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Abstract

Most existing graph-based parsing models
rely on millions of hand-crafted features,
which limits their generalization ability
and slows down the parsing speed. In this
paper, we propose a general and effective
Neural Network model for graph-based
dependency parsing. Our model can auto-
matically learn high-order feature combi-
nations using only atomic features by ex-
ploiting a novel activation function tanh-
cube. Moreover, we propose a simple yet
effective way to utilize phrase-level infor-
mation that is expensive to use in conven-
tional graph-based parsers. Experiments
on the English Penn Treebank show that
parsers based on our model perform better
than conventional graph-based parsers.

1 Introduction

Dependency parsing is essential for computers to
understand natural languages, whose performance
may have a direct effect on many NLP applica-
tion. Due to its importance, dependency parsing,
has been studied for tens of years. Among a vari-
ety of dependency parsing approaches (McDonald
et al., 2005; McDonald and Pereira, 2006; Car-
reras, 2007; Koo and Collins, 2010; Zhang and
Nivre, 2011), graph-based models seem to be one
of the most successful solutions to the challenge
due to its ability of scoring the parsing decisions
on whole-tree basis. Typical graph-based models
factor the dependency tree into subgraphs, rang-
ing from the smallest edge (first-order) to a con-
trollable bigger subgraph consisting of more than
one single edge (second-order and third order),
and score the whole tree by summing scores of the
subgraphs. In these models, subgraphs are usually
represented as a high-dimensional feature vectors
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which are fed into a linear model to learn the fea-
ture weight for scoring the subgraphs.

In spite of their advantages, conventional graph-
based models rely heavily on an enormous num-
ber of hand-crafted features, which brings about
serious problems. First, a mass of features could
put the models in the risk of overfitting and slow
down the parsing speed, especially in the high-
order models where combinational features cap-
turing interactions between head, modifier, sib-
lings and (or) grandparent could easily explode
the feature space. In addition, feature design re-
quires domain expertise, which means useful fea-
tures are likely to be neglected due to a lack of
domain knowledge. As a matter of fact, these two
problems exist in most graph-based models, which
have stuck the development of dependency parsing
for a few years.

To ease the problem of feature engineering, we
propose a general and effective Neural Network
model for graph-based dependency parsing in this
paper. The main advantages of our model are as
follows:

• Instead of using large number of hand-crafted
features, our model only uses atomic fea-
tures (Chen et al., 2014) such as word uni-
grams and POS-tag unigrams. Feature com-
binations and high-order features are auto-
matically learned with our novel activation
function tanh-cube, thus alleviating the heavy
burden of feature engineering in conven-
tional graph-based models (McDonald et al.,
2005; McDonald and Pereira, 2006; Koo and
Collins, 2010). Not only does it avoid the risk
of overfitting but also it discovers useful new
features that have never been used in conven-
tional parsers.

• We propose to exploit phrase-level informa-
tion through distributed representation for
phrases (phrase embeddings). It not only en-
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Figure 1: First-order and Second-order factoriza-
tion strategy. Here h stands for head word, m
stands for modifier word and s stands for the sib-
ling of m.

ables our model to exploit richer context in-
formation that previous work did not consider
due to the curse of dimension but also cap-
tures inherent correlations between phrases.

• Unlike other neural network based models
(Chen et al., 2014; Le and Zuidema, 2014)
where an additional parser is needed for ei-
ther extracting features (Chen et al., 2014) or
generating k-best list for reranking (Le and
Zuidema, 2014), both training and decoding
in our model are performed based on our neu-
ral network architecture in an effective way.

• Our model does not impose any change to
the decoding process of conventional graph-
based parsing model. First-order, second-
order and higher order models can be easily
implemented using our model.

We implement three effective models with in-
creasing expressive capabilities. The first model
is a simple first-order model that uses only atomic
features and does not use any combinational fea-
tures. Despite its simpleness, it outperforms
conventional first-order model (McDonald et al.,
2005) and has a faster parsing speed. To fur-
ther strengthen our parsing model, we incorpo-
rate phrase embeddings into the model, which
significantly improves the parsing accuracy. Fi-
nally, we extend our first-order model to a second-
order model that exploits interactions between two
adjacent dependency edges as in McDonald and
Pereira (2006) thus further improves the model
performance.

We evaluate our models on the English Penn
Treebank. Experiment results show that both our
first-order and second-order models outperform
the corresponding conventional models.

2 Neural Network Model

A dependency tree is a rooted, directed tree span-
ning the whole sentence. Given a sentence x,
graph-based models formulates the parsing pro-
cess as a searching problem:

y∗(x) = arg max
ŷ∈Y (x)

Score(x, ŷ(x); θ) (1)

where y∗(x) is tree with highest score, Y (x) is
the set of all trees compatible with x, θ are model
parameters and Score(x, ŷ(x); θ) represents how
likely that a particular tree ŷ(x) is the correct anal-
ysis for x. However, the size of Y (x) is expo-
nential large, which makes it impractical to solve
equation (1) directly. Previous work (McDonald et
al., 2005; McDonald and Pereira, 2006; Koo and
Collins, 2010) assumes that the score of ŷ(x) fac-
tors through the scores of subgraphs c of ŷ(x) so
that efficient algorithms can be designed for de-
coding:

Score(x, ŷ(x); θ) =
∑

c∈ŷ(x)

ScoreF (x, c; θ) (2)

Figure 1 gives two examples of commonly used
factorization strategy proposed by Mcdonald et.al
(2005) and Mcdonald and Pereira (2006). The
simplest subgraph uses a first-order factorization
(McDonald et al., 2005) which decomposes a de-
pendency tree into single dependency arcs (Fig-
ure 1(a)). Based on the first-order model, second-
order factorization (McDonald and Pereira, 2006)
(Figure 1(b)) brings sibling information into de-
coding. Specifically, a sibling part consists of a
triple of indices (h,m, s) where (h,m) and (h, s)
are dependencies and s andm are successive mod-
ifiers to the same side of h.

The most common choice for ScoreF (x, c; θ),
which is the score function for subgraph c in the
tree, is a simple linear function:

ScoreF (x, c; θ) = w · f(x, c) (3)

where f(x, c) is the feature representation of sub-
graph c and w is the corresponding weight vector.
However, the effectiveness of this function relies
heavily on the design of feature vector f(x, c). In
previous work (McDonald et al., 2005; McDonald
and Pereira, 2006), millions of hand-crafted fea-
tures were used to capture context and structure
information in the subgraph which not only lim-
its the model’s ability to generalize well but only
slows down the parsing speed.
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Figure 2: Architecture of the Neural Network

In our work, we propose a neural network
model for scoring subgraph c in the tree:

ScoreF (x, c; θ) = NN(x, c) (4)

where NN is our scoring function based on neu-
ral network (Figure 2). As we will show in the fol-
lowing sections, it alleviates the heavy burden of
feature engineering in conventional graph-based
models and achieves better performance by auto-
matically learning useful information in the data.

The effectiveness of our neural network de-
pends on five key components: Feature Em-
beddings, Phrase Embeddings, Direction-specific
transformation, Learning Feature Combinations
and Max-Margin Training.

2.1 Feature Embeddings

As shown in Figure 2, part of the input to the neu-
ral network is feature representation of the sub-
graph. Instead of using millions of features as in
conventional models, we only use use atomic fea-
tures (Chen et al., 2014) such as word unigrams
and POS-tag unigrams, which are less likely to be
sparse. The detailed atomic features we use will
be described in Section 3. Unlike conventional
models, the atomic features in our model are trans-
formed into their corresponding distributed repre-
sentations (feature embeddings).

The idea of distributed representation for sym-
bolic data is one of the most important reasons
why neural network works in NLP tasks. It is
shown that similar features will have similar em-
beddings which capture the syntactic and seman-
tic information behind features (Bengio et al.,

Figure 3: Illustration for phrase embeddings. h,m
and x0 to x6 are words in the sentence.

2003; Collobert et al., 2011; Schwenk et al., 2012;
Mikolov et al., 2013; Socher et al., 2013; Pei et al.,
2014).

Formally, we have a feature dictionaryD of size
|D|. Each feature f ∈ D is represented as a real-
valued vector (feature embedding) Embed(f) ∈
Rd where d is the dimensionality of the vector
space. All feature embeddings stacking together
forms the embedding matrix M ∈ Rd×|D|. The
embedding matrix M is initialized randomly and
trained by our model (Section 2.6).

2.2 Phrase Embeddings

Context information of word pairs1 such as the de-
pendency pair (h,m) has been widely believed to
be useful in graph-based models (McDonald et al.,
2005; McDonald and Pereira, 2006). Given a sen-
tence x, the context for h and m includes three
context parts: prefix, infix and suffix, as illustrated
in Figure 3. We call these parts phrases in our
work.

Context representation in conventional mod-
els are limited: First, phrases cannot be used as
features directly because of the data sparseness
problem. Therefore, phrases are backed off to
low-order representation such as bigrams and tri-
grams. For example, Mcdonald et.al (2005) used
tri-gram features of infix between head-modifier
pair (h,m). Sometimes even tri-grams are expen-
sive to use, which is the reason why Mcdonald and
Pereira (2006) chose to ignore features over triples
of words in their second-order model to prevent
from exploding the size of the feature space. Sec-

1A word pair is not limited to the dependency pair (h, m).
It could be any pair with particular relation (e.g., sibling pair
(s, m) in Figure 1). Figure 3 only uses (h, m) as an example.
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ond, bigrams or tri-grams are lexical features thus
cannot capture syntactic and semantic information
behind phrases. For instance, “hit the ball” and
“kick the football” should have similar represen-
tations because they share similar syntactic struc-
tures, but lexical tri-grams will fail to capture their
similarity.

Unlike previous work, we propose to use
distributed representation (phrase embedding) of
phrases to capture phrase-level information. We
use a simple yet effective way to calculate phrase
embeddings from word (POS-tag) embeddings.
As shown in Figure 3, we average the word em-
beddings in prefix, infix and suffix respectively and
get three global word-phrase embeddings. For
pairs where no prefix or suffix exists, the corre-
sponding embedding is set to zero. We also get
three global POS-phrase embeddings which are
calculated in the same way as words. These em-
beddings are then concatenated with feature em-
beddings and fed to the following hidden layer.

Phrase embeddings provide panorama represen-
tation of the context, allowing our model to cap-
ture richer context information compared with the
back-off tri-gram representation. Moreover, as
a distributed representation, phrase embeddings
perform generalization over specific phrases, thus
better capture the syntactic and semantic informa-
tion than back-off tri-grams.

2.3 Direction-specific Transformation
In dependency representation of sentence, the
edge direction indicates which one of the words is
the head h and which one is the modifier m. Un-
like previous work (McDonald et al., 2005; Mc-
Donald and Pereira, 2006) that models the edge
direction as feature to be conjoined with other fea-
tures, we model the edge direction with direction-
specific transformation.

As shown in Figure 2, the parameters in hidden
layer (W d

h , bdh) and the output layer (W d
o , bdo) are

bound with index d ∈ {0, 1} which indicates the
direction between head and modifier (0 for left arc
and 1 for right arc). In this way, the model can
learn direction-specific parameters and automati-
cally capture the interactions between edge direc-
tion and other features.

2.4 Learning Feature Combination
The key to the success of graph-based dependency
parsing is the design of features, especially com-
binational features. Effective as these features are,

as we have said in Section 1, they are prone to
overfitting and hard to design. In our work, we
introduce a new activation function that can auto-
matically learn these feature combinations.

As shown in Figure 2, we first concatenate the
embeddings into a single vector a. Then a is fed
into the next layer which performs linear trans-
formation followed by an element-wise activation
function g:

h = g(W d
ha+ bdh) (5)

Our new activation function g is defined as fol-
lows:

g(l) = tanh(l3 + l) (6)

where l is the result of linear transformation and
tanh is the hyperbolic tangent activation function
widely used in neural networks. We call this new
activation function tanh-cube.

As we can see, without the cube term, tanh-cube
would be just the same as the conventional non-
linear transformation in most neural networks.
The cube extension is added to enhance the abil-
ity to capture complex interactions between input
features. Intuitively, the cube term in each hid-
den unit directly models feature combinations in a
multiplicative way:

(w1a1 + w2a2 + ...+ wnan + b)3 =∑
i,j,k

(wiwjwk)aiajak +
∑
i,j

b(wiwj)aiaj ...

These feature combinations are hand-designed in
conventional graph-based models but our model
learns these combinations automatically and en-
codes them in the model parameters.

Similar ideas were also proposed in previous
works (Socher et al., 2013; Pei et al., 2014; Chen
and Manning, 2014). Socher et.al (2013) and
Pei et.al (2014) used a tensor-based activation
function to learn feature combinations. However,
tensor-based transformation is quite slow even
with tensor factorization (Pei et al., 2014). Chen
and Manning (2014) proposed to use cube func-
tion g(l) = l3 which inspires our tanh-cube func-
tion. Compared with cube function, tanh-cube has
three advantages:

• The cube function is unbounded, making the
activation output either too small or too big if
the norm of input l is not properly controlled,
especially in deep neural network. On the
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contrary, tanh-cube is bounded by the tanh
function thus safer to use in deep neural net-
work.

• Intuitively, the behavior of cube function re-
sembles the “polynomial kernel” in SVM.
In fact, SVM can be seen as a special one-
hidden-layer neural network where the ker-
nel function that performs non-linear trans-
formation is seen as a hidden layer and sup-
port vectors as hidden units. Compared with
cube function, tanh-cube combines the power
of “kernel function” with the tanh non-linear
transformation in neural network.

• Last but not least, as we will show in Section
4, tanh-cube converges faster than the cube
function although the rigorous proof is still
open to investigate.

2.5 Model Output
After the non-linear transformation of hidden
layer, the score of the subgraph c is calculated in
the output layer using a simple linear function:

ScoreF (x, c) = W d
o h+ bdo (7)

The output score ScoreF (x, c) ∈ R|L| is a score
vector where |L| is the number of dependency
types and each dimension of ScoreF (x, c) is the
score for each kind of dependency type of head-
modifier pair (i.e. (h,m) in Figure 1).

2.6 Max-Margin Training
The parameters of our model are θ =
{W d

h , b
d
h,W

d
o , b

d
o,M}. All parameters are

initialized with uniform distribution within (-0.01,
0.01).

For model training, we use the Max-Margin cri-
terion. Given a training instance (x, y), we search
for the dependency tree with the highest score
computed as equation (1) in Section 2. The object
of Max-Margin training is that the highest scor-
ing tree is the correct one: y∗ = y and its score
will be larger up to a margin to other possible tree
ŷ ∈ Y (x):

Score(x, y; θ) ≥ Score(x, ŷ; θ) +4(y, ŷ)

The structured margin loss4(y, ŷ) is defined as:

4(y, ŷ) =
n∑
j

κ1{h(y, xj) 6= h(ŷ, xj)}

1-order-atomic

h−2.w, h−1.w, h.w, h1.w, h2.w
h−2.p, h−1.p, h.p, h1.p, h2.p
m−2.w, m−1.w, m.w, m1.w, m2.w
m−2.p, m−1.p, m.p, m1.p, m2.p
dis(h, m)

1-order-phrase + hm prefix.w, hm infix.w, hm suffix.w
+ hm prefix.p, hm infix.p, hm suffix.p

2-order-phrase
+ s−2.w, s−1.w, s.w, s1.w, s2.w
+ s−2.p, s−1.p, s.p, s1.p, s2.p
+ sm infix.w, sm infix.p

Table 1: Features in our three models. w is
short for word and p for POS-tag. h indicates
head and m indicates modifier. The subscript rep-
resents the relative position to the center word.
dis(h,m) is the distance between head and modi-
fier. hm prefix, hm infix and hm suffix are phrases
for head-modifier pair (h,m). s indicates the sib-
ling in second-order model. sm infix is the infix
phrase between sibling pair (s,m)

where n is the length of sentence x, h(y, xj) is the
head (with type) for the j-th word of x in tree y and
κ is a discount parameter. The loss is proportional
to the number of word with an incorrect head and
edge type in the proposed tree. This leads to the
regularized objective function for m training ex-
amples:

J(θ) =
1
m

m∑
i=1

li(θ) +
λ

2
||θ||2

li(θ) = max
ŷ∈Y (xi)

(Score(xi, ŷ; θ) +4(yi, ŷ))

−Score(xi, yi; θ)) (8)

We use the diagonal variant of AdaGrad (Duchi
et al., 2011) with minibatchs (batch size = 20)
to minimize the object function. We also apply
dropout (Hinton et al., 2012) with 0.5 rate to the
hidden layer.

3 Model Implementation

Base on our Neural Network model, we present
three model implementations with increasing ex-
pressive capabilities in this section.

3.1 First-order models

We first implement two first-order models: 1-
order-atomic and 1-order-phrase. We use the
Eisner (2000) algorithm for decoding. The first
two rows of Table 1 list the features we use in these
two models.

1-order-atomic only uses atomic features as
shown in the first row of Table 1. Specifically, the
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Models Dev Test
Speed (sent/s)

UAS LAS UAS LAS

First-order

MSTParser-1-order 92.01 90.77 91.60 90.39 20
1-order-atomic-rand 92.00 90.71 91.62 90.41 55
1-order-atomic 92.19 90.94 92.14 90.92 55
1-order-phrase-rand 92.47 91.19 92.25 91.05 26
1-order-phrase 92.82 91.48 92.59 91.37 26

Second-order
MSTParser-2-order 92.70 91.48 92.30 91.06 14
2-order-phrase-rand 93.39 92.10 92.99 91.79 10
2-order-phrase 93.57 92.29 93.29 92.13 10

Third-order (Koo and Collins, 2010) 93.49 N/A 93.04 N/A N/A

Table 2: Comparison with conventional graph-based models.

head word and its local neighbor words that are
within the distance of 2 are selected as the head’s
word unigram features. The modifier’s word un-
igram features is extracted in the same way. We
also use the POS-tags of the corresponding word
features and the distance between head and modi-
fier as additional atomic features.

We then improved 1-order-atomic to 1-order-
phrase by incorporating additional phrase embed-
dings. The three phrase embeddings of head-
modifier pair (h,m): hm prefix, hm infix and
hm suffix are calculated as in Section 2.2.

3.2 Second-order model

Our model can be easily extended to a second-
order model using the second-order decoding al-
gorithm (Eisner, 1996; McDonald and Pereira,
2006). The third row of Table 1 shows the addi-
tional features we use in our second-order model.

Sibling node and its local context are used as
additional atomic features. We also used the in-
fix embedding for the infix between sibling pair
(s,m), which we call sm infix. It is calculated in
the same way as infix between head-modifier pair
(h,m) (i.e., hm infix) in Section 2.2 except that
the word pair is now s and m. For cases where no
sibling information is available, the corresponding
sibling-related embeddings are set to zero vector.

4 Experiments

4.1 Experiment Setup

We use the English Penn Treebank (PTB) to eval-
uate our model implementations and Yamada and
Matsumoto (2003) head rules are used to extract
dependency trees. We follow the standard splits of
PTB3, using section 2-21 for training, section 22
as development set and 23 as test set. The Stanford

POS Tagger (Toutanova et al., 2003) with ten-way
jackknifing of the training data is used for assign-
ing POS tags (accuracy ≈ 97.2%).

Hyper-parameters of our models are tuned on
the development set and their final settings are
as follows: embedding size d = 50, hidden layer
(Layer 2) size = 200, regularization parameter λ =
10−4, discount parameter for margin loss κ = 0.3,
initial learning rate of AdaGrad alpha = 0.1.

4.2 Experiment Results
Table 2 compares our models with several conven-
tional graph-based parsers. We use MSTParser2

for conventional first-order model (McDonald et
al., 2005) and second-order model (McDonald and
Pereira, 2006). We also include the result of a
third-order model of Koo and Collins (2010) for
comparison3. For our models, we report the results
with and without unsupervised pre-training. Pre-
training only trains the word-based feature embed-
dings on Gigaword corpus (Graff et al., 2003) us-
ing word2vec4 and all other parameters are still
initialized randomly. In all experiments, we re-
port unlabeled attachment scores (UAS) and la-
beled attachment scores (LAS) and punctuation5

is excluded in all evaluation metrics. The parsing
speeds are measured on a workstation with Intel
Xeon 3.4GHz CPU and 32GB RAM.

As we can see, even with random initialization,
1-order-atomic-rand performs as well as conven-
tional first-order model and both 1-order-phrase-

2http://sourceforge.net/projects/
mstparser

3Note that Koo and Collins (2010)’s third-order model
and our models are not strict comparable since their model
is an unlabeled model.

4https://code.google.com/p/word2vec/
5Following previous work, a token is a punctuation if its

POS tag is {“ ” : , .}
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Figure 4: Convergence curve for tanh-cube and
cube activation function.

rand and 2-order-phrase-rand perform better
than conventional models in MSTParser. Pre-
training further improves the performance of all
three models, which is consistent with the conclu-
sion of previous work (Pei et al., 2014; Chen and
Manning, 2014). Moreover, 1-order-phrase per-
forms better than 1-order-atomic, which shows
that phrase embeddings do improve the model. 2-
order-phrase further improves the performance
because of the more expressive second-order fac-
torization. All three models perform significantly
better than their counterparts in MSTParser where
millions of features are used and 1-order-phrase
works surprisingly well that it even beats the con-
ventional second-order model.

With regard to parsing speed, 1-order-atomic
is the fastest while other two models have similar
speeds as MSTParser. Further speed up could be
achieved by using pre-computing strategy as men-
tioned in Chen and Manning (2014). We did not
try this strategy since parsing speed is not the main
focus of this paper.

Model tanh-cube cube tanh
1-order-atomic 92.19 91.97 91.73
1-order-phrase 92.82 92.25 92.13
2-order-phrase 93.57 92.95 92.91

Table 3: Model Performance of different activa-
tion functions.

We also investigated the effect of different acti-
vation functions. We trained our models with the
same configuration except for the activation func-
tion. Table 3 lists the UAS of three models on de-
velopment set.

Feature Type Instance Neighboors

Words
(word2vec)

in the, of, and,
for, from

his himself, her, he,
him, father

which its, essentially,
similar, that, also

Words
(Our model)

in on, at, behind,
among, during

his her, my, their,
its, he

which where, who, whom,
whose, though

POS-tags NN NNPS, NNS, EX,
NNP, POS

JJ JJR, JJS, PDT,
RBR, RBS

Table 4: Examples of similar words and POS-tags
according to feature embeddings.

As we can see, tanh-cube function outperforms
cube function because of advantages we men-
tioned in Section 2.4. Moreover, both tanh-cube
function and cube function performs better than
tanh function. The reason is that the cube term can
capture more interactions between input features.

We also plot the UAS of 2-order-phrase dur-
ing each iteration of training. As shown in Figure
4, tanh-cube function converges faster than cube
function.

4.3 Qualitative Analysis

In order to see why our models work, we made
qualitative analysis on different aspects of our
model.

Ability of Feature Abstraction
Feature embeddings give our model the ability of
feature abstraction. They capture the inherent cor-
relations between features so that syntactic similar
features will have similar representations, which
makes our model generalizes well on unseen data.

Table 4 shows the effect of different feature
embeddings which are obtained from 2-order-
phrase after training. For each kind of feature
type, we list several features as well as top 5 fea-
tures that are nearest (measured by Euclidean dis-
tance) to the corresponding feature according to
their embeddings.

We first analysis the effect of word embeddings
after training. For comparison, we also list the
initial word embeddings in word2vec. As we
can see, in word2vec word embeddings, words
that are similar to in and which tends to be those
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Phrase Neighboor

On a Saturday morning

On Monday night football
On Sunday
On Saturday
On Tuesday afternoon
On recent Saturday morning

most of it

of it
of it all
some of it also
most of these are
only some of

big investment bank

great investment bank
bank investment
entire equity investment
another cash equity investor
real estate lending division

Table 5: Examples of similar phrases according to
phrase embeddings.

co-occuring with them and for word his, similar
words are morphologies of he. On the contrary,
similar words measured by our embeddings have
similar syntactic functions. This is helpful for de-
pendency parsing since parsing models care more
about the syntactic functions of words rather than
their collocations or morphologies.

POS-tag embeddings also show similar behav-
ior with word embeddings. As shown in Table 4,
our model captures similarities between POS-tags
even though their embeddings are initialized ran-
domly.

We also investigated the effect of phrase embed-
dings in the same way as feature embeddings. Ta-
ble 5 lists the examples of similar phrases. Our
phrase embeddings work pretty well given that
only a simple averaging strategy is used. Phrases
that are close to each other tend to share simi-
lar syntactic and semantic information. By using
phrase embeddings, our model sees panorama of
the context rather than limited word tri-grams and
thus captures richer context information, which is
the reason why phrase embeddings significantly
improve the performance.

Ability of Feature Learning
Finally, we try to unveil the mysterious hidden
layer and investigate what features it learns. For
each hidden unit of 2-order-phrase, we get its
connections with embeddings (i.e., W d

h in Figure
2) and pick the connections whose weights have
absolute value > 0.1. We sampled several hidden
units and invenstigated which features their highly
weighted connections belong to:
• Hidden 1: h.w, m.w, h−1.w, m1.w

• Hidden 2: h.p, m.p, s.p

• Hidden 3: hm infix.p, hm infix.w, hm prefix.w

• Hidden 4: hm infix.w, hm prefix.w, sm infix.w

• Hidden 5: hm infix.p, hm infix.w, hm suffix.w

The samples above give qualitative results of what
features the hidden layer learns:

• Hidden unit 1 and 2 show that atomic features
of head, modifier, sibling and their local con-
text words are useful in our model, which is
consistent with our expectations since these
features are also very important features in
conventional graph-based models (McDon-
ald and Pereira, 2006).

• Features in the same hidden unit will “com-
bine” with each other through our tanh-cube
activation function. As we can see, feature
combination in hidden unit 2 were also used
in Mcdonald and Pereira (2006). However,
these feature combinations are automatically
captured by our model without the labor-
intensive feature engineering.

• Hidden unit 3 to 5 show that phrase-level
information like hm prefix, hm suffix and
sm infix are effective in our model. These
features are not used in conventional second-
order model (McDonald and Pereira, 2006)
because they could explode the feature space.
Through our tanh-cube activation function,
our model further captures the interactions
between phrases and other features without
the concern of overfitting.

5 Related Work

Models for dependency parsing have been stud-
ied with considerable effort in the NLP commu-
nity. Among them, we only focus on the graph-
based models here. Most previous systems ad-
dress this task by using linear statistical models
with carefully designed context and structure fea-
tures. The types of features available rely on tree
factorization and decoding algorithm. Mcdonald
et.al (2005) proposed the first-order model which
is also know as arc-factored model. Efficient de-
coding can be performed with Eisner (2000) algo-
rithm in O(n3) time and O(n2) space. Mcdonald
and Pereira (2006) further extend the first-order
model to second-order model where sibling infor-
mation is available during decoding. Eisner (2000)
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algorithm can be modified trivially for second-
order decoding. Carreras (2007) proposed a more
powerful second-order model that can score both
sibling and grandchild parts with the cost ofO(n4)
time and O(n3) space. To exploit more struc-
ture information, Koo and Collins (2010) pro-
posed three third-order models with computational
requirements of O(n4) time and O(n3) space.

Recently, neural network models have been in-
creasingly focused on for their ability to minimize
the effort in feature engineering. Chen et.al (2014)
proposed an approach to automatically learning
feature embeddings for graph-based dependency
parsing. The learned feature embeddings are used
as additional features in conventional graph-based
model. Le and Zuidema (2014) proprosed an
infinite-order model based on recursive neural net-
work. However, their model can only be used as
an reranking model since decoding is intractable.

Compared with these work, our model is a
general and standalone neural network model.
Both training and decoding in our model are per-
formed based on our neural network architecture
in an effective way. Although only first-order
and second-order models are implemented in our
work, higher-order graph-based models can be
easily implemented using our model.

6 Conclusion

In this paper, we propose a general and effec-
tive neural network model that can automatically
learn feature combinations with our novel acti-
vation function. Moreover, we introduce a sim-
ple yet effect way to utilize phrase-level informa-
tion, which greatly improves the model perfor-
mance. Experiments on the benchmark dataset
show that our model achieves better results than
conventional models.
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