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Abstract

While recent neural encoder-decoder
models have shown great promise in mod-
eling open-domain conversations, they
often generate dull and generic responses.
Unlike past work that has focused on
diversifying the output of the decoder
at word-level to alleviate this problem,
we present a novel framework based on
conditional variational autoencoders that
captures the discourse-level diversity in
the encoder. Our model uses latent vari-
ables to learn a distribution over potential
conversational intents and generates
diverse responses using only greedy de-
coders. We have further developed a novel
variant that is integrated with linguistic
prior knowledge for better performance.
Finally, the training procedure is improved
by introducing a bag-of-word loss. Our
proposed models have been validated
to generate significantly more diverse
responses than baseline approaches and
exhibit competence in discourse-level
decision-making.

1 Introduction

The dialog manager is one of the key components
of dialog systems, which is responsible for mod-
eling the decision-making process. Specifically, it
typically takes a new utterance and the dialog con-
text as input, and generates discourse-level deci-
sions (Bohus and Rudnicky, 2003; Williams and
Young, 2007). Advanced dialog managers usu-
ally have a list of potential actions that enable
them to have diverse behavior during a conver-
sation, e.g. different strategies to recover from
non-understanding (Yu et al., 2016). However,
the conventional approach of designing a dialog
manager (Williams and Young, 2007) does not
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scale well to open-domain conversation models
because of the vast quantity of possible decisions.
Thus, there has been a growing interest in applying
encoder-decoder models (Sutskever et al., 2014)
for modeling open-domain conversation (Vinyals
and Le, 2015; Serban et al., 2016a). The basic ap-
proach treats a conversation as a transduction task,
in which the dialog history is the source sequence
and the next response is the target sequence. The
model is then trained end-to-end on large conver-
sation corpora using the maximum-likelihood esti-
mation (MLE) objective without the need for man-
ual crafting.

However recent research has found that
encoder-decoder models tend to generate generic
and dull responses (e.g., I don’t know), rather
than meaningful and specific answers (Li et al.,
2015; Serban et al., 2016b). There have been
many attempts to explain and solve this limita-
tion, and they can be broadly divided into two cat-
egories (see Section 2 for details): (1) the first cat-
egory argues that the dialog history is only one of
the factors that decide the next response. Other
features should be extracted and provided to the
models as conditionals in order to generate more
specific responses (Xing et al., 2016; Li et al.,
2016a); (2) the second category aims to improve
the encoder-decoder model itself, including de-
coding with beam search and its variations (Wise-
man and Rush, 2016), encouraging responses that
have long-term payoff (Li et al., 2016b), etc.

Building upon the past work in dialog managers
and encoder-decoder models, the key idea of this
paper is to model dialogs as a one-to-many prob-
lem at the discourse level. Previous studies indi-
cate that there are many factors in open-domain
dialogs that decide the next response, and it is non-
trivial to extract all of them. Intuitively, given
a similar dialog history (and other observed in-
puts), there may exist many valid responses (at the
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discourse-level), each corresponding to a certain
configuration of the latent variables that are not
presented in the input. To uncover the potential re-
sponses, we strive to model a probabilistic distri-
bution over the distributed utterance embeddings
of the potential responses using a latent variable
(Figure 1). This allows us to generate diverse re-
sponses by drawing samples from the learned dis-
tribution and reconstruct their words via a decoder
neural network.

_____ »B: Tell me your hobby first.

[ A: What is your hobby?

-

--->B: hmm

->B: | like play tennis.

Figure 1: Given A’s question, there exists many
valid responses from B for different assumptions
of the latent variables, e.g., B’s hobby.

Specifically, our contributions are three-fold:
1.  We present a novel neural dialog model
adapted from conditional variational autoencoders
(CVAE) (Yan et al., 2015; Sohn et al., 2015),
which introduces a latent variable that can cap-
ture discourse-level variations as described above
2. We propose Knowledge-Guided CVAE (kgC-
VAE), which enables easy integration of expert
knowledge and results in performance improve-
ment and model interpretability. 3. We develop
a training method in addressing the difficulty of
optimizing CVAE for natural language genera-
tion (Bowman et al.,, 2015). We evaluate our
models on human-human conversation data and
yield promising results in: (a) generating appro-
priate and discourse-level diverse responses, and
(b) showing that the proposed training method is
more effective than the previous techniques.

2 Related Work

Our work is related to both recent advancement
in encoder-decoder dialog models and generative
models based on CVAE.

2.1 Encoder-decoder Dialog Models

Since the emergence of the neural dialog model,
the problem of output diversity has received much
attention in the research community. Ideal out-
put responses should be both coherent and diverse.
However, most models end up with generic and
dull responses. To tackle this problem, one line
of research has focused on augmenting the in-
put of encoder-decoder models with richer con-
text information, in order to generate more spe-
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cific responses. Li et al., (2016a) captured speak-
ers’ characteristics by encoding background infor-
mation and speaking style into the distributed em-
beddings, which are used to re-rank the generated
response from an encoder-decoder model. Xing et
al., (2016) maintain topic encoding based on La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
of the conversation to encourage the model to out-
put more topic coherent responses.

On the other hand, many attempts have also
been made to improve the architecture of encoder-
decoder models. Li et al,. (2015) proposed to opti-
mize the standard encoder-decoder by maximizing
the mutual information between input and output,
which in turn reduces generic responses. This ap-
proach penalized unconditionally high frequency
responses, and favored responses that have high
conditional probability given the input. Wiseman
and Rush (2016) focused on improving the de-
coder network by alleviating the biases between
training and testing. They introduced a search-
based loss that directly optimizes the networks
for beam search decoding. The resulting model
achieves better performance on word ordering,
parsing and machine translation. Besides improv-
ing beam search, Li et al., (2016b) pointed out that
the MLE objective of an encoder-decoder model
is unable to approximate the real-world goal of
the conversation. Thus, they initialized a encoder-
decoder model with MLE objective and leveraged
reinforcement learning to fine tune the model by
optimizing three heuristic rewards functions: in-
formativity, coherence, and ease of answering.

2.2 Conditional Variational Autoencoder

The variational autoencoder (VAE) (Kingma and
Welling, 2013; Rezende et al., 2014) is one of the
most popular frameworks for image generation.
The basic idea of VAE is to encode the input x
into a probability distribution 2 instead of a point
encoding in the autoencoder. Then VAE applies a
decoder network to reconstruct the original input
using samples from z. To generate images, VAE
first obtains a sample of z from the prior distribu-
tion, e.g. NV(0,I), and then produces an image via
the decoder network. A more advanced model, the
conditional VAE (CVAE), is a recent modification
of VAE to generate diverse images conditioned on
certain attributes, e.g. generating different human
faces given skin color (Yan et al., 2015; Sohn et al.,
2015). Inspired by CVAE, we view the dialog con-
texts as the conditional attributes and adapt CVAE



to generate diverse responses instead of images.

Although VAE/CVAE has achieved impressive
results in image generation, adapting this to natu-
ral language generators is non-trivial. Bowman et
al., (2015) have used VAE with Long-Short Term
Memory (LSTM)-based recognition and decoder
networks to generate sentences from a latent Gaus-
sian variable. They showed that their model is able
to generate diverse sentences with even a greedy
LSTM decoder. They also reported the difficulty
of training because the LSTM decoder tends to ig-
nore the latent variable. We refer to this issue as
the vanishing latent variable problem. Serban et
al., (2016b) have applied a latent variable hierar-
chical encoder-decoder dialog model to introduce
utterance-level variations and facilitate longer re-
sponses. To improve upon the past models, we
firstly introduce a novel mechanism to leverage
linguistic knowledge in training end-to-end neural
dialog models, and we also propose a novel train-
ing technique that mitigates the vanishing latent
variable problem.

3 Proposed Models

(b)

Qo(zlc.x,y)

(@)

qg(zic, x)

po(xlc, ) pe(xlc,z,y)

Figure 2: Graphical models of CVAE (a) and kgC-
VAE (b)

3.1 Conditional Variational Autoencoder
(CVAE) for Dialog Generation

Each dyadic conversation can be represented via
three random variables: the dialog context ¢ (con-
text window size k — 1), the response utterance x
(the k" utterance) and a latent variable z, which
is used to capture the latent distribution over the
valid responses. Further, ¢ is composed of the dia-
log history: the preceding k-1 utterances; conver-
sational floor (1 if the utterance is from the same
speaker of x, otherwise () and meta features m
(e.g. the topic). We then define the conditional dis-
tribution p(z, z|c) = p(z|z, ¢)p(z|c) and our goal
is to use deep neural networks (parametrized by )
to approximate p(z|c) and p(x|z,c). We refer to
po(z|c) as the prior network and py(x, |z, ¢) as the
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response decoder. Then the generative process of
x is (Figure 2 (a)):

1. Sample a latent variable z from the prior net-
work pg(z|c).

2. Generate x through the response decoder
po(z|z,c).

CVAE is trained to maximize the conditional
log likelihood of = given ¢, which involves an in-
tractable marginalization over the latent variable
z. As proposed in (Sohn et al., 2015; Yan et al.,
2015), CVAE can be efficiently trained with the
Stochastic Gradient Variational Bayes (SGVB)
framework (Kingma and Welling, 2013) by maxi-
mizing the variational lower bound of the condi-
tional log likelihood. We assume the z follows
multivariate Gaussian distribution with a diago-
nal covariance matrix and introduce a recognition
network qy(z|x,c) to approximate the true poste-
rior distribution p(z|z, ¢). Sohn and et al,. (2015)
have shown that the variational lower bound can
be written as:

L0, ¢;z,c) = —K L(gg(z|z, c)|[pa(z|c))
+ Eqg, (zle2) [log pg(x|z, c)]
< log p(z|c)

ey

Figure 3 demonstrates an overview of our model.
The utterance encoder is a bidirectional recurrent
neural network (BRNN) (Schuster and Paliwal,
1997) with a gated recurrent unit (GRU) (Chung
et al., 2014) to encode each utterance into fixed-
size vectors by concatenating the last hidden states
of the forward and backward RNN v; = [ﬁ;, EZ]
x is simply ug. The context encoder is a 1-layer
GRU network that encodes the preceding k-1 ut-
terances by taking wuq.;_1 and the corresponding
conversation floor as inputs. The last hidden state
h¢ of the context encoder is concatenated with
meta features and ¢ = [h¢, m|. Since we assume z
follows isotropic Gaussian distribution, the recog-
nition network g, (z|z,c) ~ N(u,0°I) and the
prior network pg(z|c) ~ N(p/, 0"*T), and then we

have:
7 . x
|:10g(0.2):| - Wr |:C:| + br (2)
o]
|:10g(0’2):| - MLPP(C) (3)

We then use the reparametrization trick (Kingma
and Welling, 2013) to obtain samples of z either
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Figure 3: The neural network architectures for the baseline and the proposed CVAE/kgCVAE models.
@P denotes the concatenation of the input vectors. The dashed blue connections only appear in kgCVAE.

from N (z; u, o?I) predicted by the recognition
network (training) or N (z; yi/, 0"?I) predicted by
the prior network (testing). Finally, the response
decoder is a 1-layer GRU network with initial state
so = Wj[z, ¢]+b;. The response decoder then pre-
dicts the words in x sequentially.

3.2 Knowledge-Guided CVAE (kgCVAE)
In practice, training CVAE is a challenging opti-
mization problem and often requires large amount
of data. On the other hand, past research in spo-
ken dialog systems and discourse analysis has sug-
gested that many linguistic cues capture crucial
features in representing natural conversation. For
example, dialog acts (Poesio and Traum, 1998)
have been widely used in the dialog managers (Lit-
man and Allen, 1987; Raux et al., 2005; Zhao
and Eskenazi, 2016) to represent the propositional
function of the system. Therefore, we conjecture
that it will be beneficial for the model to learn
meaningful latent z if it is provided with explicitly
extracted discourse features during the training.
In order to incorporate the linguistic features
into the basic CVAE model, we first denote the set
of linguistic features as y. Then we assume that
the generation of x depends on ¢, z and y. y re-
lies on z and ¢ as shown in Figure 2. Specifically,
during training the initial state of the response de-
coder is s = W;[z, ¢,y] + b; and the input at ev-
ery step is [e, y] where e; is the word embedding
of t*" word in z. In addition, there is an MLP to
predict y' = MLP,(z, ¢) based on z and c. In the
testing stage, the predicted 3’ is used by the re-
sponse decoder instead of the oracle decoders. We
denote the modified model as knowledge-guided
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CVAE (kgCVAE) and developers can add desired
discourse features that they wish the latent vari-
able z to capture. KgCVAE model is trained by
maximizing:

[‘(07 ¢a z,c, y) = _KL(Q¢(Z|:E’ ¢, y)HPg(Z

+ Eq, sleay) log p(x]2, ¢, y
+ Eqg, sleylogp(y]2, c)]

©))
)]

“4)
Since now the reconstruction of y is a part of the
loss function, kgCVAE can more efficiently en-
code y-related information into z than discovering
it only based on the surface-level x and c. Another
advantage of kgCVAE is that it can output a high-
level label (e.g. dialog act) along with the word-

level responses, which allows easier interpretation
of the model’s outputs.

3.3 Optimization Challenges
A straightforward VAE with RNN decoder fails

to encode meaningful information in z due to the
vanishing latent variable problem (Bowman et al.,
2015). Bowman et al., (2015) proposed two solu-
tions: (1) KL annealing: gradually increasing the
weight of the KL term from O to 1 during training;
(2) word drop decoding: setting a certain percent-
age of the target words to 0. We found that CVAE
suffers from the same issue when the decoder is
an RNN. Also we did not consider word drop de-
coding because Bowman et al,. (2015) have shown
that it may hurt the performance when the drop
rate is too high.

As aresult, we propose a simple yet novel tech-
nique to tackle the vanishing latent variable prob-
lem: bag-of-word loss. The idea is to introduce



an auxiliary loss that requires the decoder network
to predict the bag-of-words in the response x as
shown in Figure 3(b). We decompose x into two
variables: x, with word order and x},,, without
order, and assume that z, and xp,, are condi-
tionally independent given z and c: p(z,z|c) =
(0|2, )P(Tpow| 2, €)p(z|c). Due to the condi-
tional independence assumption, the latent vari-
able is forced to capture global information about
the target response. Let f = MLPy(z,x) € RV
where V' is vocabulary size, and we have:

||

)
elzt
log p(Zpow |2, ¢) = log H

t=1

va
j €7

(&)

where |z| is the length of x and x; is the word
index of t;;, word in . The modified variational
lower bound for CVAE with bag-of-word loss is
(see Appendix A for kgCVAE):

El(ea ¢7 z, C) = £(9, (;5, x, c)
+ Ey, sl 108 p(Zbow |2, €)] (6)

We will show that the bag-of-word loss in Equa-
tion 6 is very effective against the vanishing latent
variable and it is also complementary to the KL
annealing technique.

4 Experiment Setup
4.1 Dataset

We chose the Switchboard (SW) 1 Release 2 Cor-
pus (Godfrey and Holliman, 1997) to evaluate the
proposed models. SW has 2400 two-sided tele-
phone conversations with manually transcribed
speech and alignment. In the beginning of the
call, a computer operator gave the callers recorded
prompts that define the desired topic of discus-
sion. There are 70 available topics. We ran-
domly split the data into 2316/60/62 dialogs for
train/validate/test. The pre-processing includes (1)
tokenize using the NLTK tokenizer (Bird et al.,
2009); (2) remove non-verbal symbols and re-
peated words due to false starts; (3) keep the
top 10K frequent word types as the vocabulary.
The final data have 207,833/5,225/5,481 (c, x)
pairs for train/validate/test. Furthermore, a sub-
set of SW was manually labeled with dialog
acts (Stolcke et al., 2000). We extracted dia-
log act labels based on the dialog act recognizer
proposed in (Ribeiro et al., 2015). The features
include the uni-gram and bi-gram of the utter-
ance, and the contextual features of the last 3 ut-
terances. We trained a Support Vector Machine
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(SVM) (Suykens and Vandewalle, 1999) with lin-
ear kernel on the subset of SW with human anno-
tations. There are 42 types of dialog acts and the
SVM achieved 77.3% accuracy on held-out data.
Then the rest of SW data are labelled with dialog
acts using the trained SVM dialog act recognizer.

4.2 Training

We trained with the following hyperparameters
(according to the loss on the validate dataset):
word embedding has size 200 and is shared
across everywhere. We initialize the word embed-
ding from Glove embedding pre-trained on Twit-
ter (Pennington et al., 2014). The utterance en-
coder has a hidden size of 300 for each direc-
tion. The context encoder has a hidden size of
600 and the response decoder has a hidden size
of 400. The prior network and the MLP for pre-
dicting y both have 1 hidden layer of size 400 and
tanh non-linearity. The latent variable z has a
size of 200. The context window k is 10. All
the initial weights are sampled from a uniform
distribution [-0.08, 0.08]. The mini-batch size is
30. The models are trained end-to-end using the
Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 0.001 and gradient clipping at 5.
We selected the best models based on the varia-
tional lower bound on the validate data. Finally,
we use the BOW loss along with KL annealing of
10,000 batches to achieve the best performance.
Section 5.4 gives a detailed argument for the im-
portance of the BOW loss.

S Results
5.1 Experiments Setup

We compared three neural dialog models: a strong
baseline model, CVAE, and kgCVAE. The base-
line model is an encoder-decoder neural dialog
model without latent variables similar to (Serban
et al., 2016a). The baseline model’s encoder uses
the same context encoder to encode the dialog his-
tory and the meta features as shown in Figure 3.
The encoded context c is directly fed into the de-
coder networks as the initial state. The hyperpa-
rameters of the baseline are the same as the ones
reported in Section 4.2 and the baseline is trained
to minimize the standard cross entropy loss of the
decoder RNN model without any auxiliary loss.
Also, to compare the diversity introduced by the
stochasticity in the proposed latent variable ver-
sus the softmax of RNN at each decoding step, we
generate N responses from the baseline by sam-



pling from the softmax. For CVAE/kgCVAE, we
sample N times from the latent z and only use
greedy decoders so that the randomness comes en-
tirely from the latent variable z.

5.2 Quantitative Analysis

Automatically evaluating an open-domain gen-
erative dialog model is an open research chal-
lenge (Liu et al., 2016). Following our one-to-
many hypothesis, we propose the following met-
rics. We assume that for a given dialog context c,
there exist M, reference responses 7, j € [1, M,].
Meanwhile a model can generate [N hypothesis re-
sponses h;, i € [1, N]. The generalized response-
level precision/recall for a given dialog context is:

S maz e, d(ry, hi)

precision(c) = N
E]'\{Cl ma:vie[l N]d(rj, hz))

li(c) = == ’

recall(c) A

where d(rj, h;) is a distance function which lies
between O to 1 and measures the similarities be-
tween 7; and h;. The final score is averaged over
the entire test dataset and we report the perfor-
mance with 3 types of distance functions in or-
der to evaluate the systems from various linguistic
points of view:

1. Smoothed Sentence-level BLEU (Chen and
Cherry, 2014): BLEU is a popular metric that
measures the geometric mean of modified n-
gram precision with a length penalty (Pap-
ineni et al., 2002; Li et al., 2015). We use
BLEU-1 to 4 as our lexical similarity metric
and normalize the score to O to 1 scale.

. Cosine Distance of Bag-of-word Embed-
ding: a simple method to obtain sentence
embeddings is to take the average or ex-
trema of all the word embeddings in the sen-
tences (Forgues et al., 2014; Adi et al., 2016).
The d(rj, h;) is the cosine distance of the two
embedding vectors. We used Glove embed-
ding described in Section 4 and denote the av-
erage method as A-bow and extrema method
as E-bow.

. Dialog Act Match: to measure the similar-
ity at the discourse level, the same dialog-
act tagger from 4.1 is applied to label all the
generated responses of each model. We set
d(rj, hi) = 1if r; and h; have the same dia-
log acts, otherwise d(r;, h;) = 0.

659

One challenge of using the above metrics is that
there is only one, rather than multiple reference
responses/contexts. This impacts reliability of our
measures. Inspired by (Sordoni et al., 2015), we
utilized information retrieval techniques (see Ap-
pendix A) to gather 10 extra candidate reference
responses/context from other conversations with
the same topics. Then the 10 candidate references
are filtered by two experts, which serve as the
ground truth to train the reference response classi-
fier. The result is 6.69 extra references in average
per context. The average number of distinct refer-
ence dialog acts is 4.2. Table 1 shows the results.

Metrics Baseline CVAE  kgCVAE
perplexity (KL) | 35.4 20.2 16.02
(n/a) (11.36) (13.08)
BLEU-1 prec 0405 0372 0412
BLEU-1 recall | 0.336  0.381 0.411
BLEU-2 prec 0.300 0295  0.350
BLEU-2 recall | 0.281 0.322  0.356
BLEU-3 prec 0.272 0265  0.310
BLEU-3 recall | 0.254 0.292  0.318
BLEU-4 prec 0.226  0.223  0.262
BLEU-4recall | 0.215  0.248  0.272
A-bow prec 0.387 0.389 0.373
A-bow recall 0.337 0361  0.336
E-bow prec 0.701 0.705 0.711
E-bow recall 0.684 0.709 0.712
DA prec 0.736  0.704  0.721
DA recall 0.514  0.604  0.598

Table 1: Performance of each model on automatic
measures. The highest score in each row is in
bold. Note that our BLEU scores are normalized
to [0, 1].

The proposed models outperform the baseline
in terms of recall in all the metrics with statis-
tical significance. This confirms our hypothesis
that generating responses with discourse-level di-
versity can lead to a more comprehensive cov-
erage of the potential responses than promoting
only word-level diversity. As for precision, we
observed that the baseline has higher or similar
scores than CVAE in all metrics, which is expected
since the baseline tends to generate the mostly
likely and safe responses repeatedly in the N hy-
potheses. However, kgCVAE is able to achieve
the highest precision and recall in the 4 metrics at
the same time (BLEU1-4, E-BOW). One reason



for kgCVAE’s good performance is that the pre-
dicted dialog act label in kgCVAE can regularize
the generation process of its RNN decoder by forc-
ing it to generate more coherent and precise words.
We further analyze the precision/recall of BLEU-
4 by looking at the average score versus the num-
ber of distinct reference dialog acts. A low num-
ber of distinct dialog acts represents the situation
where the dialog context has a strong constraint
on the range of the next response (low entropy),
while a high number indicates the opposite (high-
entropy). Figure 4 shows that CVAE/kgCVAE
achieves significantly higher recall than the base-
line in higher entropy contexts. Also it shows
that CVAE suffers from lower precision, espe-
cially in low entropy contexts. Finally, kgCVAE
gets higher precision than both the baseline and
CVAE in the full spectrum of context entropy.

\— Baseline -+ CVAE =--- CVAE ==+ kgC\/AE‘

| — Baseline -+

Avg BLEU-4 Recall

Avg BLEU-4 Precision

# of distinct dfalog acts

# of distinct dfalog acts

Figure 4: BLEU-4 precision/recall vs. the number
of distinct reference dialog acts.

5.3 Qualitative Analysis

Table 2 shows the outputs generated from the
baseline and kgCVAE. In example 1, caller A be-
gins with an open-ended question. The kgCVAE
model generated highly diverse answers that cover
multiple plausible dialog acts. Further, we notice
that the generated text exhibits similar dialog acts
compared to the ones predicted separately by the
model, implying the consistency of natural lan-
guage generation based on y. On the contrary, the
responses from the baseline model are limited to
local n-gram variations and share a similar prefix,
i.e. "I'm”. Example 2 is a situation where caller
A is telling B stories. The ground truth response
is a back-channel and the range of valid answers is
more constrained than example 1 since B is play-
ing the role of a listener. The baseline successfully
predicts “uh-huh”. The kgCVAE model is also
able to generate various ways of back-channeling.
This implies that the latent z is able to capture
context-sensitive variations, i.e. in low-entropy di-
alog contexts modeling lexical diversity while in
high-entropy ones modeling discourse-level diver-
sity. Moreover, kgCVAE is occasionally able to
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generate more sophisticated grounding (sample 4)
beyond a simple back-channel, which is also an
acceptable response given the dialog context.

In addition, past work (Kingma and Welling,
2013) has shown that the recognition network is
able to learn to cluster high-dimension data, so
we conjecture that posterior z outputted from the
recognition network should cluster the responses
into meaningful groups. Figure 5 visualizes the
posterior z of responses in the test dataset in 2D
space using t-SNE (Maaten and Hinton, 2008).
We found that the learned latent space is highly
correlated with the dialog act and length of re-
sponses, which confirms our assumption.

@®. statement-non-opinion
000 backchannel

o®. statement-opinion
000 turn_exit

o yes-no-question

o000 agree/accept

@®. appreciation

@®o wh-question

-10

Figure 5: t-SNE visualization of the posterior z for
test responses with top 8 frequent dialog acts. The
size of circle represents the response length.

5.4 Results for Bag-of-Word Loss

Finally, we evaluate the effectiveness of bag-of-
word (BOW) loss for training VAE/CVAE with the
RNN decoder. To compare with past work (Bow-
man et al., 2015), we conducted the same lan-
guage modelling (LM) task on Penn Treebank us-
ing VAE. The network architecture is same ex-
cept we use GRU instead of LSTM. We compared
four different training setups: (1) standard VAE
without any heuristics; (2) VAE with KL anneal-
ing (KLA); (3) VAE with BOW loss; (4) VAE
with both BOW loss and KLA. Intuitively, a well
trained model should lead to a low reconstruction
loss and small but non-trivial KL cost. For all
models with KLA, the KL weight increases lin-
early from O to 1 in the first 5000 batches.

Table 3 shows the reconstruction perplexity and
the KL cost on the test dataset. The standard VAE
fails to learn a meaningful latent variable by hav-



Example 1-Topic: Recycling Context: A: are they doing a lot of recycling out in Georgia? Target-B (statement): well
at my workplace we have palaces for aluminium cans and we have a separate trash can for recyclable paper

Baseline+Sampling

kgCVAE+Greedy

1. well I'm a graduate student and have two kids
2. well I was in last year and so we’ve had lots of recycling

3. I’'m not sure
4. well I don’t know I just moved here in new york

1. (non-understand) pardon

2. (statement) oh you’re not going to have a curbside pick
up here

3. (statement) okay I am sure about a recycling center

4. (yes-answer) yeah so

Example 2-Topic: Child Care Context: A: you know a private home to take their children to when they’re young until
they hit the preschool age and they Target-B (backchannel): uh-huh

Baseline+Sampling kgCVAE+Greedy

1. um - hum 1. (backchannel) uh-huh

2. yeah 2. (turn-exit) um-hum

3. um - hum 3. (backchannel) yeah

4. uh-huh 4. (statement) oh yeah I think that’s part of the problem

Table 2: Generated responses from the baselines and kgCVAE in two examples. KgCVAE also provides
the predicted dialog act for each response. The context only shows the last utterance due to space limit

(the actual context window size is 10).

ing a KL cost close to 0 and a reconstruction per-
plexity similar to a small LSTM LM (Zaremba
et al., 2014). KLA helps to improve the recon-
struction loss, but it requires early stopping since
the models will fall back to the standard VAE after
the KL weight becomes 1. At last, the models with
BOW loss achieved significantly lower perplexity
and larger KL cost.

Model Perplexity KL cost
Standard 122.0 0.05
KLA 111.5 2.02
BOW 97.72 7.41
BOW+KLA | 73.04 15.94

Table 3: The reconstruction perplexity and KL
terms on Penn Treebank test set.

Figure 6 visualizes the evolution of the KL cost.
We can see that for the standard model, the KL
cost crashes to 0 at the beginning of training and
never recovers. On the contrary, the model with
only KLA learns to encode substantial informa-
tion in latent z when the KL cost weight is small.
However, after the KL. weight is increased to 1 (af-
ter 5000 batch), the model once again decides to
ignore the latent z and falls back to the naive im-
plementation. The model with BOW loss, how-
ever, consistently converges to a non-trivial KL
cost even without KLLA, which confirms the im-
portance of BOW loss for training latent vari-
able models with the RNN decoder. Last but not
least, our experiments showed that the conclusions
drawn from LM using VAE also apply to training
CVAE/kgCVAE, so we used BOW loss together
with KLA for all previous experiments.

a0l BOW-+KLA
BOW

KLA
standard

NN

2 25|

o 2000 4000 6000 8000 10000 12000
Batch Index

Figure 6: The value of the KL divergence during
training with different setups on Penn Treebank.

6 Conclusion and Future Work

In conclusion, we identified the one-to-many na-
ture of open-domain conversation and proposed
two novel models that show superior performance
in generating diverse and appropriate responses at
the discourse level. While the current paper ad-
dresses diversifying responses in respect to dia-
logue acts, this work is part of a larger research
direction that targets leveraging both past linguis-
tic findings and the learning power of deep neural
networks to learn better representation of the la-
tent factors in dialog. In turn, the output of this
novel neural dialog model will be easier to ex-
plain and control by humans. In addition to di-
alog acts, we plan to apply our kgCVAE model
to capture other different linguistic phenomena in-
cluding sentiment, named entities,etc. Last but
not least, the recognition network in our model
will serve as the foundation for designing a data-
driven dialog manager, which automatically dis-
covers useful high-level intents. All of the above
suggest a promising research direction.
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A Supplemental Material
Variational Lower Bound for kgCVAE

We assume that even with the presence of linguis-
tic feature y regarding x, the prediction of x4y,
still only depends on the z and c. Therefore, we
have:

L(0, ¢5x,c,y) = K L(gg(2l, ¢, ) | Po (=
+ E%(Z\cvw,y) [logp(z|z, ¢,y
+ Eg, slezy) log p(ylz, )]

+ Eq¢(z\c,x,y) [logp(xbow |Z7 C)]
(7

)
)]

Collection of Multiple Reference Responses

We collected multiple reference responses for each
dialog context in the test set by information re-
trieval techniques combining with traditional a
machine learning method. First, we encode the di-
alog history using Term Frequency-Inverse Doc-
ument Frequency (TFIDF) (Salton and Buckley,
1988) weighted bag-of-words into vector repre-
sentation h. Then we denote the topic of the con-
versation as t and denote f as the conversation
floor, i.e. if the speakers of the last utterance in
the dialog history and response utterance are the
same f = 1 otherwise f = 0. Then we com-
puted the similarity d(c;, cj) between two dialog
contexts using:

hi - h;j

) =1t = t;)1(t; = tj)m

®)
Unlike past work (Sordoni et al., 2015), this sim-
ilarity function only cares about the distance in
the context and imposes no constraints on the re-
sponse, therefore is suitbale for finding diverse re-
sponses regarding to the same dialog context. Sec-
ondly, for each dialog context in the test set, we
retrieved the 10 nearest neighbors from the train-
ing set and treated the responses from the training
set as candidate reference responses. Thirdly, we
further sampled 240 context-responses pairs from
5481 pairs in the total test set and post-processed
the selected candidate responses by two human
computational linguistic experts who were told to
give a binary label for each candidate response
about whether the response is appropriate regard-
ing its dialog context. The filtered lists then served
as the ground truth to train our reference response
classifier. For the next step, we extracted bigrams,
part-of-speech bigrams and word part-of-speech



pairs from both dialogue contexts and candidate
reference responses with rare threshold for feature
extraction being set to 20. Then L2-regularized
logistic regression with 10-fold cross validation
was applied as the machine learning algorithm.
Cross validation accuracy on the human-labelled
data was 71%. Finally, we automatically anno-
tated the rest of test set with this trained classifier
and the resulting data were used for model evalu-
ation.
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