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Abstract

We describe a novel approach for automat-
ically predicting the hidden demographic
properties of social media users. Building
on prior work in common-sense knowl-
edge acquisition from third-person text,
we first learn the distinguishing attributes
of certain classes of people. For exam-
ple, we learn that people in the Female
class tend to have maiden names and en-
gagement rings. We then show that this
knowledge can be used in the analysis of
first-person communication; knowledge of
distinguishing attributes allows us to both
classify users and to bootstrap new train-
ing examples. Our novel approach enables
substantial improvements on the widely-
studied task of user gender prediction, ob-
taining a 20% relative error reduction over
the current state-of-the-art.

1 Introduction

There has been growing interest in characteriz-
ing social media users based on the content they
generate; that is, automatically labeling users with
demographic categories such as age and gender
(Burger and Henderson, 2006; Schler et al., 2006;
Rao et al., 2010; Mukherjee and Liu, 2010; Pen-
nacchiotti and Popescu, 2011; Burger et al., 2011;
Van Durme, 2012). Automatic user character-
ization has applications in targeted advertising
and personalization, and could also lead to finer-
grained assessment of public opinion (O’Connor
et al., 2010) and health (Paul and Dredze, 2011).

Consider the following tweet and suppose we
wish to predict the user’s gender:

Dirac was one of my boyhood heroes.
I’m glad I met him once. RT Paul Dirac
image by artist Eric Handy: http:...

State-of-the-art approaches cast this problem as a
classification task and train classifiers using super-
vised learning (Section 2). The features of the
classifier are indicators of specific words in the
user-generated text. While a human would as-
sume that someone with boyhood heroes is male,
a standard classifier has no way of exploiting such
knowledge unless the phrase occurs in training
data. We present an algorithm that improves user
characterization by collecting and exploiting such
common-sense knowledge.

Our work is inspired by algorithms that pro-
cesses large text corpora in order to discover the
attributes of semantic classes, e.g. (Berland and
Charniak, 1999; Schubert, 2002; Almuhareb and
Poesio, 2004; Tokunaga et al., 2005; Girju et al.,
2006; Paşca and Van Durme, 2008; Alfonseca et
al., 2010). We learn the distinguishing attributes
of different demographic groups (Section 3), and
then automatically assign users to these groups
whenever they refer to a distinguishing attribute in
their writings (Section 4). Our approach obviates
the need for expensive annotation efforts, and al-
lows us to rapidly bootstrap training data for new
classification tasks.

We validate our approach by advancing the
state-of-the-art on the most well-studied user clas-
sification task: predicting user gender (Section 5).
Our bootstrapped system, trained purely from
automatically-annotated Twitter data, significantly
reduces error over a state-of-the-art system trained
on thousands of gold-standard training examples.

2 Supervised User Characterization

The current state-of-the-art in user characteriza-
tion is to use supervised classifiers trained on an-
notated data. For each instance to be classified, the
output is a decision about a distinct demographic
property, such as Male/Female or Over/Under-18.
A variety of classification algorithms have been
employed, including SVMs (Rao et al., 2010), de-
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cision trees (Pennacchiotti and Popescu, 2011), lo-
gistic regression (Van Durme, 2012), and the Win-
now algorithm (Burger et al., 2011).

Content Features: BoW Prior classifiers use a
set of features encoding the presence of specific
words in the user-generated text. We call these
features BoW features as they encode the stan-
dard Bag-of-Words representation which has been
highly effective in text categorization and informa-
tion retrieval (Sebastiani, 2002).

User-Profile Features: Usr Some researchers
have explored features for user-profile meta-
information in addition to user content. This may
include the user’s communication behavior and
network of contacts (Rao et al., 2010), their full
name (Burger et al., 2011) and whether they pro-
vide a profile picture (Pennacchiotti and Popescu,
2011). We focus on the case where we only
have access to the user’s screen-name (a.k.a. user-
name). Using a combination of content and user-
name features “represents a use case common to
many different social media sites, such as chat
rooms and news article comment streams” (Burger
et al., 2011). We refer to features derived from a
username as Usr features in our experiments.

3 Learning Class Attributes

We aim to improve the automated classification
of users into various demographic categories by
learning and applying the distinguishing attributes
of those categories, e.g. that males have boyhood
heroes. Our approach builds on lexical-semantic
research on the topic of class-attribute extraction.
In this research, the objective is to discover vari-
ous attributes or parts of classes of entities. For
example, Berland and Charniak (1999) learn that
the class car has parts such as headlight, wind-
shield, dashboard, etc. Berland and Charniak ex-
tract these attributes by mining a corpus for fillers
of patterns such as ‘car’s X’ or ‘X of a car’. Note
their patterns explicitly include the class itself
(car). Another approach is to use patterns that are
based on instances (i.e. hyponyms or sub-classes)
of the class. For example, Paşca and Van Durme
(2007) learn the attributes of the class car via pat-
terns involving instances of cars, e.g. Chevrolet
Corvette’s X and X of a Honda Civic. For these ap-
proaches, lists of instances are typically collected
from publicly-available resources such as Word-
Net or Wikipedia (Paşca and Van Durme, 2007;

Van Durme et al., 2008), acquired automatically
from corpora (Paşca and Van Durme, 2008; Al-
fonseca et al., 2010), or simply specified by hand
(Schubert, 2002).

Creation of Instance Lists We use an instance-
based approach; our instances are derived from
collections of common nouns that are associated
with roles and occupations of people. For the
gender task that we study in our experiments, we
acquire class instances by filtering the dataset of
nouns and their genders created by Bergsma and
Lin (2006). This dataset indicates how often a
noun is referenced by a male, female, neutral or
plural pronoun. We extract prevalent common
nouns for males and females by selecting only
those nouns that (a) occur more than 200 times
in the dataset, (b) mostly occur with male or fe-
male pronouns, and (c) occur as lower-case more
often than upper-case in a web-scale N-gram cor-
pus (Lin et al., 2010). We then classify a noun as
Male (resp. Female) if the noun is indicated to
occur with male (resp. female) pronouns at least
85% of the time. Since the gender data is noisy,
we also quickly pruned by hand any instances that
were malformed or obviously incorrectly assigned
by our automatic process. This results in 652 in-
stances in total. Table 1 provides some examples.

Male: bouncer, altar boy, army officer, dictator,
assailant, cameraman, drifter, chauffeur, bad guy

Female: young lady, lesbian, ballerina, waitress,
granny, chairwoman, heiress, soprano, socialite

Table 1: Example instances used for extraction of
class attributes for the gender classification task

Attribute Extraction We next collect and rank
attributes for each class. We first look for fillers of
attribute-patterns involving each of the instances.
Let I represent an instance of one of our classes.
We find fillers of the single high-precision pattern:

{word=I ,tag=NN}| {z }
instance

{word=’s}| {z }
’s

[{word=.*}* {tag=N.*}]| {z }
attribute

(E.g. dictator ’s [former mistress]). The expres-
sion “tag=NN” means that I must be tagged as
a noun. The expression in square brackets is the
filler, i.e. the extracted attribute, A. The notation
“{word=.*}* tag=N.*” means that A can be any
sequence of tokens ending in a noun. We use an
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equivalent pattern when I is multi-token. The out-
put of this process is a set of (I ,A) pairs.

In attribute extraction, typically one must
choose between the precise results of rich pat-
terns (involving punctuation and parts-of-speech)
applied to small corpora (Berland and Charniak,
1999) and the high-coverage results of superficial
patterns applied to web-scale data, e.g. via the
Google API (Almuhareb and Poesio, 2004). We
obtain the best of both worlds by matching our
precise pattern against a version of the Google N-
gram Corpus that includes the part-of-speech tag
distributions for every N-gram (Lin et al., 2010).
We found that applying this pattern to web-scale
data is effective in extracting useful attributes. We
acquired around 20,000 attributes in total.

Finding Distinguishing Attributes Unlike
prior work, we aim to find distinguishing proper-
ties of each class; that is, the kinds of properties
that uniquely distinguish a particular category.
Prior work has mostly focused on finding “rel-
evant” attributes (Alfonseca et al., 2010) or
“correct” parts (Berland and Charniak, 1999). A
leg is a relevant and correct part of both a male and
a female (and many other living and inanimate
objects), but it does not help us distinguish males
from females in social media. We therefore rank
our attributes for each class by their strength of
association with instances of that specific class.1

To calculate the association, we first disregard
the count of each (I ,A) pair and consider each
unique pair to be a single probabilistic event.
We then convert the (I ,A) pairs to corresponding
(C,A) pairs by replacing I with the corresponding
class, C. We then calculate the pointwise mutual
information (Church and Hanks, 1990) between
each C and A over the set of events:

PMI(C,A) = log
p(C,A)

p(C)p(A)
(1)

If the PMI>0, the observed probability of a class
and attribute co-occurring is greater than the prob-
ability of co-occurrence that we would expect if C
and A were independently distributed. For each
class, we rank the attributes by their PMI scores.

1Reisinger and Paşca (2009) considered the related prob-
lem of finding the most appropriate class for each attribute;
they take an existing ontology of concepts (WordNet) as a
class hierarchy and use a Bayesian approach to decide “the
correct level of abstraction for each attribute.”

Filtering Attributes We experimented with two
different methods to select a final set of distin-
guishing attributes for each class: (1) we used
a threshold to select the top-ranked attributes for
each class, and (2) we manually filtered the at-
tributes. For the gender classification task, we
manually filtered the entire set of attributes to se-
lect around 1000 attributes that were judged to be
discriminative (two thirds of which are female).
This filtering took one annotator only a few hours
to complete. Because this process was so trivial,
we did not invest in developing annotation guide-
lines or measuring inter-annotator agreement. We
make these filter attributes available online as an
attachment to this article, available through the
ACL Anthology.

Ultimately, we discovered that manual filter-
ing was necessary to avoid certain pathological
cases in our Twitter data. For example, our PMI
scoring finds homepage to be strongly associated
with males. In our gold-standard gender data
(Section 5), however, every user has a home-
page [by dataset construction]; we might there-
fore incorrectly classify every user as Male. We
agree with Richardson et al. (1998) that “auto-
matic procedures ... provide the only credible
prospect for acquiring world knowledge on the
scale needed to support common-sense reasoning”
but “hand vetting” might be needed to ensure “ac-
curacy and consistency in production level sys-
tems.” Since our approach requires manual in-
volvement in the filtering of the attribute list, one
might argue that one should simply manually enu-
merate the most relevant attributes directly. How-
ever, the manual generation of conceptual features
by a single researcher results in substantial vari-
ability both across and within participants (McRae
et al., 2005). Psychologists therefore generate
such lists by pooling the responses across many
participants: future work may compare our “auto-
matically generate, manually prune” approach to
soliciting attributes via crowdsourcing.2

Table 2 gives examples of our extracted at-
2One can also view the work of manually filtering at-

tributes as a kind of “feature labeling.” There is evidence
from Zaidan et al. (2007) that a few hours of feature labeling
can be more productive than annotating new training exam-
ples. In fact, since Zaidan et al. (2007) label features at the
token level (e.g., in our case one would highlight “handbag”
in a given tweet), while we label features at the type level
(e.g., deciding whether to mark the word “handbag” as fem-
inine in general), our process is likely even more efficient.
Future work may also wish to consider this connection to so-
called ”annotator rationales” more deeply.
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Male: wife, widow, wives, ex-girlfriend, erec-
tion, testicles, wet dream, bride, buddies, ex-
wife, first-wife, penis, death sentence, manhood

Female: vagina, womb, maiden name, dresses,
clitoris, wedding dress, uterus, shawl, necklace,
ex-husband, ex-boyfriend, dowry, nightgown

Table 2: Example attributes for gender classes, in
descending order of class-association score

tributes. Our approach captures many multi-token
attributes; these are often distinguishing even
though the head noun is ambiguous (e.g. name
is ambiguous, maiden name is not). Our attributes
also go beyond the traditional meronyms that were
the target of earlier work. As we discuss further
in Related Work (Section 7), previous researchers
have worried about a proper definition of parts or
attributes and relied on human judgments for eval-
uation (Berland and Charniak, 1999; Girju et al.,
2006; Van Durme et al., 2008). For us, whether
a property such as dowry should be considered
an “attribute” of the class Female is immaterial;
we echo Almuhareb and Poesio (2004) who (on a
different task) noted that “while the notion of ‘at-
tribute’ is not completely clear... our results sug-
gest that trying to identify attributes is beneficial.”

4 Applying Class Attributes

To classify users using the extracted attributes, we
look for cases where users refer to such attributes
in their first-person writings. We performed a pre-
liminary analysis of a two-week sample of tweets
from the TREC Tweets2011 Corpus.3 We found
that users most often reveal their attributes in the
possessive construction, “my X” where X is an at-
tribute, quality or event that they possess (in a lin-
guistic sense). For example, we found over 1000
tweets with the phrase “my wife.” In contrast, “I
have a wife” occurs only 5 times.4

We therefore assign a user to a demographic
category as follows: We first part-of-speech tag
our data using CRFTagger (Phan, 2006) and then
look for “my X” patterns where X is a sequence
of tokens terminating in a noun, analogous to our

3
http://trec.nist.gov/data/tweets/ This corpus was de-

veloped for the TREC Microblog track (Soboroff et al., 2012).
4Note that “I am a man” occurs only 20 times. Users

also reveal their names in “my name is X” patterns in several
hundred tweets, but this is small compared to cases of self-
distinguishing attributes. Exploiting these alternative pat-
terns could nevertheless be a possible future direction.

attribute-extraction pattern (Section 3).5 When a
user uses such a “my X” construction, we match
the filler X against our attribute lists for each
class. If the filler is on a list, we call it a self-
distinguishing attribute of a user. We then apply
our knowledge of the self-distinguishing attribute
and its corresponding class in one of the following
three ways:

(1) ARules: Using Attribute-Based Rules to
Override a Classifier When human-annotated
data is available for training and testing a su-
pervised classifier, we refer to it as gold stan-
dard data. Our first technique provides a sim-
ple way to use our identified self-distinguishing
attributes in conjunction with a classifier trained
on gold-standard data. If the user has any self-
distinguishing attributes, we assign the user to the
corresponding class; otherwise, we trust the output
of the classifier.

(2) Bootstrapped: Automatic Labeling of Train-
ing Examples Even without gold standard train-
ing data, we can use our self-distinguishing at-
tributes to automatically bootstrap annotations.
We collect a large pool of unlabeled users and their
tweets, and we apply the ARules described above
to label those users that have self-distinguishing
attributes. Once an example is auto-annotated,
we delete the self-distinguishing attributes from
the user’s content. This prevents the subsequent
learning algorithm from trivially learning the rules
with which we auto-annotated the data. Next, the
auto-annotated examples are used as training data
for a supervised system.6 Finally, when applying
the Bootstrapped classifiers, we can still apply the
ARules as a post-process (although in practice this
made little difference in our final results).

(3) BootStacked: Gold Standard and Boot-
strapped Combination Although we show that
an accurate classifier can be trained using auto-
annotated Bootstrapped data alone, we also test
whether we can combine this data with any gold-
standard training examples to achieve even better
performance. We use the following simple but

5While we used an “off the shelf” POS tagger in this
work, we note that taggers optimized specifically for social
media are now available and would likely have resulted in
higher tagging accuracy (e.g. Owoputi et al. (2013)).

6Note that while our target gender task presents mutually-
exclusive output classes, we can still train classifiers for other
categories without clear opposites (e.g. for labeling users
as Parents or Doctors) by using the 1-class classification
paradigm (Koppel and Schler, 2004).

713



effective method for combining data from these
two sources, inspired by prior techniques used in
the domain adaptation literature (Daumé III and
Marcu, 2006). We first use the trained Boot-
strapped system to make predictions on the entire
set of gold standard data (gold train, development,
and test sets). We then use these predictions as
features in a classifier trained on the gold standard
data. We refer to this system as the BootStacked
system in our evaluation.

5 Twitter Gender Prediction

To test the use of self-distinguishing attributes
in user classification, we apply our methods to
the task of gender classification on Twitter. This
is an important and intensely-studied task within
academia and industry. Furthermore, for this task
it is possible to semi-automatically acquire large
amounts of ground truth (Burger et al., 2011).
We can therefore benchmark our approach against
state-of-the-art supervised systems trained with
plentiful gold-standard data, giving us an idea of
how well our Bootstrapped system might compare
to theoretically top-performing systems on other
tasks, domains, and social media platforms where
such gold-standard training data is not available.

Gold Data Our data is derived from the corpus
created by Burger et al. (2011). Burger et al. ob-
served that many Twitter users link their Twitter
profile to homepages on popular blogging web-
sites. Since “many of these [sites] have well-
structured profile pages [where users] must se-
lect gender and other attributes from dropdown
menus,” they were able to link these attributes to
the Twitter users. Using this process, they created
a large multi-lingual corpus of Twitter users and
genders.

We filter non-English tweets from this corpus
using the LID system of Bergsma et al. (2012)
and also tweets containing URLs (since many of
these are spam) and re-tweets. We then filter users
with <40 tweets and randomly divide the remain-
ing users into 2282 training, 1140 development,
and 1141 test examples.

Classifier Set-up We train logistic-regression
classifiers on this gold standard data via the LI-
BLINEAR package (Fan et al., 2008). We optimize
the classifier’s regularization parameter on devel-
opment data and report final results on the held-
out test examples. We also report the results of

our new attribute-based strategies (Section 4) on
the test data. We report accuracy: the percentage
of examples labeled correctly.

Our classifiers use both BoW and Usr features
(Section 2). To increase the generality of our
BoW features, we preprocess the text by lower-
casing and converting all digits to special ‘#’ sym-
bols. We then create real-valued features that
encode the log-count of each word in the input.
While Burger et al. (2011) found “no apprecia-
ble difference in performance” when using either
binary presence/absence features or encoding the
frequency of the word, we found real-valued fea-
tures worked better in development experiments.
For the Usr features, we add special beginning and
ending characters to the username, and then create
features for all character n-grams of length two-
to-four in the modified username string. We in-
clude n-gram features with the original capitaliza-
tion pattern and separate features with the n-grams
lower-cased.

Unlabeled Data For Bootstrapped training, we
also use a pool of unlabeled Twitter data. This
pool comprises the union of 2.2 billion tweets
from 05/2009 to 10/2010 (O’Connor et al., 2010),
1.9 billion tweets collected from 07/2011 to
11/2012, and 80 million tweets collected from the
followers of 10-thousand location and language-
specific Twitter feeds. We filter this corpus as
above, except we do not put any restrictions on the
number of tweets needed per user. We also filter
any users that overlap with our gold standard data.

Bootstrapping Analysis We apply our Boot-
strapped auto-annotation strategy to this unlabeled
data, yielding 789,285 auto-annotated examples
of users and their tweets. The decisions of our
bootstrapping process reflect the true gender dis-
tribution; the auto-annotated data is 60.5% Fe-
male, remarkably close to the 60.9% proportion
in our gold standard test set. Figure 1 shows that
a wide range of self-distinguishing attributes are
used in the auto-annotation process. This is impor-
tant because if only a few attributes are used (e.g.
wife/husband or penis/vagina), we might system-
atically miss a segment of users (e.g. young people
that don’t have husbands or wives, or people that
don’t frequently talk about their genitalia). Thus a
wide range of common-sense knowledge is useful
for bootstrapping, which is one reason why auto-
matic approaches are needed to acquire it.
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Figure 1: Frequency with which attributes are used to auto-annotate examples in the bootstrapping ap-
proach. The plot identifies some attributes and their corresponding class (labeled via gender symbol).

Majority-class baseline 60.9
Supervised on 100 examples 72.0
Supervised on 2282 examples 84.0
Supervised on 100 examples + ARules 74.7
Supervised on 2282 examples + ARules 84.7
Bootstrapped 86.0
BootStacked 87.2

Table 3: Classification accuracy (%) on gold stan-
dard test data for user gender prediction on Twitter

6 Results

Our main classification results are presented in Ta-
ble 3. The majority-class baseline for this task
is to always choose Female; this achieves an ac-
curacy of 60.9%. A standard classifier trained
on 100 gold-standard training examples improves
over this baseline, to 72.0%, while one with 2282
training examples achieves 84.0%. This latter re-
sult represents the current state-of-the-art: a clas-
sifier trained on thousands of gold standard exam-
ples, making use of both Usr and BoW features.
Our performance compares favourably to Burger
et al. (2011), who achieved 81.4% using the same
features, but on a very different subset of the data
(also including tweets in other languages).7

Applying the ARules as a post-process signifi-
cantly improves performance in both cases (Mc-
Nemar’s, p<0.05). It is also possible to use the
ARules as a stand-alone system rather than as a
post-process, however the coverage is low: we find
a distinguishing attribute in 18.3% of the 695 Fe-
male instances in the test data, and make the cor-

7Note that it is possible to achieve even higher perfor-
mance on gender classification in social media if you have
further information about a user, such as their full first and
last name (Burger et al., 2011; Bergsma et al., 2013).

rect decision in 96.9% of these cases. We find a
distinguishing attribute in 11.4% of the 446 Male
instances, with 86.3% correct decisions.

The Bootstrapped system substantially im-
proves over the state-of-the-art, achieving 86% ac-
curacy and doing so without using any gold stan-
dard training data. This is important because hav-
ing thousands of gold standard annotations for ev-
ery possible user characterization task, in every
domain and social media platform, is not realis-
tic. Combining the bootstrapped classifier with
the gold standard annotations in the BootStacked
model results in further gains in performance.8

These results provide strong validation for both
the inherent utility of class-attributes knowledge in
user characterization and the effectiveness of our
specific strategies for exploiting such knowledge.

Figure 2 shows the learning curve of the Boot-
strapped classifier. Performance rises consistently
across all the auto-annotated training data; this
is encouraging because there is theoretically no
reason not to vastly increase the amount of auto-
annotated data by collecting an even larger col-
lection of tweets. Finally, note that most of the
gains of the Bootstrapped system appear to derive
from the tweet content itself, i.e. the BoW fea-
tures. However, the Usr features are also helpful
at most training sizes.

We provide some of the top-ranked features of
the Bootstrapped system in Table 4. We see that
a variety of other common-sense knowledge is
learned by the system (e.g., the association be-
tween males and urinals, boxers, fatherhood, etc.),
as well as stylistic clues (e.g. Female users using
betcha and xox in their writing). The username

8We observed no further gains in accuracy when applying
the ARules as a post-process on top of these systems.
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Figure 2: Learning curve for Bootstrapped
logistic-regression classifier, with automatically-
labeled data, for different feature classes.

features capture reasonable associations between
gender classes and particular names (such as mike,
tony, omar, etc.) and also between gender classes
and common nouns (such as guy, dad, sir, etc.).

7 Related Work

User Characterization The field of sociolin-
guistics has long been concerned with how various
morphological, phonological and stylistic aspects
of language can vary with a person’s age, gender,
social class, etc. (Fischer, 1968; Labov, 1972).
This early work therefore had an emphasis on ana-
lyzing the form of language, as opposed to its con-
tent. This emphasis continued into early machine
learning approaches, which predicted author prop-
erties based on the usage of function words, parts-
of-speech, punctuation (Koppel et al., 2002) and
spelling/grammatical errors (Koppel et al., 2005).

Recently, researchers have focused less on the
sociolinguistic implications and more on the tasks
themselves, naturally leading to classifiers with
feature representations capturing content in ad-
dition to style (Schler et al., 2006; Garera and
Yarowsky, 2009; Mukherjee and Liu, 2010). Our
work represents a logical next step for content-
based classification, a step partly suggested by
Schler et al. (2006) who noted that “those who
are interested in automatically profiling bloggers
for commercial purposes would be well served by
considering additional features - which we delib-
erately ignore in this study - such as author self-
identification.”

Male BoW features: wife, wifey, sucked, shave,
boner, boxers, missus, installed, manly, in-laws,
brah, urinal, kickoff, golf, comics, ubuntu, homo,
nhl, jedi, fatherhood, nigga, movember, algebra

Male Usr features: boy, mike, ben, guy, mr, dad,
jr, kid, tony, dog, lord, sir, omar, dude, man, big

Female BoW features: hubby, hubs, jewelry,
sewing, mascara, fabulous, bf, softball, betcha,
motherhood, perky, cozy, zumba, xox, cuddled,
belieber, bridesmaid, anorexic, jammies, pad

Female Usr features: mrs, mom, jen, lady, wife,
mary, joy, mama, pink, kim, diva, elle, woma, ms

Table 4: Examples of highly-weighted BoW (con-
tent) and Usr (username) features (in descending
order of weight) in the Bootstrapped system for
predicting user gender in Twitter.

Many recent papers have analyzed the lan-
guage of social media users, along dimensions
such as ethnicity (Eisenstein et al., 2011; Rao et
al., 2011; Pennacchiotti and Popescu, 2011; Fink
et al., 2012) time zone (Kiciman, 2010), polit-
ical orientation (Rao et al., 2010; Pennacchiotti
and Popescu, 2011) and gender (Rao et al., 2010;
Burger et al., 2011; Van Durme, 2012).

Class-Attribute Extraction The idea of using
simple patterns to extract useful semantic relations
goes back to Hearst (1992) who focused on hy-
ponyms. Hearst reports that she “tried applying
this technique to meronymy (i.e., the part/whole
relation), but without great success.” Berland and
Charniak (1999) did have success using Hearst-
style patterns for part-whole detection, which they
attribute to their “very large corpus and the use of
more refined statistical measures for ranking the
output.” Girju et al. (2006) devised a supervised
classification scheme for part/whole relation dis-
covery that integrates the evidence from multiple
patterns. These efforts focused exclusively on the
meronymy relation as used in WordNet (Miller et
al., 1990). Indeed, Berland and Charniak (1999)
attempted to filter out attributes that were regarded
as qualities (like driveability) rather than parts
(like steering wheels) by removing words end-
ing with the suffixes -ness, -ing, and -ity. In our
work, such qualities are not filtered and are ulti-
mately valuable in classification; for example, the
attributes peak fertility and loveliness are highly
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associated with females.
As subsequent research became more focused

on applications, looser definitions of class at-
tributes were adopted. Almuhareb and Poesio
(2004) automatically mined class attributes that in-
clude parts, qualities, and those with an “agen-
tive” or “telic” role with the class. Their ex-
tended set of attributes was shown to enable an
improved representation of nouns for the purpose
of clustering these nouns into semantic concepts.
Tokunaga et al. (2005) define attributes as prop-
erties that can serve as focus words in questions
about a target class; e.g. director is an attribute
of a movie since one might ask, “Who is the di-
rector of this movie?” Another line of research
has been motivated by the observation that much
of Internet search consists of people looking for
values of various class attributes (Bellare et al.,
2007; Paşca and Van Durme, 2007; Paşca and Van
Durme, 2008; Alfonseca et al., 2010). By knowing
the attributes of different classes, search engines
can better recognize that queries such as “altitude
guadalajara” or “population guadalajara” are seek-
ing values for a particular city’s “altitude” and
“population” attributes (Paşca and Van Durme,
2007). Finally, note that Van Durme et al. (2008)
compared instance-based and class-based patterns
for broad-definition attribute extraction, and found
both to be effective.

Of course, text-mining with custom-designed
patterns is not the only way to extract class-
attribute information. Experts can manually spec-
ify the attributes of entities, as in the WordNet
project (Miller et al., 1990). Others have auto-
matically extracted attribute relations from dictio-
nary definitions (Richardson et al., 1998), struc-
tured online sources such as Wikipedia infoboxes,
(Wu and Weld, 2007) and large-scale collections
of high-quality tabular web data (Cafarella et al.,
2008). Attribute extraction has also been viewed
as a sub-component or special case of the infor-
mation obtained by general-purpose knowledge
extractors (Schubert, 2002; Pantel and Pennac-
chiotti, 2006).

NLP Applications of Common-Sense Knowl-
edge The kind of information derived from
class-attribute extraction is sometimes referred to
as a type of common-sense knowledge. The need
for computer programs to represent common-
sense knowledge has been recognized since the
work of McCarthy (1959). Lenat et al. (1990)

defines common sense as “human consensus re-
ality knowledge: the facts and concepts that you
and I know and which we each assume the other
knows.”

While we are the first to exploit common-
sense knowledge in user characterization, com-
mon sense has been applied to a range of other
problems in natural language processing. In many
ways WordNet can be regarded as a collection of
common-sense relationships. WordNet has been
applied in a myriad of NLP applications, includ-
ing in seminal works on semantic-role labeling
(Gildea and Jurafsky, 2002), coreference resolu-
tion (Soon et al., 2001) and spelling correction
(Budanitsky and Hirst, 2006). Also, many ap-
proaches to the task of sentiment analysis “be-
gin with a large lexicon of words marked with
their prior polarity” (Wilson et al., 2009). Like
our class-attribute associations, the common-sense
knowledge that the word cool is positive while
unethical is negative can be learned from asso-
ciations in web-scale data (Turney, 2002). We
might also view information about synonyms or
conceptually-similar words as a kind of common-
sense knowledge. In this perspective, our work
is related to recent work that has extracted
distributionally-similar words from web-scale data
and applied this knowledge in tasks such as
named-entity recognition (Lin and Wu, 2009) and
dependency parsing (Täckström et al., 2012).

8 Conclusion

We have proposed, developed and successfully
evaluated a novel approach to user characteriza-
tion based on exploiting knowledge of user class
attributes. The knowledge is obtained using a new
algorithm that discovers distinguishing attributes
of particular classes. Our approach to discovering
distinguishing attributes represents a significant
new direction for research in class-attribute extrac-
tion, and provides a valuable bridge between the
fields of user characterization and lexical knowl-
edge extraction.

We presented three effective techniques for
leveraging this knowledge within the framework
of supervised user characterization: rule-based
post-processing, a learning-by-bootstrapping ap-
proach, and a stacking approach that integrates the
predictions of the bootstrapped system into a sys-
tem trained on annotated gold-standard training
data. All techniques lead to significant improve-
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ments over state-of-the-art supervised systems on
the task of Twitter gender classification.

While our technique has advanced the state-of-
the-art on this important task, our approach may
prove even more useful on other tasks where train-
ing on thousands of gold-standard examples is not
even an option. Currently we are exploring the
prediction of finer-grained user roles, such as stu-
dent, waitress, parent, and so forth, based on ex-
tensions to the process laid out here.

References
Enrique Alfonseca, Marius Paşca, and Enrique
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