
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 944–953,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Automatic detection of deception in child-produced speech using syntactic
complexity features

Maria Yancheva
Division of Engineering Science,

University of Toronto
Toronto Ontario Canada

maria.yancheva@utoronto.ca

Frank Rudzicz
Toronto Rehabilitation Institute; and
Department of Computer Science,

University of Toronto
Toronto Ontario Canada

frank@cs.toronto.edu

Abstract

It is important that the testimony of chil-
dren be admissible in court, especially
given allegations of abuse. Unfortunately,
children can be misled by interrogators or
might offer false information, with dire
consequences. In this work, we evalu-
ate various parameterizations of five clas-
sifiers (including support vector machines,
neural networks, and random forests) in
deciphering truth from lies given tran-
scripts of interviews with 198 victims of
abuse between the ages of 4 and 7. These
evaluations are performed using a novel
set of syntactic features, including mea-
sures of complexity. Our results show
that sentence length, the mean number
of clauses per utterance, and the Stajner-
Mitkov measure of complexity are highly
informative syntactic features, that classi-
fication accuracy varies greatly by the age
of the speaker, and that accuracy up to
91.7% can be achieved by support vec-
tor machines given a sufficient amount of
data.

1 Introduction
The challenge of disambiguating between truth
and deception is critical in determining the ad-
missibility of court testimony. Unfortunately, the
testimony of maltreated children is often not ad-
mitted in court due to concerns about truthfulness
since children can be instructed to deny transgres-
sions or misled to elicit false accusations (Lyon
and Dorado, 2008). However, the child is often
the only witness of the transgression (Undeutsch,
2008); automatically determining truthfulness in

such situations is therefore a paramount goal so
that justice may be served effectively.

2 Related Work

Research in the detection of deception in adult
speech has included analyses of verbal and non-
verbal cues such as behavioral changes, facial ex-
pression, speech dysfluencies, and cognitive com-
plexity (DePaulo et al., 2003). Despite statistically
significant predictors of deception such as shorter
talking time, fewer semantic details, and less co-
herent statements, DePaulo et al. (2003) found that
the median effect size is very small. Deception
without special motivation (e.g., everyday ‘white
lies’) exhibited almost no discernible cues of de-
ception. However, analysis of moderating factors
showed that cues were significantly more numer-
ous and salient when lies were about transgres-
sions.

Literature on deception in children is relatively
limited. In one study, Lewis et al. (1989) studied
3-year-olds and measured behavioral cues, such as
facial expression and nervous body movement, be-
fore and after the elicitation of a lie. Verbal re-
sponses consisted of yes/no answers. Results sug-
gested that 3-year-old children are capable of de-
ception, and that non-verbal behaviors during de-
ception include increases in ‘positive’ behaviors
(e.g., smiling). However, verbal cues of deception
were not analyzed. Crucially, Lewis et al. (1989)
showed that humans are no more accurate in deci-
phering truth from deception in child speech than
in adult speech, being only about 50% accurate.

More recently, researchers have used linguis-
tic features to identify deception. Newman et al.
(2003) inferred deception in transcribed, typed,
and handwritten text by identifying features of lin-
guistic style such as the use of personal pronouns
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and exclusive words (e.g., but, except, without).
These features were obtained with the Linguistic
Inquiry and Word Count (LIWC) tool and used
in a logistic regression classifier which achieved,
on average, 61% accuracy on test data. Feature
analysis showed that deceptive stories were char-
acterized by fewer self-references, more negative
emotion words, and lower cognitive complexity,
compared to non-deceptive language.

Another recent stylometric experiment in auto-
matic identification of deception was performed
by Mihalcea and Strapparava (2009). The authors
used a dataset of truthful and deceptive typed re-
sponses produced by adult subjects on three dif-
ferent topics, collected through the Amazon Me-
chanical Turk service. Two classifiers, Naı̈ve
Bayes (NB) and a support vector machine (SVM),
were applied on the tokenized and stemmed state-
ments to obtain best classification accuracies of
70% (abortion topic, NB), 67.4% (death penalty
topic, NB), and 77% (friend description, SVM),
where the baseline was taken to be 50%. The
large variability of classifier performance based on
the topic of deception suggests that performance
is context-dependent. The authors note this as
well by demonstrating significantly lower results
of 59.8% for NB and 57.8% for SVM when cross-
topic classification is performed by training each
classifier on two topics and testing on the third.

The Mihalcea-Strapparava mturk dataset was
further used in a study by Feng et al. (2012) which
employs lexicalized and unlexicalized production
rules to obtain deep syntactic features. The cross-
validation accuracy obtained on the three topics
was improved to 77% (abortion topic), 71.5%
(death penalty topic), and 85% (friend descrip-
tion). The results nevertheless varied with topic.

Another experiment using syntactic features for
identifying sentences containing uncertain or un-
reliable information was conducted by Zheng et al.
(2010) on an adult-produced dataset of abstracts
and full articles from BioScope, and on paragraphs
from Wikipedia. The results demonstrated that us-
ing syntactic dependency features extracted with
the Stanford parser improved performance on the
biological dataset, while an ensemble classifier
combining a conditional random field (CRF) and
a MaxEnt classifier performed better than individ-
ual classifiers on the Wikipedia dataset.

A meta-analysis of features used in deception
detection was performed by Hauch et al. (2012)

and revealed that verbal cues based on lexical cat-
egories extracted using the LIWC tool show sta-
tistically significant, though small, differences be-
tween truth- and lie-tellers. Vartapetiance and
Gillam (2012) surveyed existing cues to verbal de-
ception and demonstrated that features in LIWC
are not indicative of deception in online content,
recommending that the features used to identify
deception and the thresholds between deception
and truth be based on the specific data set.

In the speech community, analysis of deceptive
speech has combined various acoustic, prosodic,
and lexical features (Hirschberg et al., 2005). Gra-
ciarena et al. (2006) combined two independent
systems — an acoustic Gaussian mixture model
based on Mel cepstral features, and a prosodic
support vector machine based on features such as
pitch, energy, and duration — and achieved an ac-
curacy of 64.4% on a test subset of the Columbia-
SRI-Colorado (CSC) corpus of deceptive and non-
deceptive speech (Hirschberg et al., 2005).

While previous studies have achieved some
promising results in detecting deception with lex-
ical, acoustic, and prosodic features, syntax re-
mains relatively unexplored compared to LIWC-
based features. Syntactic complexity as a cue
to deception is consistent with literature in social
psychology which suggests that emotion suppres-
sion (e.g., inhibition of guilt and fear) consumes
cognitive resources, which can influence the un-
derlying complexity of utterances (Richards and
Gross, 1999; Richards and Gross, 2000). Ad-
ditionally, the use of syntactic features is moti-
vated by their successful use on adult-produced
datasets for detecting deceptive or uncertain utter-
ances (Feng et al., 2012; Zheng et al., 2010), as
well as in other applications, such as the evaluation
of changes in text complexity (Stajner and Mitkov,
2012), the identification of personality in conver-
sation and text (Mairesse et al., 2007), and the de-
tection of dementia through syntactic changes in
writing (Le et al., 2011).

Past work has focused on identifying deceptive
speech produced by adults. The problem of deter-
mining validity of child testimony in high-stakes
child abuse court cases motivates the analysis of
child-produced deceptive language. Further, the
use of binary classification schemes in previous
work does not account for partial truths often en-
countered in real-life scenarios. Due to the rarity
of real deceptive data, studies typically use arti-
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ficially produced deceptive language which falls
unambiguously in one of two classes: complete
truth or complete deception (Newman et al., 2003;
Mihalcea and Strapparava, 2009). Studies which
make use of real high-stakes courtroom data con-
taining partial truths, such as the Italian DECOUR
corpus analyzed by Fornaciari and Poesio (2012),
preprocess the dataset to eliminate any partially
truthful utterances. Since utterances of this kind
are common in real language, their elimination
from the dataset is not ideal.

The present study evaluates the viability of a
novel set of 17 syntactic features as markers of de-
ception in five classifiers. Moreover, to our knowl-
edge, it is the first application of automatic de-
ception detection to a real-life dataset of deceptive
speech produced by maltreated children. The data
is scored using a gradient of truthfulness, which
is used to represent completely true, partially true,
and completely false statements. Descriptions of
the data (section 3) and feature sets (section 4) pre-
cede experimental results (section 5) and the con-
cluding discussion (section 6).

3 Data
The data used in this study were obtained from
Lyon et al. (2008), who conducted and transcribed
a truth-induction experiment involving maltreated
children awaiting court appearances in the Los
Angeles County Dependency Court. Subjects
were children between the ages of 4 and 7 (99 boys
and 99 girls) who were interviewed regarding an
unambiguous minor transgression involving play-
ing with a toy. To ensure an understanding of lying
and its negative consequences, all children passed
a preliminary oath-taking competency task, requir-
ing each child to correctly identify a truth-teller
and a lie-teller in an object labeling task, as well
as to identify which of the two would be the target
of negative consequences.

During data collection, a confederate first en-
gaged each child individually in one of four condi-
tions: a) play, b) play and coach, c) no play, and d)
no play and coach. In the two play conditions, the
confederate engaged the child in play with a toy
house (in the no play conditions, they did not); in
the two coach conditions, the confederate coached
the child to lie (i.e., to deny playing if they played
with the toy house, or to admit playing if they
did not). The confederate then left and the child
was interviewed by a second researcher who per-
formed a truth-induction manipulation consisting

of one of: a) control — no manipulation, b) oath
— the interviewer reminded the child of the im-
portance of telling the truth and elicited a promise
of truth-telling, and c) reassurance — the inter-
viewer reassured the child that telling the truth will
not lead to any negative consequences.

Each pre- and post-induction transcription may
contain explicit statements of up to seven features:
looking at toy-house, touching toy-house, playing
with toy-house, opening toy-house doors or win-
dows to uncover hidden toys, playing with these
hidden toys, spinning the toy-house, and putting
back or hiding a toy. All children in the play condi-
tion engaged in all seven actions, while children in
the no play condition engaged in none. An eighth
feature is the lack of explicit denial of touching or
playing with the toy house, which is considered
to be truthful in the play condition, and deceptive
in the no play condition (see the examples in the
appendix). A transcription is labeled as truth if
at least half of these features are truthful (53.2%
of all transcriptions) and lie otherwise (46.8% of
transcriptions). Other thresholds for this binary
discrimination are explored in section 5.4.

Each child’s verbal response was recorded
twice: at time T1 (prior to truth-induction), and
at time T2 (after truth-induction). Each child was
subject to one of the four confederate conditions
and one of the three induction conditions. The raw
data were pre-processed to remove subjects with
blank transcriptions, resulting in a total of 173 sub-
jects (87 boys and 86 girls) and 346 transcriptions.

4 Methods
Since the data consist of speech produced by 4- to
7-year-old children, the predictive features must
depend on the level of syntactic competence of
this age group. The “continuity assumption” states
that children have a complete system of abstract
syntactic representation and have the same set of
abstract functional categories accessible to adults
(Pinker, 1984). An experimental study with 3-
to 8-year-old children showed that their syntac-
tic competence is comparable to that of adults;
specifically, children have a productive rule for
passive forms which allows them to generalize
to previously unheard predicates while following
adult-like constraints to avoid over-generalization
(Pinker et al., 1987). Recent experiments with
syntactic priming showed that children’s represen-
tations of abstract passive constructions are well-
developed as early as age 3 or 4, and young
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children are generally able to form passive con-
structions with both action and non-action verbs
(Thatcher et al., 2007). These results suggest that
measures of syntactic complexity that are typically
used to evaluate adult language could be adapted
to child speech, provided that the children are at
least 3 or 4 years old.

Here, the complexity of speech is character-
ized by the length of utterances and by the fre-
quency of dependent and coordinate clauses, with
more complex speech consisting of longer utter-
ances and a higher number of subordinate clauses.
We segmented the transcriptions into sentences,
clauses and T-units, which are “minimally ter-
minable units” consisting of a main clause and
its dependent clauses (Hunt, 1965; O’Donnell et
al., 1967)1. Deceptive communication generally
has shorter duration and is less detailed than non-
deceptive speech (DePaulo et al., 2003), so the
length of each type of segment was counted along
with frequency features over segments. Here, the
frequency of dependent and coordinate clauses per
constituent approximate clause-based measures of
complexity.

Our approach combines a set of features ob-
tained from a functional dependency grammar
(FDG) parser with another (non-overlapping) set
of features obtained from a phrase-based grammar
parser. We obtained FDG parses of the transcrip-
tions using Connexor’s Machinese Syntax parser
(Tapanainen and Järvinen, 1997) and extracted the
following 5 features:

ARI Automated readability index. Measures
word and sentence difficulty, 4.71 c

w+0.5w
s −

21.43, where c is the number of characters, w
is the number of words, and s is the number
of sentences (Smith and Senter, 1967).

ASL Average sentence length. The number of
words over the number of sentences.

COM Sentence complexity. The ratio of sen-
tences with ≥ 2 finite predicators to those
with ≤ 1 finite predicator (Stajner and
Mitkov, 2012).

PAS Passivity. The ratio of non-finite main
predicators in a passive construction (@–

1T-units include single clauses, two or more phrases in ap-
position, or clause fragments. Generally, coordinate clauses
are split into separate T-units, as are clauses interrupted by
discourse boundary markers.

FMAINV %VP) to the total number of fi-
nite (@+FMAINV %VA) and non-finite (@–
FMAINV %VA and @–FMAINV %VP)
main predicators, including active construc-
tions.

MCU Mean number of clauses per utterance.

Additionally, we searched for specific syntactic
patterns in phrase-based parses of the data. We
used the Stanford probabilistic natural language
parser (Klein and Manning, 2003) for construct-
ing these parse trees, the Stanford Tregex utility
(Levy and Andrew, 2006) for searching the con-
structed parse trees, and a tool provided by Lu
(2011) which extracts a set of 14 clause-based fea-
tures in relation to sentence, clause and T-unit con-
stituents.

4.1 Feature analysis
Analysis of variance (ANOVA) was performed on
the set of 17 features, shown in Table 1. A one-
factor ANOVA across the truth and lie groups
showed three significant feature variations: aver-
age sentence length (ASL), sentence complexity
(COM), and mean clauses per utterance (MCU).
Dependencies between some feature pairs that are
positively correlated are shown in Figure 1.

As expected, the number of clauses (MCU) is
dependent on sentence length (ASL) (r(344) =
.92, p < .001). Also, the number of T-units is de-
pendent on the number of clauses: CN/C is corre-
lated with CN/T (r(344) = .89, p < .001), CP/C
is correlated with CP/T (r(344) = .85, p < .001),
and DC/C is correlated with DC/T (r(344) = .92,
p < .001). Other features are completely un-
correlated. For example, the number of passive
constructions is independent of sentence length
(r(344) = −.0020, p > .05), the number of com-
plex nominals per clause is independent of clause
length (r(344) = .076, p > .05), and the density
of dependent clauses is independent of the density
of coordinate phrases (r(344) = −.027, p > .05).

5 Results
We evaluate five classifiers: logistic regres-
sion (LR), a multilayer perceptron (MLP), naı̈ve
Bayes (NB), a random forest (RF), and a support
vector machine (SVM). Here, naı̈ve Bayes, which
assumes conditional independence of the features,
and logistic regression, which has a linear deci-
sion boundary, are baselines. The MLP includes a
variable number of layers of hidden units, which
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Figure 1: Independent and dependent feature pairs; data points are labeled as truth (blue) and lie (green).

Feature F1,344 d
Automated Readability Index (ARI) 0.187 0.047
Average Sentence Length (ASL) 3.870 0.213
Sentence Complexity (COM) 10.93 0.357
Passive Sentences (PAS) 1.468 0.131
Mean Clauses per Utterance (MCU) 6.703 0.280
Mean Length of T-Unit (MLT) 2.286 0.163
Mean Length of Clause (MLC) 0.044 -0.023
Verb Phrases per T-Unit (VP/T) 3.391 0.199
Clauses per T-Unit (C/T) 2.345 0.166
Dependent Clauses per Clause (DC/C) 1.207 0.119
Dependent Clauses per T-Unit (DC/T) 1.221 0.119
T-Units per Sentence (T/S) 3.692 0.208
Complex T-Unit Ratio (CT/T) 2.103 0.157
Coordinate Phrases per T-Unit (CP/T) 0.463 -0.074
Coordinate Phrases per Clause (CP/C) 0.618 -0.085
Complex Nominals per T-Unit (CN/T) 0.722 0.092
Complex Nominals per Clause (CN/C) 0.087 0.032

Table 1: One-factor ANOVA (F statistics and Co-
hen’s d-values, α = 0.05) on all features across
truth and lie groups. Statistically significant re-
sults are in bold.

apply non-linear activation functions on a linear
combination of inputs. The SVM is a paramet-
ric binary classifier that provides highly non-linear
decision boundaries given particular kernels. The
random forest is an ensemble classifier that returns
the mode of the class predictions of several deci-
sion trees.

5.1 Binary classification across all data

The five classifiers were evaluated on the entire
pooled data set with 10-fold cross validation. Ta-
ble 2 lists the parameters varied for each classi-
fier, and Table 3 shows the cross-validation accu-
racy for the classifiers with the best parameter set-
tings. The naı̈ve Bayes classifier performs poorly,
as could be expected given the assumption of con-
ditional feature independence. The SVM classifier

performs best, with 59.5% cross-validation accu-
racy, which is a statistically significant improve-
ment over the baselines of LR (t(4) = 22.25, p <
.0001), and NB (t(4) = 16.19, p < .0001).

Parameter Values

L
R R Ridge value 10−10 to 10−2

M
L

P

L Learning rate 0.0003 to 0.3

M Momentum 0 to 0.5

H Number of hidden
layers

1 to 5

N
B K Use kernel

estimator
true, false

R
F I Number of trees 1 to 20

K Maximum depth unlimited, 1 to 10

SV
M

K Kernel Linear, RBF,

Polynomial

E Polynomial
Exponent

2 to 5

G RBF Gamma 0.001 to 0.1

C Complexity
constant

0.1 to 10

Table 2: Empirical parameter settings for each
classifier

5.2 Binary classification by age group

Significant variation in syntactic complexity is ex-
pected across ages. To account for such variation,
we segmented the dataset in four groups: 44 tran-
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Accuracy Parameters

LR 0.5347 R = 10−10

MLP 0.5838 L = 0.003, M = 0.4

NB 0.5173 K = false
RF 0.5809 I = 10, K = 6

SVM 0.5954 Polynomial, E = 3, C = 1

Table 3: Cross-validation accuracy of binary clas-
sification performed on entire dataset of 346 tran-
scriptions.

scriptions of 4-year-olds, 120 of 5-year-olds, 94 of
6-year-olds, and 88 of 7-year-olds. By compari-
son, Vrij et al. (2004) used data from only 35 chil-
dren in their study of 5- and 6-year-olds. Classi-
fication of truthfulness was performed separately
for each age, as shown in Table 4. In compar-
ison with classification accuracy on pooled data,
a paired t-test shows statistically significant im-
provement across all age groups using RF, t(3) =
10.37, p < .005.

Age (years)
4 5 6 7

LR 0.6136 0.5333 0.5957* 0.4886
MLP 0.6136† 0.5583 0.6170† 0.5909*
NB 0.6136* 0.5250 0.5426 0.5682
RF 0.6364† 0.6333* 0.6383† 0.6591†
SVM 0.6591 0.5583 0.6064 0.6250*

Table 4: Cross-validation accuracy of binary clas-
sification partitioned by age. The best classifier at
each age is shown in bold. The classifiers showing
statistically significant incremental improvement
are marked: *p < .05, †p < .001 (paired t-test,
d.f. 4)

5.3 Binary classification by age group, on
verbose transcriptions

The length of speech, in number of words, varies
widely (min = 1, max = 167, µ = 36.83,
σ = 28.34) as a result of the unregulated nature
of the interview interaction. To test the effect of
verbosity, we segment the data by child age and
select only the transcriptions with above-average
word counts (i.e., ≥ 37 words), resulting in four
groups: 12 transcriptions of 4-year-olds, 48 of 5-
year-olds, 39 of 6-year-olds, and 37 of 7-year-olds.
This mimics the scenario in which some mini-

mum threshold is placed on the length of a child’s
speech. In this verbose case, 63.3% of transcripts
are labeled truth across age groups (using the same
definition of truth as in section 3), with no sub-
stantial variation between ages; in the non-verbose
case, 53.2% are marked truth. Fisher’s exact test
on this contingency table reveals no significant dif-
ference between these distributions (p = 0.50).
Classification results are shown in Table 5. The
size of the training set for the youngest age cat-
egory is low compared to the other age groups,
which may reduce the reliability of the higher ac-
curacy achieved in that group. The other three age
groups show a growing trend, which is consistent
with expectations — older children exhibit greater
syntactic complexity in speech, allowing greater
variability of feature values across truth and de-
ception. Here, both SVM and RF achieve 83.8%
cross-validation accuracy in identifying deception
in the speech of 7-year-old subjects.

4 5 6 7

LR 0.7500† 0.5417 0.6667† 0.7297†

MLP 0.8333† 0.6250† 0.6154 0.7838†

NB 0.6667† 0.4583 0.4103 0.7297*
RF 0.8333† 0.5625 0.7179† 0.8378†
SVM 0.9167* 0.6250† 0.6154* 0.8378†

Table 5: Cross-validation accuracy of binary clas-
sification performed on transcriptions with above
average word count (136 transcriptions), by age
group. Rows represent classifiers, columns repre-
sent ages. The best classifier for each age is in
bold. The classifiers showing statistically signifi-
cant incremental improvement are marked: *p <
.05, †p < .001 (paired t-test, d.f. 4)

5.4 Threshold variation

To study the effect of the threshold between the
truth and lie classes, we vary the value of the
threshold, τ , from 1 to 8, requiring the admission
of at least τ truthful details (out of 8 possible de-
tails) in order to label a transcription as truth. The
effect of τ on classification accuracy over the en-
tire pooled dataset for each of the 5 classifiers is
shown in Figure 2. A one-factor ANOVA with
τ as the independent variable with 8 levels, and
cross-validation accuracy as the dependent vari-
able, confirms that the effect of the threshold is sta-
tistically significant (F7,40 = 220.69, p < .0001)
with τ = 4 being the most conservative setting.
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Figure 2: Effect of threshold and classifier choice
on cross-validation accuracy. Threshold τ = 0 is
not present, since all data would be labeled truth.

5.5 Linguistic Inquiry and Word Count

The Linguistic Inquiry and Word Count (LIWC)
tool for generating features based on word cate-
gory frequencies has been used in deception de-
tection with adults, specifically: first-person sin-
gular pronouns (FP), exclusive words (EW), nega-
tive emotion words (NW), and motion verbs (MV)
(Newman et al., 2003). We compare the perfor-
mance of classifiers trained with our 17 syntactic
features to those of classifiers trained with those
LIWC-based features on the same data. To evalu-
ate the four LIWC categories, we use the 86 words
of the Pennebaker model (Little and Skillicorn,
2008; Vartapetiance and Gillam, 2012). The per-
formance of the classifiers trained with LIWC fea-
tures is shown in Table 6.

The set of 17 syntactic features proposed here
result in significantly higher accuracies across
classifiers and experiments (µ = 0.63, σ = 0.10)
than with the LIWC features used in previous
work (µ = 0.58, σ = 0.09), as shown in Figure 3
(t(53) = −0.0691, p < .0001).

6 Discussion and future work

This paper evaluates automatic estimation of truth-
fulness in the utterances of children using a novel
set of lexical-syntactic features across five types
of classifiers. While previous studies have favored
word category frequencies extracted with LIWC
(Newman et al., 2003; Little and Skillicorn, 2008;
Hauch et al., 2012; Vartapetiance and Gillam,

Figure 3: Effect of feature set choice on cross-
validation accuracy.

2012; Almela et al., 2012; Fornaciari and Poesio,
2012), our results suggest that the set of syntac-
tic features presented here perform significantly
better than the LIWC feature set on our data, and
across seven out of the eight experiments based on
age groups and verbosity of transcriptions.

Statistical analyses showed that the average sen-
tence length (ASL), the Stajner-Mitkov measure
of sentence complexity (COM), and the mean
number of clauses per utterance (MCU) are the
features most predictive of truth and deception
(see section 4.1). Further preliminary experi-
ments are exploring two methods of feature se-
lection, namely forward selection and minimum-
Redundancy-Maximum-Relevance (mRMR). In
forward selection, features are greedily added one-
at-a-time (given an initially empty feature set) un-
til the cross-validation error stops decreasing with
the addition of new features (Deng, 1998). This
results in a set of only two features: sentence
complexity (COM) and T-units per sentence (T/S).
Features are selected in mRMR by minimizing
redundancy (i.e., the average mutual information
between features) and maximizing the relevance
(i.e., the mutual information between the given
features and the class) (Peng et al., 2005). This
approach selects five features: verb phrases per T-
unit (VP/T), passive sentences (PAS), coordinate
phrases per clause (CP/C), sentence complexity
(COM), and complex nominals per clause (CN/C).
These results confirm the predictive strength of
sentence complexity. Further, preliminary classi-
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Group Accuracy Best Classifier Parameters

Entire dataset 0.5578 RF I = 20, K = unlimited
4-yr-olds 0.5682 MLP L = 0.005, M = 0.3, H = 1
5-yr-olds 0.5583 RF I = 5, K = unlimited
6-yr-olds 0.5319 MLP L = 0.005, M = 0.3, H = 1
7-yr-olds 0.6591 RF I = 5, K = unlimited
4-yr-olds, verbose 0.8333 SVM PolyKernel, E = 4, C = 10
5-yr-olds, verbose 0.7083 SVM NormalizedPolyKernel, E = 1, C = 10
6-yr-olds, verbose 0.6154 MLP L = 0.09, M = 0.2, H = 1
7-yr-olds, verbose 0.7027 MLP L = 0.01, M = 0.5, H = 3

Table 6: Best 10-fold cross-validation accuracies achieved on various subsets of the data, using the
LIWC-based feature set.

fication results across all classifiers suggest that
accuracies are significantly higher given forward
selection (µ = 0.58, σ = 0.02) relative to the
original feature set (µ = 0.56, σ = 0.03); t(5) =
−2.28, p < .05 while the results given the mRMR
features are not significantly different.

Generalized cross-validation accuracy increases
significantly given partitioned age groups, which
suggests that the importance of features may be
moderated by age. A further incremental in-
crease is achieved by considering only transcrip-
tions above a minimum length. O’Donnell et
al. (1967) examined syntactic complexity in the
speech and writing of children aged 8 to 12, and
found that speech complexity increases with age.
This phenomenon appears to be manifested in the
current study by the extent to which classification
increases generally across the 5-, 6-, and 7-year-
old groups, as shown in Table 5. Future examina-
tion of the effect of age on feature saliency may
yield more appropriate age-dependent features.

While past research has used logistic regression
as a binary classifier (Newman et al., 2003), our
experiments show that the best-performing classi-
fiers allow for highly non-linear class boundaries;
SVM and RF models achieve between 62.5% and
91.7% accuracy across age groups — a significant
improvement over the baselines of LR and NB,
as well as over previous results. Moreover, since
the performance of human judges in identifying
deception is not significantly better than chance
(Lewis et al., 1989; Newman et al., 2003), these
results show promise in the use of automatic de-
tection methods.

Partially truthful transcriptions were scored us-
ing a gradient of 0 to 8 truthful details, and a
threshold τ was used to perform binary classifica-

tion. Extreme values of τ lead to poor F-scores de-
spite high accuracy, since the class distribution of
transcriptions is very skewed towards either class.
Future work can explore the effect of threshold
variation given sufficient data with even class dis-
tributions for each threshold setting. When such
data is unavailable, experiments can make use of
the most conservative setting (τ = 4, or an equiv-
alent mid-way setting) for analysis of real-life ut-
terances containing partial truths.

Future work should consider measures of con-
fidence for each classification, where possible, so
that more ambiguous classifications are not treated
on-par with more certain ones. For instance, con-
fidence can be approximated in MLPs by the en-
tropy across continuous-valued output nodes, and
in RFs by the number of component decision trees
that agree on a classification. Although acoustic
data were not provided with this data set (Lyon
and Dorado, 2008) (and, in practice, cannot be as-
sured), future work should also examine the dif-
ferences in the acoustics of children across truth
conditions.
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Appendix
The following is an example of evasive deceptive
speech from a 6-year-old after no truth induction
(i.e., the control condition in which the interviewer
merely states that he needs to ask more questions):

... Yeah yeah ok, I’m a tell you. We
played that same game and I won and
he won. I’m going to be in trouble if I
tell you. It a secret. It’s a secret ’cuz
we’re friends. ...

Transcription excerpt labeled as truth by a
threshold of τ = 1: 7-year-old child’s response
(play, no coach condition), in which the child does
not explicitly deny playing with the toy house, and
admits to looking at it but does not confess to any
of the other six actions:

...I was playing, I was hiding the coin
and I was trying to find the house... try-
ing to see who was in there...

Transcription excerpt labeled as truth by a
threshold of τ = 4: 7-year-old child’s response
(play, no coach condition), in which the child does
not explicitly deny playing, and admits to three ac-
tions:

...me and him was playing with it... we
were just spinning it around and got the
toys out...
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