
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 33–37,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Head-Driven Hierarchical Phrase-based Translation

Junhui Li Zhaopeng Tu† Guodong Zhou‡ Josef van Genabith
Centre for Next Generation Localisation

School of Computing, Dublin City University
† Key Lab. of Intelligent Info. Processing

Institute of Computing Technology, Chinese Academy of Sciences
‡School of Computer Science and Technology

Soochow University, China
{jli,josef}@computing.dcu.ie

tuzhaopeng@ict.ac.cn gdzhou@suda.edu.cn

Abstract

This paper presents an extension of Chi-
ang’s hierarchical phrase-based (HPB) model,
called Head-Driven HPB (HD-HPB), which
incorporates head information in translation
rules to better capture syntax-driven infor-
mation, as well as improved reordering be-
tween any two neighboring non-terminals at
any stage of a derivation to explore a larger
reordering search space. Experiments on
Chinese-English translation on four NIST MT
test sets show that the HD-HPB model signifi-
cantly outperforms Chiang’s model with aver-
age gains of 1.91 points absolute in BLEU.

1 Introduction

Chiang’s hierarchical phrase-based (HPB) transla-
tion model utilizes synchronous context free gram-
mar (SCFG) for translation derivation (Chiang,
2005; Chiang, 2007) and has been widely adopted
in statistical machine translation (SMT). Typically,
such models define two types of translation rules:
hierarchical (translation) rules which consist of both
terminals and non-terminals, and glue (grammar)
rules which combine translated phrases in a mono-
tone fashion. Due to lack of linguistic knowledge,
Chiang’s HPB model contains only one type of non-
terminal symbol X , often making it difficult to se-
lect the most appropriate translation rules.1 What
is more, Chiang’s HPB model suffers from limited
phrase reordering combining translated phrases in a
monotonic way with glue rules. In addition, once a

1Another non-terminal symbol S is used in glue rules.

glue rule is adopted, it requires all rules above it to
be glue rules.

One important research question is therefore how
to refine the non-terminal category X using linguis-
tically motivated information: Zollmann and Venu-
gopal (2006) (SAMT) e.g. use (partial) syntactic
categories derived from CFG trees while Zollmann
and Vogel (2011) use word tags, generated by ei-
ther POS analysis or unsupervised word class in-
duction. Almaghout et al. (2011) employ CCG-
based supertags. Mylonakis and Sima’an (2011) use
linguistic information of various granularities such
as Phrase-Pair, Constituent, Concatenation of Con-
stituents, and Partial Constituents, where applica-
ble. Inspired by previous work in parsing (Char-
niak, 2000; Collins, 2003), our Head-Driven HPB
(HD-HPB) model is based on the intuition that lin-
guistic heads provide important information about a
constituent or distributionally defined fragment, as
in HPB. We identify heads using linguistically mo-
tivated dependency parsing, and use their POS to
refine X. In addition HD-HPB provides flexible re-
ordering rules freely mixing translation and reorder-
ing (including swap) at any stage in a derivation.

Different from the soft constraint modeling
adopted in (Chan et al., 2007; Marton and Resnik,
2008; Shen et al., 2009; He et al., 2010; Huang et
al., 2010; Gao et al., 2011), our approach encodes
syntactic information in translation rules. However,
the two approaches are not mutually exclusive, as
we could also include a set of syntax-driven features
into our translation model. Our approach maintains
the advantages of Chiang’s HPB model while at the
same time incorporating head information and flex-
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欧洲/NR 
Ouzhou 

八国/NN 
baguo 

联名/AD 
lianming 

支持/VV 
zhichi 

美国/NR 
meiguo 

立场/NN 
lichang 

root 

Eight European countries jointly support America’s stand 

Figure 1: An example word alignment for a Chinese-
English sentence pair with the dependency parse tree for
the Chinese sentence. Here, each Chinese word is at-
tached with its POS tag and Pinyin.

ible reordering in a derivation in a natural way. Ex-
periments on Chinese-English translation using four
NIST MT test sets show that our HD-HPB model
significantly outperforms Chiang’s HPB as well as a
SAMT-style refined version of HPB.

2 Head-Driven HPB Translation Model

Like Chiang (2005) and Chiang (2007), our HD-
HPB translation model adopts a synchronous con-
text free grammar, a rewriting system which gen-
erates source and target side string pairs simulta-
neously using a context-free grammar. Instead of
collapsing all non-terminals in the source language
into a single symbol X as in Chiang (2007), given a
word sequence f i

j from position i to position j, we
first find heads and then concatenate the POS tags
of these heads as f i

j’s non-terminal symbol. Specif-
ically, we adopt unlabeled dependency structure to
derive heads, which are defined as:

Definition 1. For word sequence f i
j , word

fk (i ≤ k ≤ j) is regarded as a head if it is domi-
nated by a word outside of this sequence.

Note that this definition (i) allows for a word se-
quence to have one or more heads (largely due to
the fact that a word sequence is not necessarily lin-
guistically constrained) and (ii) ensures that heads
are always the highest heads in the sequence from a
dependency structure perspective. For example, the
word sequence ouzhou baguo lianming in Figure 1
has two heads (i.e., baguo and lianming, ouzhou is
not a head of this sequence since its headword baguo
falls within this sequence) and the non-terminal cor-
responding to the sequence is thus labeled as NN-
AD. It is worth noting that in this paper we only
refine non-terminal X on the source side to head-
informed ones, while still usingX on the target side.

According to the occurrence of terminals in

translation rules, we group rules in the HD-HPB
model into two categories: head-driven hierarchical
rules (HD-HRs) and non-terminal reordering rules
(NRRs), where the former have at least one terminal
on both source and target sides and the later have no
terminals. For rule extraction, we first identify ini-
tial phrase pairs on word-aligned sentence pairs by
using the same criterion as most phrase-based trans-
lation models (Och and Ney, 2004) and Chiang’s
HPB model (Chiang, 2005; Chiang, 2007). We
extract HD-HRs and NRRs based on initial phrase
pairs, respectively.

2.1 HD-HRs: Head-Driven Hierarchical Rules

As mentioned, a HD-HR has at least one terminal
on both source and target sides. This is the same
as the hierarchical rules defined in Chiang’s HPB
model (Chiang, 2007), except that we use head POS-
informed non-terminal symbols in the source lan-
guage. We look for initial phrase pairs that contain
other phrases and then replace sub-phrases with POS
tags corresponding to their heads. Given the word
alignment in Figure 1, Table 1 demonstrates the dif-
ference between hierarchical rules in Chiang (2007)
and HD-HRs defined here.

Similar to Chiang’s HPB model, our HD-HPB
model will result in a large number of rules causing
problems in decoding. To alleviate these problems,
we filter our HD-HRs according to the same con-
straints as described in Chiang (2007). Moreover,
we discard rules that have non-terminals with more
than four heads.

2.2 NRRs: Non-terminal Reordering Rules

NRRs are translation rules without terminals. Given
an initial phrase pair on the source side, there are
four possible positional relationships for their target
side translations (we use Y as a variable for non-
terminals on the source side while all non-terminals
on the target side are labeled as X):

• Monotone 〈Y → Y1Y2, X → X1X2〉;

• Discontinuous monotone
〈Y → Y1Y2, X → X1 . . . X2〉;

• Swap 〈Y → Y1Y2, X → X2X1〉;

• Discontinuous swap
〈Y → Y1Y2, X → X2 . . . X1〉.

34



phrase pairs hierarchical rule head-driven hierarchical rule

lichang, stand X→lichang, stand
NN→lichang,

X→stand

meiguo lichang1, America’s stand1 X→meiguo X1, America’s X1
NN→meiguo NN1,

X→America’s X1

zhichi meiguo, support America’s X→zhichi meiguo, support America’s
VV-NR→zhichi meiguo,

X→support America’s
zhichi meiguo1 lichang,
support America’s1 stand

X→X1 lichang,
X1 stand

VV→VV-NR1 lichang,
X→X1 stand

Table 1: Comparison of hierarchical rules in Chiang (2007) and HD-HRs. Indexed underlines indicate sub-phrases
and corresponding non-terminal symbols. The non-terminals in HD-HRs (e.g., NN, VV, VV-NR) capture the head(s)
POS tags of the corresponding word sequence in the source language.

Merging two neighboring non-terminals into a
single non-terminal, NRRs enable the translation
model to explore a wider search space. During train-
ing, we extract four types of NRRs and calculate
probabilities for each type. To speed up decoding,
we currently (i) only use monotone and swap NRRs
and (ii) limit the number of non-terminals in a NRR
to 2.

2.3 Features and Decoding
Given e for the translation output in the target lan-
guage, s and t for strings of terminals and non-
terminals on the source and target side, respectively,
we use a feature set analogous to the default feature
set of Chiang (2007), including:

• Phd-hr (t|s) and Phd-hr (s|t), translation probabili-
ties for HD-HRs;

• Plex (t|s) and Plex (s|t), lexical translation proba-
bilities for HD-HRs;

• Ptyhd-hr = exp (−1), rule penalty for HD-HRs;

• Pnrr (t|s), translation probability for NRRs;

• Ptynrr = exp (−1), rule penalty for NRRs;

• Plm (e), language model;

• Ptyword (e) = exp (−|e|), word penalty.

Our decoder is based on CKY-style chart parsing
with beam search and searches for the best deriva-
tion bottom-up. For a source span [i, j], it applies
both types of HD-HRs and NRRs. However, HD-
HRs are only applied to generate derivations span-
ning no more than K words – the initial phrase
length limit used in training to extract HD-HRs –
while NRRs are applied to derivations spanning any
length. Unlike in Chiang’s HPB model, it is pos-
sible for a non-terminal generated by a NRR to be
included afterwards by a HD-HR or another NRR.

3 Experiments

We evaluate the performance of our HD-HPB model
and compare it with our implementation of Chiang’s
HPB model (Chiang, 2007), a source-side SAMT-
style refined version of HPB (SAMT-HPB), and the
Moses implementation of HPB. For fair compari-
son, we adopt the same parameter settings for our
HD-HPB and HPB systems, including initial phrase
length (as 10) in training, the maximum number of
non-terminals (as 2) in translation rules, maximum
number of non-terminals plus terminals (as 5) on
the source, beam threshold β (as 10−5) (to discard
derivations with a score worse than β times the best
score in the same chart cell), beam size b (as 200)
(i.e. each chart cell contains at most b derivations).
For Moses HPB, we use “grow-diag-final-and” to
obtain symmetric word alignments, 10 for the max-
imum phrase length, and the recommended default
values for all other parameters.

We train our model on a dataset with ˜1.5M sen-
tence pairs from the LDC dataset.2 We use the
2002 NIST MT evaluation test data (878 sentence
pairs) as the development data, and the 2003, 2004,
2005, 2006-news NIST MT evaluation test data
(919, 1788, 1082, and 616 sentence pairs, respec-
tively) as the test data. To find heads, we parse the
source sentences with the Berkeley Parser3 (Petrov
and Klein, 2007) trained on Chinese TreeBank 6.0
and use the Penn2Malt toolkit4 to obtain (unlabeled)
dependency structures.

We obtain the word alignments by running

2This dataset includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06

3http://code.google.com/p/berkeleyparser/
4http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html/
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GIZA++ (Och and Ney, 2000) on the corpus in both
directions and applying “grow-diag-final-and” re-
finement (Koehn et al., 2003). We use the SRI lan-
guage modeling toolkit to train a 5-gram language
model on the Xinhua portion of the Gigaword corpus
and standard MERT (Och, 2003) to tune the feature
weights on the development data.

For evaluation, the NIST BLEU script (version
12) with the default settings is used to calculate the
BLEU scores. To test whether a performance differ-
ence is statistically significant, we conduct signifi-
cance tests following the paired bootstrap approach
(Koehn, 2004). In this paper,‘**’ and‘*’ de-
note p-values less than 0.01 and in-between [0.01,
0.05), respectively.

Table 2 lists the rule table sizes. The full rule ta-
ble size (including HD-HRs and NRRs) of our HD-
HPB model is ˜1.5 times that of Chiang’s, largely
due to refining the non-terminal symbol X in Chi-
ang’s model into head-informed ones in our model.
It is also unsurprising, that the test set-filtered rule
table size of our model is only ˜0.7 times that of Chi-
ang’s: this is due to the fact that some of the refined
translation rule patterns required by the test set are
unattested in the training data. Furthermore, the rule
table size of NRRs is much smaller than that of HD-
HRs since a NRR contains only two non-terminals.

Table 3 lists the translation performance with
BLEU scores. Note that our re-implementation of
Chiang’s original HPB model performs on a par with
Moses HPB. Table 3 shows that our HD-HPB model
significantly outperforms Chiang’s HPB model with
an average improvement of 1.91 in BLEU (and sim-
ilar improvements over Moses HPB).

Table 3 shows that the head-driven scheme out-
performs a SAMT-style approach (for each test set
p < 0.01), indicating that head information is more
effective than (partial) CFG categories. Taking lian-
ming zhichi in Figure 1 as an example, HD-HPB
labels the span VV, as lianming is dominated by
zhichi, effecively ignoring lianming in the transla-
tion rule, while the SAMT label is ADVP:AD+VV5

which is more susceptible to data sparsity. In addi-
tion, SAMT resorts to X if a text span fails to satisify
pre-defined categories. Examining initial phrases

5the constituency structure for lianming zhichi is (VP (ADVP
(AD lianming)) (VP (VV zhichi) ...)).

System Total MT 03 MT 04 MT 05 MT 06 Avg.
HPB 39.6 2.8 4.7 3.3 3.0 3.4
HD-HPB 59.5/0.6 1.9/0.1 3.4/0.2 2.3/0.2 2.0/0.1 2.4/0.2

Table 2: Rule table sizes (in million) of different mod-
els. Note: 1) For HD-HPB, the rule sizes separated by /
indicate HD-HRs and NRRs, respectively; 2) Except for
“Total”, the figures correspond to rules filtered on the cor-
responding test set.

System MT 03 MT 04 MT 05 MT 06 Avg.
Moses HPB 32.94* 35.16 32.18 29.88* 32.54
HPB 33.59 35.39 32.20 30.60 32.95
HD-HPB 35.50** 37.61** 34.56** 31.78** 34.86
SAMT-HPB 34.07 36.52** 32.90* 30.66 33.54
HD-HR+Glue 34.58** 36.55** 33.84** 31.06 34.01

Table 3: BLEU (%) scores of different models. Note:
1) SAMT-HPB indicates our HD-HPB model with non-
terminal scheme of Zollmann and Venugopal (2006);
2) HD-HR+Glue indicates our HD-HPB model replac-
ing NRRs with glue rules; 3) Significance tests for
Moses HPB, HD-HPB, SAMT-HPB, and HD-HR+Glue
are done against HPB.

extracted from the SAMT training data shows that
28% of them are labeled as X.

In order to separate out the individual contribu-
tions of the novel HD-HRs and NRRs, we carry out
an additional experiment (HD-HR+Glue) using HD-
HRs with monotonic glue rules only (adjusted to re-
fined rule labels, but effectively switching off the ex-
tra reordering power of full NRRs). Table 3 shows
that on average more than half of the improvement
over HPB (Chiang and Moses) comes from the re-
fined HD-HRs, the rest from NRRs.

Examining translation rules extracted from the
training data shows that there are 72,366 types of
non-terminals with respect to 33 types of POS tags.
On average each sentence employs 16.6/5.2 HD-
HRs/NRRs in our HD-HPB model, compared to
15.9/3.6 hierarchical rules/glue rules in Chiang’s
model, providing further indication of the impor-
tance of NRRs in translation.

4 Conclusion

We present a head-driven hierarchical phrase-based
(HD-HPB) translation model, which adopts head in-
formation (derived through unlabeled dependency
analysis) in the definition of non-terminals to bet-
ter differentiate among translation rules. In ad-
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dition, improved and better integrated reordering
rules allow better reordering between consecutive
non-terminals through exploration of a larger search
space in the derivation. Experimental results on
Chinese-English translation across four test sets
demonstrate significant improvements of the HD-
HPB model over both Chiang’s HPB and a source-
side SAMT-style refined version of HPB.
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