophily extends to a neigh-
bourhood of this size.

2.2.1 Highway GCN

Expanding the neighbourhood for label propaga-
tion by adding multiple GCN layers can improve
geolocation by accessing information from friends
that are multiple hops away, but it might also lead
to propagation of noisy information to users from
an exponentially increasing number of expanded
neighbourhood members. To control the required
balance of how much neighbourhood information
should be passed to a node, we use layer-wise gates
similar to highway networks. In highway networks
(Srivastava et al., 2015), the output of a layer is
summed with its input with gating weights T (~hl):

T (~hl) = σ
(
W l

t
~hl + blt

)
~hl+1 = ~hl+1 ◦ T (~hl) + ~hl ◦ (1− T (~hl)) ,

(3)

where ~hl is the incoming input to layer l + 1,
(W l

t , b
l
t) are gating weights and bias variables, ◦ is

elementwise multiplication, and σ is the Sigmoid
function.

https://github.com/afshinrahimi/geographconv
https://github.com/afshinrahimi/geographconv
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2.3 DCCA

Given two views X and Â (from Equation 1) of
data samples, CCA (Hotelling, 1936), and its deep
version (DCCA) (Andrew et al., 2013) learn func-
tions f1(X) and f2(Â) such that the correlation
between the output of the two functions is max-
imised:

ρ = corr(f1(X), f2(Â)) . (4)

The resulting representations of f1(X) and f2(Â)
are the compressed representations of the two
views where the uncorrelated noise between them
is reduced. The new representations ideally repre-
sent user communities for the network view, and
the language model of that community for the text
view, and their concatenation is a multiview repre-
sentation of data, which can be used as input for
other tasks.

In DCCA, the two views are first projected to a
lower dimensionality using a separate multilayer
perceptron for each view (the f1 and f2 functions of
Equation 4), the output of which is used to estimate
the CCA cost:

maximise: tr(W T
1 Σ12W2)

subject to: W T
1 Σ11W1 = W T

2 Σ22W2 = I
(5)

where Σ11 and Σ22 are the covariances of the two
outputs, and Σ12 is the cross-covariance. The
weights W1 and W2 are the linear projections of
the MLP outputs, which are used in estimating the
CCA cost. The optimisation problem is solved by
SVD, and the error is backpropagated to train the
parameters of the two MLPs and the final linear
projections. After training, the two networks are
used to predict new projections for unseen data.
The two projections of unseen data — the outputs
of the two networks — are then concatenated to
form a multiview sample representation, as shown
in Figure 2.

3 Experiments

3.1 Data
We use three existing Twitter user geolocation
datasets: (1) GEOTEXT (Eisenstein et al., 2010),
(2) TWITTER-US (Roller et al., 2012), and (3)
TWITTER-WORLD (Han et al., 2012). These
datasets have been used widely for training and
evaluation of geolocation models. They are all
pre-partitioned into training, development and test

maximally correlated

FC sigmoid

FC softmax

X: text BoW Â: Neighbours

predicted location: ŷ

FC linear

Unsupervised DCCA Supervised Geolocation

FC ReLU

CCA loss backprop

Figure 2: The DCCA model architecture: First the
two text and network views X and Â are fed into
two neural networks (left), which are unsupervis-
edly trained to maximise the correlation of their
outputs; next the outputs of the networks are con-
catenated, and fed as input to another neural net-
work (right), which is trained supervisedly to pre-
dict locations.

sets. Each user is represented by the concate-
nation of their tweets, and labelled with the lat-
itude/longitude of the first collected geotagged
tweet in the case of GEOTEXT and TWITTER-US,
and the centre of the closest city in the case of
TWITTER-WORLD. GEOTEXT and TWITTER-US
cover the continental US, and TWITTER-WORLD

covers the whole world, with 9k, 449k and 1.3m
users, respectively. The labels are the discretised
geographical coordinates of the training points us-
ing a k-d tree following Roller et al. (2012), with
the number of labels equal to 129, 256, and 930 for
GEOTEXT, TWITTER-US, and TWITTER-WORLD,
respectively.

3.2 Constructing the Views

We build matrix Â as in Equation 1 using the col-
lapsed @-mention graph between users, where two
users are connected (Aij = 1) if one mentions the
other, or they co-mention another user. The text
view is a BoW model of user content with binary
term frequency, inverse document frequency, and
l2 normalisation of samples.

3.3 Model Selection

For GCN, we use highway layers to control the
amount of neighbourhood information passed to a
node. We use 3 layers in GCN with size 300, 600,
900 for GEOTEXT, TWITTER-US and TWITTER-
WORLD respectively. Note that the final softmax
layer is also graph convolutional, which sets the
radius of the averaging neighbourhood to 4. The
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k-d tree bucket size hyperparameter which controls
the maximum number of users in each cluster is set
to 50, 2400, and 2400 for the respective datasets,
based on tuning over the validation set. The archi-
tecture of GCN-LP is similar, with the difference
that the text view is set to zero. In DCCA, for the
unsupervised networks we use a single sigmoid
hidden layer with size 1000 and a linear output
layer with size 500 for the three datasets. The loss
function is CCA loss, which maximises the output
correlations. The supervised multilayer perceptron
has one hidden layer with size 300, 600, 1000 for
GEOTEXT, TWITTER-US, and TWITTER-WORLD,
respectively, which we set by tuning over the devel-
opment sets. We evaluate the models using Median
error, Mean error, and Acc@161, accuracy of pre-
dicting a user within 161km or 100 miles from the
known location.

3.4 Baselines

We also compare DCCA and GCN with two base-
lines:

GCN-LP is based on GCN, but for input, instead
of text-based features , we use one-hot encoding
of a user’s neighbours, which are then convolved
with their k-hop neighbours using the GCN. This
approach is similar to label propagation in smooth-
ing the label distribution of a user with that of its
neighbours, but uses graph convolutional networks
which have extra layer parameters, and also a gat-
ing mechanism to control the smoothing neighbour-
hood radius. Note that for unlabelled samples, the
predicted labels are used for input after training
accuracy reaches 0.2.

MLP-TXT+NET is a simple transductive super-
vised model based on a single layer multilayer per-
ceptron where the input to the network is the con-
catenation of the text view X , the user content’s
bag-of-words and Â (Equation 1), which represents
the network view as a vector input. For the hidden
layer we use a ReLU nonlinearity, and sizes 300,
600, and 600 for GEOTEXT, TWITTER-US, and
TWITTER-WORLD, respectively.

4 Results and Analysis

4.1 Representation

Deep CCA and GCN are able to provide an un-
supervised data representation in different ways.

Deep CCA takes the two text-based and network-
based views, and finds deep non-linear transforma-
tions that result in maximum correlation between
the two views (Andrew et al., 2013). The represen-
tations can be visualised using t-SNE, where we
hope that samples with the same label are clustered
together. GCN, on the other hand, uses graph con-
volution. The representations of 50 samples from
each of 4 randomly chosen labels of GEOTEXT are
shown in Figure 3. As shown, Deep CCA seems
to slightly improve the representations from pure
concatenation of the two views. GCN, on the other
hand, substantially improves the representations.
Further application of GCN results in more sam-
ples clumping together, which might be desirable
when there is strong homophily.

4.2 Labelled Data Size

To achieve good performance in supervised tasks,
often large amounts of labelled data are required,
which is a big challenge for Twitter geolocation,
where only a small fraction of the data is geo-
tagged (about 1%). The scarcity of supervision
indicates the importance of semi-supervised learn-
ing where unlabelled (e.g. non-geotagged) tweets
are used for training. The three models we propose
(MLP-TXT+NET, DCCA, and GCN) are all trans-
ductive semi-supervised models that use unlabelled
data, however, they are different in terms of how
much labelled data they require to achieve accept-
able performance. Given that in a real-world sce-
nario, only a small fraction of data is geotagged,
we conduct an experiment to analyse the effect of
labelled samples on the performance of the three
geolocation models. We provided the three mod-
els with different fractions of samples that are la-
belled (in terms of % of dataset samples) while
using the remainder as unlabelled data, and anal-
ysed their Median error performance over the de-
velopment set of GEOTEXT, TWITTER-US, and
TWITTER-WORLD. Note that the text and net-
work view, and the development set, remain fixed
for all the experiments. As shown in Figure 4,
when the fraction of labelled samples is less than
10% of all the samples, GCN and DCCA outper-
form MLP-TXT+NET, as a result of having fewer
parameters, and therefore, lower supervision re-
quirement to optimise them. When enough training
data is available (e.g. more than 20% of all the sam-
ples), GCN and MLP-TXT+NET clearly outperform
DCCA, possibly as a result of directly modelling the
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(a) MLP-TXT+NET (b) DCCA (c) 1 GCN Â ·X (d) 2 GCN Â · Â ·X

Figure 3: Comparing t-SNE visualisations of 50 training samples from each of 4 randomly chosen regions
of GEOTEXT using various data representations: (a) concatenation of Â (Equation 1); (b) concatenation
of DCCA transformation of text-based and network-based views X and Â; (c) applying graph convolution
Â ·X; and (d) applying graph convolution twice Â · Â ·X
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Figure 4: The effect of the amount of labelled data available as a fraction of all samples for GEO-
TEXT, TWITTER-US, and TWITTER-WORLD on the development performance of GCN, DCCA, and
MLP-TXT+NET models in terms of Median error. The dataset sizes are 9k, 440k, and 1.4m for the three
datasets, respectively.

interactions between network and text views. When
all the training samples of the two larger datasets
(95% and 98% for TWITTER-US and TWITTER-
WORLD, respectively) are available to the mod-
els, MLP-TXT+NET outperforms GCN. Note that
the number of parameters increases from DCCA to
GCN and to MLP-TXT+NET. In 1% for GEOTEXT,
DCCA outperforms GCN as a result of having fewer
parameters and just a few labelled samples, insuffi-
cient to train the parameters of GCN.

4.3 Highway Gates
Adding more layers to GCN expands the graph
neighbourhood within which the user features are
averaged, and so might introduce noise, and con-
sequently decrease accuracy as shown in Figure 5
when no gates are used. We see that by adding
highway network gates, the performance of GCN
slightly improves until three layers are added,
but then by adding more layers the performance
doesn’t change that much as gates are allowing the
layer inputs to pass through the network without

much change. The performance peaks at 4 layers
which is compatible with the distribution of short-
est path lengths shown in Figure 6.

4.4 Performance

The performance of the three proposed models
(MLP-TXT+NET, DCCA and GCN) is shown in Ta-
ble 1. The models are also compared with super-
vised text-based methods (Wing and Baldridge,
2014; Cha et al., 2015; Rahimi et al., 2017b), a
network-based method (Rahimi et al., 2015a) and
GCN-LP, and also joint text and network mod-
els (Rahimi et al., 2017b; Do et al., 2017; Miura
et al., 2017). MLP-TXT+NET and GCN outper-
form all the text- or network-only models, and also
the hybrid model of Rahimi et al. (2017b), indi-
cating that joint modelling of text and network
features is important. MLP-TXT+NET is com-
petitive with Do et al. (2017), outperforming it
on larger datasets, and underperforming on GEO-
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GEOTEXT TWITTER-US TWITTER-WORLD

Acc@161↑ Mean↓ Median↓ Acc@161↑ Mean↓ Median↓ Acc@161↑ Mean↓ Median↓

Text (inductive)
Rahimi et al. (2017b) 38 844 389 54 554 120 34 1456 415
Wing and Baldridge (2014) — — — 48 686 191 31 1669 509
Cha et al. (2015) — 581 425 — — — — — —

Network (transductive)
Rahimi et al. (2015a) 58 586 60 54 705 116 45 2525 279
GCN-LP 58 576 56 53 653 126 45 2357 279

Text+Network (transductive)
Do et al. (2017) 62 532 32 66 433 45 53 1044 118
Miura et al. (2017) — — — 61 481 65 — — —
Rahimi et al. (2017b) 59 578 61 61 515 77 53 1280 104
MLP-TXT+NET 58 554 58 66 420 56 58 1030 53
DCCA 56 627 79 58 516 90 21 2095 913
GCN 60 546 45 62 485 71 54 1130 108

Text+Network (transductive)
MLP-TXT+NET 1% 8 1521 1295 14 1436 1411 8 3865 2041
DCCA 1% 7 1425 979 38 869 348 14 3014 1367
GCN 1% 6 1103 609 41 788 311 21 2071 853

Table 1: Geolocation results over the three Twitter datasets for the proposed models: joint text+network
MLP-TXT+NET, DCCA, and GCN and network-based GCN-LP. The models are compared with text-only
and network-only methods. The performance of the three joint models is also reported for minimal
supervision scenario where only 1% of the total samples are labelled. “—” signifies that no results were
reported for the given metric or dataset. Note that Do et al. (2017) use timezone, and Miura et al. (2017)
use the description and location fields in addition to text and network.
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Figure 5: The effect of adding more GCN layers
(neighbourhood expansion) to GCN in terms of me-
dian error over the development set of GEOTEXT

with and without the highway gates, and averaged
over 5 runs.

TEXT. However, it’s difficult to make a fair compar-
ison as they use timezone data in their feature set.
MLP-TXT+NET outperforms GCN over TWITTER-
US and TWITTER-WORLD, which are very large,
and have large amounts of labelled data. In a
scenario with little supervision (1% of the total
samples are labelled) DCCA and GCN clearly out-
perform MLP-TXT+NET, as they have fewer pa-
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Figure 6: The distribution of shortest path lengths
between all the nodes of the largest connected com-
ponent of GEOTEXT’s graph that constitute more
than 1% of total.

rameters. Except for Acc@161 over GEOTEXT

where the number of labelled samples in the mini-
mal supervision scenario is very low, GCN outper-
forms DCCA by a large margin, indicating that for
a medium dataset where only 1% of samples are
labelled (as happens in random samples of Twit-
ter) GCN is superior to MLP-TXT+NET and DCCA,
consistent with Section 4.2. Both MLP-TXT+NET
and GCN achieve state of the art results compared
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to network-only, text-only, and hybrid models. The
network-based GCN-LP model, which does label
propagation using Graph Convolutional Networks,
outperforms Rahimi et al. (2015a), which is based
on location propagation using Modified Adsorp-
tion (Talukdar and Crammer, 2009), possibly be-
cause the label propagation in GCN is parametrised.

4.5 Error Analysis

Although the performance of MLP-TXT+NET is
better than GCN and DCCA when a large amount
of labelled data is available (Table 1), under a sce-
nario where little labelled data is available (1% of
data), DCCA and GCN outperform MLP-TXT+NET,
mainly because the number of parameters in
MLP-TXT+NET grows with the number of sam-
ples, and is much larger than GCN and DCCA. GCN
outperforms DCCA and MLP-TXT+NET using 1%
of data, however, the distribution of errors in the
development set of TWITTER-US indicates higher
error for smaller states such as Rhode Island (RI),
Iowa (IA), North Dakota (ND), and Idaho (ID),
which is simply because the number of labelled
samples in those states is insufficient.

Although we evaluate geolocation models with
Median, Mean, and Acc@161, it doesn’t mean
that the distribution of errors is uniform over all
locations. Big cities often attract more local online
discussions, making the geolocation of users in
those areas simpler. For example users in LA are
more likely to talk about LA-related issues such
as their sport teams, Hollywood or local events
than users in the state of Rhode Island (RI), which
lacks large sport teams or major events. It is also
possible that people in less densely populated areas
are further apart from each other, and therefore, as a
result of discretisation fall in different clusters. The
non-uniformity in local discussions results in lower
geolocation performance in less densely populated
areas like Midwest U.S., and higher performance
in densely populated areas such as NYC and LA as
shown in Figure 7. The geographical distribution
of error for GCN, DCCA and MLP-TXT+NET under
the minimal supervision scenario is shown in the
supplementary material.

To get a better picture of misclassification be-
tween states, we built a confusion matrix based on
known state and predicted state for development
users of TWITTER-US using GCN using only 1%
of labelled data. There is a tendency for users to be
wrongly predicted to be in CA, NY, TX, and surpris-

ingly OH. Particularly users from states such as TX,
AZ, CO, and NV, which are located close to CA,
are wrongly predicted to be in CA, and users from
NJ, PA, and MA are misclassified as being in NY.
The same goes for OH and TX where users from
neighbouring smaller states are misclassified to be
there. Users from CA and NY are also misclas-
sified between the two states, which might be the
result of business and entertainment connections
that exist between NYC and LA/SF. Interestingly,
there are a number of misclassifications to FL for
users from CA, NY, and TX, which might be the
effect of users vacationing or retiring to FL. The
full confusion matrix between the U.S. states is
provided in the supplementary material.

4.6 Local Terms
In Table 2, local terms of a few regions detected
by GCN under minimal supervision are shown. The
terms that were present in the labelled data are
excluded to show how graph convolutions over the
social graph have extended the vocabulary. For
example, in case of Seattle, #goseahawks is an
important term not present in the 1% labelled data
but present in the unlabelled data. The convolution
over the social graph is able to utilise such terms
that don’t exist in the labelled data.

5 Related Work

Previous work on user geolocation can be broadly
divided into text-based, network-based and multi-
view approaches.

Text-based geolocation uses the geographical
bias in language use to infer the location of users.
There are three main text-based approaches to ge-
olocation: (1) gazetteer-based models which map
geographical references in text to location, but ig-
nore non-geographical references and vernacular
uses of language (Rauch et al., 2003; Amitay et al.,
2004; Lieberman et al., 2010); (2) geographical
topic models that learn region-specific topics, but
don’t scale to the magnitude of social media (Eisen-
stein et al., 2010; Hong et al., 2012; Ahmed et al.,
2013); and (3) supervised models which are of-
ten framed as text classification (Serdyukov et al.,
2009; Wing and Baldridge, 2011; Roller et al.,
2012; Han et al., 2014) or text regression (Iso et al.,
2017; Rahimi et al., 2017a). Supervised models
scale well and can achieve good performance with
sufficient supervision, which is not available in a
real world scenario.
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Figure 7: The geographical distribution of Median error of GCN using 1% of labelled data in each state
over the development set of TWITTER-US. The colour indicates error and the size indicates the number
of development users within the state.

Seattle, WA Austin, TX Jacksonville, FL Columbus, OH Charlotte, NC Phoenix, AZ New Orleans, LA Baltimore, MD

#goseahawks stubb unf laffayette #asheville clutterbuck mcneese bhop
smock gsd ribault #weareohio #depinga waffels keela #dsu
traffuck #meatsweats wahoowa #arcgis batesburg bahumbug pentecostals chestertown
ferran lanterna wjct #slammin stewey iedereen lutcher aduh
promissory pupper fscj #ouhc #bojangles rockharbor grogan umbc
chowdown effaced floridian #cow #occupyraleigh redtail suela lmt
ckrib #austin #jacksonville mommyhood gville gewoon cajuns assistly
#uwhuskies lmfbo #mer beering sweezy jms bmu slurpies

Table 2: Top terms for selected regions detected by GCN using only 1% of TWITTER-US for supervision.
We present the terms that were present only in unlabelled data. The terms include city names, hashtags,
food names and internet abbreviations.

Network-based methods leverage the location
homophily assumption: nearby users are more
likely to befriend and interact with each other.
There are four main network-based geolocation ap-
proaches: distance-based, supervised classification,
graph-based label propagation, and node embed-
ding methods. Distance-based methods model the
probability of friendship given the distance (Back-
strom et al., 2010; McGee et al., 2013; Gu et al.,
2012; Kong et al., 2014), supervised models use
neighbourhood features to classify a user into a
location (Rout et al., 2013; Malmi et al., 2015),
and graph-based label-propagation models propa-
gate the location information through the user–user
graph to estimate unknown labels (Davis Jr et al.,
2011; Jurgens, 2013; Compton et al., 2014). Node
embedding methods build heterogeneous graphs
between user–user, user–location and location–
location, and learn an embedding space to minimise
the distance of connected nodes, and maximise the
distance of disconnected nodes. The embeddings

are then used in supervised models for geoloca-
tion (Wang et al., 2017). Network-based models
fail to geolocate disconnected users: Jurgens et al.
(2015) couldn’t geolocation 37% of users as a re-
sult of disconnectedness.

Previous work on hybrid text and network meth-
ods can be broadly categorised into three main ap-
proaches: (1) incorporating text-based information
such as toponyms or locations predicted from a text-
based model as auxiliary nodes into the user–user
graph, which is then used in network-based mod-
els (Li et al., 2012a,b; Rahimi et al., 2015b,a); (2)
ensembling separately trained text- and network-
based models (Gu et al., 2012; Ren et al., 2012;
Jayasinghe et al., 2016; Ribeiro and Pappa, 2017);
and (3) jointly learning geolocation from several
information sources such as text and network in-
formation (Miura et al., 2017; Do et al., 2017),
which can capture the complementary information
in text and network views, and also model the in-
teractions between the two. None of the previous
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multiview approaches — with the exception of Li
et al. (2012a) and Li et al. (2012b) that only use
toponyms — effectively uses unlabelled data in the
text view, and use only the unlabelled information
of the network view via the user–user graph.

There are three main shortcomings in the previ-
ous work on user geolocation that we address in
this paper: (1) with the exception of few recent
works (Miura et al., 2017; Do et al., 2017), pre-
vious models don’t jointly exploit both text and
network information, and therefore the interaction
between text and network views is not modelled;
(2) the unlabelled data in both text and network
views is not effectively exploited, which is crucial
given the small amounts of available supervision;
and (3) previous models are rarely evaluated under
a minimal supervision scenario, a scenario which
reflects real world conditions.

6 Conclusion

We proposed GCN, DCCA and MLP-TXT+NET,
three multiview, transductive, semi-supervised ge-
olocation models, which use text and network in-
formation to infer user location in a joint setting.
We showed that joint modelling of text and network
information outperforms network-only, text-only,
and hybrid geolocation models as a result of mod-
elling the interaction between text and network
information. We also showed that GCN and DCCA
are able to perform well under a minimal super-
vision scenario similar to real world applications
by effectively using unlabelled data. We ignored
the context in which users interact with each other,
and assumed all the connections to hold location
homophily. In future work, we are interested in
modelling the extent to which a social interaction
is caused by geographical proximity (e.g. using
user–user gates).
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