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Abstract -5 T
,///\ > N
This paper presents a framework to infer spa- N VP AN
tial knowledge from verbal semantic role rep- ‘ —
resentations. First, we generate potential spa- NNP AUX VP \
. LS John was W\
tial knowledge deterministically. Second, we e LOCATION—
: ; : VBN —— PP
determine whether it can be inferred and a incarcerated
degree.of qertalnty. Inferences capture that at Shawshank
something is located or is not located some- prison
where, and temporally anchor this informa-
tion. An annotation effort shows that infer- Figure 1: Semantic roles (solid arrows) and addi-
ences are ubiquitous and intuitive to humans. . tjona| spatial knowledge (discontinuous arrow).
1 Introduction because ofhe pressure. But LOCATION and other

Extracting semantic relations from text is at the corgSmantic r'elatlor?s'often dq not hold forever. For_ ex
mple, while buildings typically have one location

of text understanding. Semantic relations encode se- thei ist | d obiect h
mantic connections between words. For exampl uring their existence, people and objects Such as

from (1) Bill couldn't handle the pressure and quit cars and books do not: they participate in events and

yesterday, one could extract that theause of quit as a result their locations change.

wasthe pressure. Doing so would help answering This paper presents a framework to infer
questionwhy did Bill quit? and determining thahe temporally-anchored spatial knowledge from verbal
pressure started before Bilbuit. semantic roles. Specifically, our goal is to infer

In the past years, computational semantics has rethether something is located somewhere or not lo-
ceived a significant boost. But extracting all semarcated somewhere, and temporally anchor this spa-
tic relations in text—even in single sentences—iéial information. Consider sentence (Zhn was
still an elusive goal. Most existing approaches targefcarcerated at Shawshank prison and its semantic
either a single relation, e.QeART-WHOLE (Girju et roles (Figure 1, solid arrows). Given these roles,
al., 2006), or relations that hold between argument&€ aim at inferring thafohn hadLOCATION Shaw-
following some syntactic construction, e.g., posseshank prison during evenincarcerated, and that he
sives (Tratz and Hovy, 2013). Among the latter kind(Probably) did not have thisoCATION before and
the task of verbal semantic role labeling focuses offter (discontinuous arrow). Our intuition is that
extracting semantic links exclusively between verb§nowing thatincarcerated hasTHEME John andLo-
and their arguments. PropBank (Palmer et al., 2005ATION Shawshank prison will help making these
is a popular corpus for this task, and tools to exinferences. As we shall discuss, sometimes we have
tract verbal semantic roles have been proposed fé¥idence that something is (or is not) located some-
years (Carreras and Marquez, 2005). where, but cannot completely commit.

Some semantic relations hold forever, e.g., the We target temporally-anchored spatial knowledge
CAUSE of eventquit in example (1) above ipress between intra-sentential arguments of verbs, not
sure. Discussing when thisAUSE holds is some- only between arguments of the same verb as ex-
what artificial: at some point Bilfuit, and he did so emplified in Figure 1. The main contributions are:
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(1) analysis of spatial knowledge inferable from| [Mr. Craylae, [Will] srom-won [WOTK]ver [for the
PropBank-style semantic roles; (2) annotations of Colorado Springs CO company, [as an indepen
temporally-anchored OCATION relations on top of | dent contractogs, . _
OntoNotest (3) supervised models to infer the ad-| ['areod [Sléptler [through my only previous brush

" " ) with natural disastegke,, [. - -]
ditional spatial knowledge; and (4) experiments de

tailing results using lexical, syntactic and semantic Tgpje 1: Examples of PropBank annotations.
features. The framework presented here infers over

44% spatial knowledge on top of the PropBank-style xrem-roc: Tocation ARGM-CAU: cause
semantic roles annotated in OntoNotesrt{ES ARGM-EXT: extent ARGM-TMP: time
andcertNO labels, Section 3.3). ARGM-DIS: discourse connectiveé ARGM-PNC. purpose
ARGM-ADV: general-purpose ARGM-MNR: manner
. - . ARGM-NEG: negation marker ARGM-DIR: direction
2 Semantic Roles and Additional Spatial ARGVI-MOD: modal verb

Knowledge

. . Table 2: Argument modifiers in PropBank.
We denote a semantic relatisnbetweenx and y

asR(Xx, y¥). R(x, y) could be read X hasr Yy’,
e.g., AGENT(moved Johr) could be read “moved Treebank. It uses a set of numbered argunfents
hasAaGENT John”. Semantic rolésare semantic re- (ARGp, ARGy, etc.) and modifiers ARGM-TMP,
lations R(x, ¥) such thatx is a verb andy is an ar- ARGM-MNR, etc.). Numbered arguments do not
gument ofx. We refer to any spatial relationo- share a common meaning across verbs, they are de-
CATION(X, y) where (1)x is not a verb, or (2x is  fined on verb-specific framesets. For exampkg,
a verb buty is not a argument ok, as additional is used to indicate eémployer” with verb work.01
spatial knowledge. As we shall see, we target addand “expected terminus of sleep” with verb sleep.01
tional spatial knowledge beyond plai@CATION(X, (Table 1). Unlike numbered arguments, modifiers
y) relations, which only specify the locatignof x.  have the same meaning across verbs (Table 2).
Namely, we consider polarity, i.e., whether some- The original PropBank corpus consists of (1)
thing is or is not located somewhere, and temporallg, 327 framesets, each frameset defines the num-
anchor this information. bered roles for a verb, and (2) actual semantic role
This paper complements semantic role represeannotations (numbered arguments and modifiers) for
tations with additional spatial knowledge. We fol-112,917 verbs. On average, each verb has 1.93 num-
low a practical approach by inferring spatial knowl-bered arguments and 0.66 modifiers annotated. Only
edge from PropBank-style semantic roles. We be#,198 verbs have aRRGM-LOC annotated, i.e., lo-
lieve this is an advantage since PropBank is welkation information is present in 6.37% of verbs. For
known in the field and several tools to predict Propmore information about PropBank and examples, re-
Bank roles are documented and publicly available fer to the annotation guidelinés.
The work presented here could be incorporated into OntoNotes (Hovy et al., 2006) is a more re-
any NLP pipeline after role labeling without modifi- cent corpus that includes POS tags, word senses,

cations to other components. parse trees, speaker information, named entities,
PropBank-style semantic roles and coreference.
21 PropBank and OntoNotes While the original PropBank annotations were done

PropBank (Palmer et al., 2005) adds semantic rof—*éxclusively in the news domain, OntoNotes includes

annotations on top of the parse trees of the perfiher genres as well: broadcast and telephone con-
versations, weblogs, etc. Because of the addi-

!Available athttp://hilt.cse.unt.edu/ tional annotation layers and genres, we work with

2\We usesemantic role to refer to PropBank-style (verbal) OntoNotes instead of PropBank.
semantic roles. NomBank (Meyers et al., 2004) and FrameNet

(Baker et al., 1998) also annotate semantic roles. “Numbered arguments are also referred toas.
*E.g., http://cogcomp.cs.illinois.edu/page/ Shitp://verbs.colorado.edu/ ~mpalmer/projects/
software , http://ml.nec-labs.com/senna/ ; ace/PBguidelines.pdf
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SBAR NP VP
B L —_ _—
NP IN _S-—-——=——=—_ _ NBC News has learnt . ..
—_ after - T —
Exactly NP~ ARG VP ~ -
a month —_— - ~
twenty-six VBD ARGM-DR——~ PP >
yearold  vanished N ~
George Smith IN NP AN
from —
NP ARG VP N
_— -

a Royal VBG ARGM-LOCj PP
Caribbean ship cruising

in the Mediterranean

Figure 2: Semantic roles (solid arrows) and additionaliapkbowledge (discontinuous arrow) of type (1b).
The additionaLocATiON(a Royal Caribbean shiin the Mediterraneanof type (1a) is not shown.

2.2 Additional Spatial Knowledge one could also extract that thesidents haveLOCA-

Sentences contain spatial information beyond!ON Biddeford apartments.

ARGM-LOC semantic role, i.e., beyond links be- N this paper, we focus on extracting additional

tween verbs and their arguments. There are tw@Patial knowledge of type (1), and reserve type (2)

main types of additionaloOCATION(x, y) relations® for future work. More specifically, we infer spa-

(1) those whose arguments and y are semantic tial knowledge betweem andy, where the follow-

roles of a verb, and (2) those whose argumardsd N Sémantic roles exisRG;(Xyrcd, X) aNdARGM-

y are not semantic roles of a verb. LOC(Ypreds ¥)- ARG; indicates any numbered _argu-
The first kind can be further divided into (1a)MENt &RGo, ARG1, ARGy, EIC.) andryred (Yprea) IN-

those whose arguments are semantic roles of thicates the verbal predicate to whigfly) attaches.

same verb (Figure 1), and (1b) those whose argl]’_argeting additional spatial knowledge exclusively

ments are semantic roles of different verbs. Figlo" Numbered arguments is not a significant limita-

ure 2 illustrates type (1b). Semantic roles indicatdON: Most semantic roles annotated n -Onto_Notes
ARG, and ARGM-DIR of vanished, and ARG, and (75%) are numbered arguments, and it is pointless

ARGM-LOC of cruising. In this example, one can to infer spatial knowledge for most modifiers, e.g.,
infer thattwenty-six year old George Smith (ARG, ARGM-EXT, ARGM-DIS, ARGM-ADV, ARGM-MOD,
of vanished) hasOCATION in the Mediterranean ~ ARGM-NEG, ARGM-DIR.
(ARGM-LOC of cruising) during thecruising event. 3 Annotating Spatial K nowledge

The second kind of additionaloCATION(X, y) is
exemplified in the following sentence:Residents
of Biddeford apartments] arg, can [enjoy] vern [the
recreational center]ars, [free of charge]uanner-
LOCATION(recreational center Biddeford apart-

Annotating all additional spatial knowledge in
OntoNotes inferable from semantic roles is a daunt-
ing task. OntoNotes is a large corpus with 63,918
sentences and 9,92RGM-LOC semantic roles an-

: : notated. Our goal is not to present an extensive
menty could be inferred yeBiddeford apartments  5nnotation effort, but rather show that additional
is not a semantic role of ave?_blpferrmg th|§ kind temporally-anchored spatial knowledge can be (1)
of relations would require splitting semantic rolesynnotated reliably by non-experts following simple
o Both ARGN-LOC(x, y) and LOCATION(X, y) encode the guidglines, ano! (2) infer.red automatically using su-
same meaning, but e USRGM-LoC for the PropBank se- pervised machine learning. Thus, we focus on 200
mantic role and 0CATION for additional spatial knowledge. ~ Sentences from OntoNotes that have at least one

"Note that the head afRG, is residents, not the apartments. ARGM-LOC role annotated.

454



foreach sentence sdo e probNO: Itis probable that the answer is no, but

foreach sem. role ARGM-LOC(Ypreqd, ¥) € SO it is not guaranteed.
foreach sem. role ARG;(Xpred, X) € sdo e UNK There is not enough information to an-
if Isﬁ\éiilldo(c):(é@éhgbefore , swer, | can't tell the location of.
L Is x located ay duringZi :‘;9 The goal is to infer spatial knowledge as gath-
Is x located ay aftery,,.q? ered by humans when reading text. Thus, annotators

were encouraged to use commonsense and world

Algorithm 1: Procedure to generate potential addiknowledge. While simple and somewhat open to

tional spatial knowledge of type (1) (Section 2.2). interpretation, these guidelines allowed as to gather
annotations with “good reliability” (Section 3.3.1).

Obviously, [the pilot]re,, v, did[N't] srem-nes, v [thinK]y, .
[t00  mMuchhrewexrv, [about [whathes,.v, was| 32 Annotation Examples

[happening}, [on the groundken-ioc, v, OF - - hrey, v In this section, we present annotation examples af-

Figure 3: Sample sentence and semantic roles. P resolving cpnf_hct; (Figure 4). These examples
(x: about what was happening on the ground, y: on show that ambiguity is common and sentences must

the ground) is invalid becauser containsy. be fully interpreted before annotating.
Sentence 4(a) has four semantic roles for wetb

All potential additional spatial knowledge is gen-lecting (solid arrows), and annotators are asked to
erated with Algorithm 1, and a manual annotatiorflecide whetherRG, and ARG; of collecting are
effort determines whether spatial knowledge shoultpcated at theaARGM-LOC before, during or after
be inferred. Algorithm 1 loops over alRem-Loc  collecting (discontinuous arrows). Annotators inter-
roles, and generates questions regarding whethgiieted that th&BI agents and divers (ARG) andev-
spatial knowledge can be inferred for any numbereiglence (ARG;) were locatedit Lake Logan (ARGM-
argument within the same sentends.valid(x,y) LOC) during collecting (certYES ). They also anno-
returns True if (1) is not contained iryand (2)yis tated that thé&BI agents and diverswere likely to be
not contained irx. Considering invalid pairs would located atlake Logan before and afterpfobYES).
be trivial or nonsensical, e.g., pair (about what Finally, they determined that thevidence was lo-
was happening on the ground, y: on the ground) is  catedat Lake Logan before thecollecting (certYES ),
invalid in the sentence depicted in Figure 3. but probably not afterpfobNO). These annotations
reflect the natural reading of sentence 4(a): (1) peo-
ple and whatever they collect are located where the
In a first batch of annotations, two annotators wereollecting takes place during the event, (2) people
asked questions generated by Algorithm 1 and reollecting are likely to be at that location before and
quired to answekES or NQ The only information after (i.e., presumably they do not arrive immedi-
they had available was the source sentence withoately before and leave immediately after), and (3)
semantic role information. Feedback from this firsthe objects being collected are located at that loca-
attempt revealed that (1) because of the nature oftion before collecting, but probably not after.
or y, sometimes questions are pointless, and (2) be- Sentence 4(b) is more complex. First, potential
cause of uncertainty, sometimes it is not correct teelation LOCATION(in sight at the intersectionis
answeryEsor NQ even tough there is some evidenceannotatedUNK it is nonsensical to ask for the loca-
that makes either answer likely. tion of sight. Second, thé®isney symbols are never

Based on this feedback, and inspired by previouscatedat the intersection (certNO ). Third, boththe
annotation guidelines (Sauri and Pustejovsky, 2012Jar andsecurity guard were locatedt the intersec-
in a second batch we allowed five answers: tion during the stop for surecértYES ). Fourth, an-

e certYES : | am certain that the answer is yes. notators interpreted thabe car was notat the in-

e probYES: It is probable that the answer is yestersection before ¢ertNO ), but they were not sure

but it is not guaranteed. about after grobNO). Fifth, they considered that the

e certNO : | am certain that the answer is no. security guard was probably locatedt the intersec-

3.1 Annotation Process and Guidelines
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ARGM-TMP ARGM-LOC.
ARG( ARGl\

Today FBI agents and divers were collecting evidence at Lake Logan ...
‘~‘__“_‘~- ‘‘‘‘‘‘‘‘‘‘‘ —_—‘ﬁ_’_,._—-__?——->
CY
ARGM-DIS
ARGM-TMP- ARGM-LOC
RGy ARGo—
However, before the car was stopped by a at the intersection
[any cg tgi\ - = security guard of the roads
Disney symbo To — — T - ~ — — — > towards Disney
] [Were]vl o T T - _ _Z :_~‘—_-:::::::/:/:/%,”/g/ e
[insightlresror — — - _ _ -7
(b)
| X | y | Yprea || Before [ During | After |
FBI agents and divers at Lake Logan collecting || probYES | certYES probYES
evidence at Lake Logan collecting || certYES certYES probNO
any of the Disney symbols at the intersection of the roads . |. stopped certNO certNO certNO
in sight at the intersection of the roads . |. stopped UNK UNK UNK
the car at the intersection of the roads . |. stopped certNO | certYES probNO
by a security guard at the intersection of the roads . |. stopped probYES | certYES probYES

Figure 4. Examples of semantic role representations (sofimlvs), potential additional spatial knowledge
(discontinuous arrows) and annotations with respect todinie to whichy attachesdollecting or stopped).

Label
certYES | probYES || certNO | probNO | UNK
# % # % # % # % # %
Before || 100 | 15.04| 225 | 33.83|| 57 | 8.57| 248 | 37.29|| 35| 5.26
During || 477 | 71.51| 36| 5.40| 60| 9.00| 59| 8.85| 35| 5.25
After 140 | 21.12| 344 | 51.89|| 57| 8.60| 87| 13.12|| 35| 5.28
| All | 717] 3594 | 605] 30.33] 174 8.72 | 394 ] 19.75] 105 5.26 |

Table 3: Annotation counts. Over 44% of potential spatiavidedge can be inferreddrtYES andcertNO ).

tion before and after. In other words, annotators un- Observed| Cohen Kappa|
derstood that (1) the car was moving down a road Before |  89.0% 0.845
and arrived at the intersection; (2) then, it was pulled During 91.2% 0.848
_ N : _ After 87.8% 0.814
over by a security guard who is probably stationed at Al [ 89.6%] 0.867 ]

the intersection; and (3) after the stop, the car prob-
ably continued with its route but the guard probablylable 4: Inter-annotation agreements. Kappa scores
stayed at the intersection. indicate “good reliability”.

3.3 Annotation Analysis _ tic role, additional spatial knowledge can be inferred
Each annotator answered 1,995 questions generaiggh certainty. Finally, annotators answered around
with Algorithm 1. Basic label counts after resolvingsnoy, of questions withrobYES or probNO. In other
conflicts are shown in Table 3. First, it is worth notyyqrds, they found it likely that spatial information

ing that annotators useehKto answer only 5.26% can be inferred, but were not completely certain.
of questions. Thus, over 94% of time&GM-LOC

semantic role is found, additional spatial knowledg&-3.1 Inter-Annotator Agreements

can be inferred with some degree of certainty. Sedable 4 presents observed agreements, i.e., raw per-
ond, annotators were certain about the additionalentage of equal annotations, and Cohen Kappa
spatial knowledge, i.e., labetertYES andcertNO , scores (Cohen, 1960) per temporal anchor and for
35.94% and 8.72% of times respectively. Thusall questions. Kappa scores are above 0.80, indicat-
44% of times one encountersRGM-LOC seman- ing “good reliability” (Artstein and Poesio, 2008).
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| | No. | Name | Description |
0 | temporal anchor are we predicting. OCATION(X, y) before, during or afteg,,cq?
1-4 | first word, POS tag first word and POS tag irandy
Ks 5-8 | lastword, POS tag last word and POS tag inandy
:-2 9,10 | num tokens number of tokens ix andy
L 11,12 | subcategory concatenation of (Iy's children and (2)'s children
13 | direction whetherx occurs before or after
14,15 | syntactic node syntactic node ok andy
8 | 16-19 | head word, POStag | head word and POS tag nfandy
§ 20-23 | left and right sibling | syntactic nodes of the left and right siblingsxadndy
S | 24-27 | parent node and index syntactic nodes and child indices of parentx ahdy
@ 28 | common subsumer | syntactic node subsumingandy
29 | syntactic path syntactic path betweenandy
30-33 | word, POS tag predicate and POS tag 0f,cq andypred
34 | isRole semantic role label between,,..q andx
2 35 | same predicate whetherz,..q andy,..q are the same token
@ | 36-39| firstRole, lastRole the first and last semantic roles©f,cq andypred
% 40-59 | hasRole flags indicating whethet,,.q andy,..q have each semantic role
? | 60-99 | role index and node | for each semantic role, the order of appearance and syntaude
100 | x-containedlny_role | semantic role ofj,r.q that fully containsx
101 | y_containedlox_role | semantic role ok,,..q that fully containsy

Table 5: Feature set to infer temporally-anchored spatiahedge from semantic role representations.

We believe the high Kappa scores are due to theSentence:  [In this laboratorykw-coc, vy [I] areo,vi'M
fact that we start from PropBank-style roles insteaglSuroundedi, [by the remains of [20 service members
. . o Wholare, , v, @re inthe process of being [identifigdlare, , v,

of plaln text, _and questions asked are intuitive. NO Potential additional spatial knowledge: 0 service mem-
that not all disagreements are equal, e.g., the diffgrberswho, y: Inthislaboratory; x_containediny_role =ARG;

ence betweerertYES andcertNO iS much larger [ Sentence: [Childrer}s, v, can get to [know], [dif-

than the difference betweeartYES andprobYES. ferent animals and plants, and [even some crpps
thathre,,v, are [rarelylrem-aov, v, [S€€EN], [iNn our daily
4 |Inferring Spatial Knowledge lif€] arou-voc, vy lany v

Potential additional spatial knowledge: &hildren, y: in
We follow a standard supervised machine learningour daily life; y_containedliox_role =ARG,

approach. The 200 sentences were divided in
train (80%) and test (20%), and the correspondi
instances assigned to the train and test ewe
trained an SVM with RBF kernel using scikit-learn

(Pedregosa et al., 2011). Parametérand~y were _ _ o
tuned using 10-fold cross-validation with the trainWe describe semantic features, which include any

ing set, and results are calculated with test instancd§ature derived from semantic role representations.

Features 30-33 correspond to the surface form
and POS tag of the verbs to whiglandy attach to.
Selected features (Table 5) are a mix of lexical, syrFeature 34 indicates the semantic role betwegsy
tactic and semantic features, and are extracted froamdx; note that the semantic role betwegn., and
tokens (words and POS tags), full parse trees and seis alwaysARGM-LOC (Algorithm 1). Feature 35
mantic roles. Lexical and syntactic features are stawhistinguishes inferences of type (1a) from (1b) (Sec-
dard in semantic role labeling (Gildea and Jurafskyjon 2.2): it indicates whether bothandy attach to
2002) and we do not elaborate on them. Hereaft¢éhe same verb, as in Figure 1, or not, as in Figure

e . : 2. Features 36—39 encode the first and last seman-
Splitting instances randomly would be unfair, as instances

from the same sentence would be assigned to the train and t&& role of X,,..q andy,,..q by order of appearance.
sets. Thank you to an anonymous reviewer for pointing this ouFeatures 40-59 are binary flags signalling which se-

n5‘—:)igure 5: Pairs (x, y) for whicl_containedin_y_role
gndy_contaj nedin_x_role features have a value.

4,1 Feature selection
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Before During After All
P]TRI]F P R]F P]TR]F P]TRI]F
certYES 0.11| 1.00| 0.20| 0.74| 1.00 | 0.85| 0.26 | 1.00 | 0.42 || 0.37 | 1.00 | 0.54
other labels|| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
weighted avg.|| 0.01 | 0.11 | 0.02 | 0.54 | 0.74| 0.63 | 0.07 | 0.26 | 0.11 || 0.14 | 0.37 | 0.20
most frequent certYES 0.00| 0.00 | 0.00| 0.75| 1.00 | 0.86 | 0.00 | 0.00 | 0.00 || 0.75 | 0.62 | 0.68

most frequent
baseline

per temporal probYES || 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.45 | 1.00 | 0.62 || 0.45| 0.56 | 0.50
anchor probNO || 0.38 | 1.00 | 0.55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.38 | 0.62 | 0.47
baseline other labels|| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00

weighted avg.|| 0.14 | 0.38 | 0.21| 0.57 | 0.75| 0.65 | 0.20 | 0.45 | 0.28 || 0.50 | 0.53 | 0.50

certYES 0.13| 0.20| 0.16 | 0.74| 1.00 | 0.85| 0.53 | 0.29 | 0.37 || 0.63 | 0.75 | 0.69
probYES || 0.39| 0.34| 0.36 | 0.00 | 0.00 | 0.00 | 0.56 | 0.90 | 0.69 || 0.51 | 0.63 | 0.56
lexical certNO 0.00 | 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
features probNO || 0.39| 0.53 | 0.45| 0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.39 | 0.37 | 0.38
UNK | 0.00 | 0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
weighted avg.|| 0.31 | 0.35| 0.32 | 0.54 | 0.74| 0.63 | 0.44 | 0.56 | 0.47 || 0.47 | 0.55 | 0.50
certYES 0.41| 047 | 0.44| 0.74] 0.99| 0.85| 0.27 | 0.09 | 0.13 || 0.67 | 0.72 | 0.70
probYES || 0.53| 0.34| 0.41| 0.00 | 0.00 | 0.00 | 0.54 | 0.90 | 0.67 || 0.54 | 0.63 | 0.58

lse);(r:(t::::t-i'-c certNO 0.33]| 0.10| 0.15| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.25 | 0.04 | 0.06
features probNO || 0.38 | 0.64 | 0.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.38 | 0.44 | 0.41
UNK| 1.00 | 0.12| 0.22| 1.00 | 0.12 | 0.22 | 1.00 | 0.12| 0.22 || 1.00 | 0.12 | 0.22

weighted avg.|| 0.48 | 0.43 | 041 | 0.61 | 0.74| 0.64 | 0.42| 051 | 0.41| 0.57 | 0.56 | 0.53

certYES 0.18|1 0.20| 0.19| 0.74| 1.00| 0.85| 0.65| 0.31| 0.42 | 0.67 | 0.76 | 0.71

lexical + probYES | 0.48 | 0.42 | 0.44 | 0.00 | 0.00 | 0.00 | 0.57 | 0.92 | 0.70 || 0.54 | 0.66 | 0.60
semantic certNO 0.00| 0.00 | 0.00 | 0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.00| 0.00| 0.00
features probNO | 0.35| 0.51| 0.41| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.35| 0.35| 0.35
UNK|| 0.00 | 0.00| 0.00 | 0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00

weighted avg.|| 0.33 | 0.37 | 0.34 | 0.54 | 0.74| 0.63 | 0.47 | 0.57 | 0.49 || 0.49 | 0.56 | 0.52

certYES 0.50| 0.20| 0.29 | 0.76 | 0.97 | 0.85| 0.50| 0.14| 0.22 || 0.73 | 0.70| 0.71

probYES | 0.51| 0.36 | 0.42 | 0.50 | 0.14 | 0.22 | 0.56 | 0.93 | 0.70 || 0.55 | 0.66 | 0.60

all features certNO 0.33| 0.10| 0.15| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.11 | 0.04 | 0.05

probNO || 0.40| 0.72| 0.51 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.39 | 0.50 | 0.44
UNK|| 1.00| 0.12| 0.22| 0.33| 0.12| 0.18 | 0.50 | 0.12 | 0.20 || 0.50 | 0.12 | 0.20
weighted avg.|| 0.49 | 0.44 | 0.41 | 0.61 | 0.73| 0.65 | 0.46 | 0.54 | 0.45 || 0.56 | 0.57 | 0.55

Table 6: Results obtained with two baselines, and trainiitg several feature combinations. Models are
trained with all instances (before, during and after).

mantic rolesx,,.; andy,,.q have, and features 60— dicts probNO, certYES and probYES for instances

99 capture the index of each role (first, second, thirdyith temporal anchobefore, during and after re-

etc.) and its syntactic node (NP, PP, SBAR, etc.). spectively. Themost frequent baseline obtains a
Finally, features 100 and 101 capture the semantigeighted F-measure 0f20, andmost frequent per

role of x,..q andy,,.q which fully containy andx temporal anchor baseline0.50. Results with su-

respectively, if such roles exists. These features apervised models are better, but we note that always

especially designed for our inference task and afgredictingcertYES for during instances obtains the

exemplified in Figure 5. same F-measure than using all featufess).

The bottom block of Table 6 presents results us-
ing all features. The weighted F-measure)is5,
Results obtained with the test set using two bas@&nd the highest F-measures are obtained with labels
lines and models trained with several feature coneertyES (0.71) andprobYES (0.60). Results with
binations are presented in Table 6. Timest fre- certNO andprobNO are lower (.05 and0.44), we
guent baseline always predictsertYES , and the believe this is due to the fact that few instances are
most frequent per temporal anchor baseline pre- annotated with this label8(2% and19.75%, Ta-

5 Experimentsand Results
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ble 3). Results are highen.(5) with during in- ments appearing in the same or previous sentences;
stances than witlbefore and after instances .41 posterior work obtained better results for the same
and0.45). These results are intuitive: certain eventsask (Gerber and Chai, 2012; Laparra and Rigau,
such agress andwrite require participants to be lo- 2013). The SemEval-2010 Task 10: Linking Events
cated where the event occurs only during the eventand their Participants in Discourse (Ruppenhofer
et al., 2009) targeted cross-sentence missing num-
5.1 FeatureAblation and Detailed Results bered arguments in PropBank and FrameNet. We

The weighted F-measure using lexical features is tH&gve previously proposed an unsupervised frame-
same than with thenost frequent per temporal an- work to compose semantic relations out of previ-
chor baseline §.50). F-measures go up witbefore  Ously extracted relations (Blanco and Moldovan,
(0.21 vs. 0.32, 52.38%) andafter (0.28 vs. 0.47, 2011; Blanco and Moldovan, 2014a), and a super-
67.85%) instances, but slightly down withuringin-  Vised approach to infer additional argument mod-
stances((.65 vs. 0.63, —3.08%). ifiers (ARGM) for verbs in PropBank (Blanco and
Complementing lexical features with syntactidVioldovan, 2014b). Unlike the current work, these

and semantic features brings the overall weighted frévious efforts (1) improve the semantic represen-

measure slightly up0.53 with syntactic and).52 tation of verbal and nominal predicates, or (2) in-
with semantic featuresH0.03 and 4-0.02, 6% and fer relations between arguments of the same predi-

4%). Before instances benefit the most from syn-Cate- None of them target temporally_—anchored spa-
tactic features((32 vs. 0.41, 28.13%), andafter tial knowledge or account for uncertainty.

instances benefit from semantic featurest{ vs. . . . _
0.49, 4.26%). During instances do not benefit from Attaching temporal information to semantic rela-
semantic features, and only gain0l F-measure UONS is uncommon. In the context of the TAC KBP

(1.59%) with syntactic features. temporal slot filling track (Garrido et al., 2012; Sur-
Finally, combining lexical, syntactic and seman-dear_‘u' 2013), relations common in information ex-
tic features obtains the best overall results (weightdf2ction (€.9. SPOUSE COUNTRY_OF.RESIDENCY)
F-measure: 055 vs. 0.53 and 0.52. 3.77% and '€ assigned a temporal interval indicating when
5.77%). We note, however, thaefore instances do they hold.  The task proved very difficult, and
not benefit from including semantic features (sami® Pest system achieved 48% of human perfor-
F-measure(.41), and the best results fafter in- Mance. Unlike this line of work, the approach pre-

stances are obtained with lexical and semantic feS€Nted in this paper starts from semantic role repre-

tures (.49 vs. 0.45, 8.16%) sentations, targets temporally-anchotencATION
’ ’ relations, and accounts for degrees of uncertainty
6 Related Work (certYES [/ certNO VS. probYES / probNO).

Tools to extract the PropBank semantic roles we in- The task of spatial role labeling (Haji¢ et al.,
fer from have been studied for years (Carreras argD09; Kolomiyets et al., 2013) aims at thoroughly
Marquez, 2005; Haji€ et al., 2009; Lang and Lapatagpresenting spatial information with so-called spa-
2010). These systems only extract semantic linksal roles, i.e., trajector, landmark, spatial and motion
between predicates and their arguments, not bindicators, path, direction, distance, and spatial rela-
tween arguments of predicates. In contrast, this p@ens. Unlike us, the task does not consider temporal
per complements semantic role representations wiipans nor certainty. But as the examples through-
spatial knowledge for numbered arguments. out this paper show, doing so is useful because (1)

There have been several proposals to extract sgpatial information for most objects changes over
mantic links not annotated in well-known corporatime, and (2) humans sometimes can only state that
such as PropBank (Palmer et al., 2005), FrameNah object isprobably located somewhere. In con-
(Baker et al., 1998) or NomBank (Meyers et al.frast to this task, we infer temporally-anchored spa-
2004). Gerber and Chai (2010) augment Nomtial knowledge as humans intuitively understand i,
Bank annotations with additional numbered arguand purposely avoid following any formalism.
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