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Abstract
|::> Native/Non-native

We present an approach to automatically re-
) Male/Female

cover hidden attributes of scientific articles,
|::> Conference/Workshop

such as whether the author is a native English
Figure 1: Predicting hidden attributes in scientific aggcl

speaker, whether the author is a male or a fe-
male, and whether the paper was published in
a conference or workshop proceedings. We
train classifiers to predict these attributes in
computational linguistics papers. The classi-
fiers perform well in this challenging domain,

identifying non-native writing with 95% accu-

racy (over a baseline of 67%). We show the

benefits of usingyntactic featurei stylom- al., 2011), or whether someone is writing deceptive
etry; syntax leads to significant improvements online reviews (Ott et al., 2011).
over bag-of-words models on all three tasks, We evaluate stylometric techniques in the novel

achieving 10% to 25% relative error reduction.

. ) . ) domain ofscientific writing Science is a difficult
We give a detailed analysis of which words

. . . domain; authors are encouraged, often explicitly
and syntax most predict a particular attribute, . .. S .
and we show a strong correlation between our by reviewers/submission-guidelines, to comply with

predictions and a paper’s number of citations. normative practices in style, spelling and grammar.
Moreover, topical clues are less salient than in do-

mains like social media. Success in this challenging
domain can bring us closer to correctly analyzing
Stylometry aims to recover useful attributes of docthe huge volumes of online text that are currently
uments from the style of the writing. In some do-unmarked for useful author attributes such as gender
mains, statistical techniques have successfully dend native-language.

duced author identity (Mosteller and Wallace, 1984), Yet science is more than just a good stepping-
gender (Koppel et al., 2003), native language (Kopstone for stylometry; it is an important area in itself.
pel et al., 2005), and even whether an author has d8ystems for scientific stylometry would give sociol-
mentia (Le et al., 2011). Stylometric analysis is im-ogists new tools for analyzing academic communi-
portant to marketers, analysts and social scientisties, and new ways to resolve the nature of collab-
because it provides demographic data directly froraration in specific articles (Johri et al., 2011). Au-
raw text. There has been growing interest in applythors might also use these tools, e.g., to help ensure
ing stylometry to the content generated by users @f consistent style in multi-authored papers (Glover
Internet applications, e.g., detecting author ethniand Hirst, 1995), or to determine sections of a paper
ity in social media (Eisenstein et al., 2011; Rao eteeding revision.

1 Introduction
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The contributions of our paper include: similar to work that uses raw article text. Hall et
New Stylometric Tasks: We predict whether al. (2008) build per-year topic models over scientific
a paper is written: (1) by a native or non-nativditerature to track the evolution of scientific ideas.
speaker, (2) by a male or female, and (3) in the styleerrish and Blei (2010) assess the influence of indi-
of a conference or workshop paper. The latter is widual articles by modeling their impact on the con-
fully novel stylometric and bibliometric prediction. tent of future papers. Yogatama et al. (2011) pre-
New Stylometric Features: We show the value dict whether a paper will be cited based on both its
of syntactic feature$or stylometry. Among others, content and its meta-data such as author names and
we describetree substitution grammafragments, Ppublication venues. Johri et al. (2011) use per-author
which have not previously been used in stylometryjopic models to assess the nature of collaboration in
TSG fragments are interpretable, efficient, and paf particular article (e.gapprenticeshipr synergy.
ticularly effective for detecting non-native writing. One of the tasks in Sarawgi et al. (2011) concerned
While recent studies have mostly evaluated sirRredicting gender in scientific writing, but they use a
gle prediction tasks, we compare different strategie@®rpus of only ten “highly established” authors and
across different tasks on a common dataset and withake the prediction using twenty papers for each.
a common infrastructure. In addition to contrastingrinally, Dale and Kilgarriff (2010) initiated a shared
different feature types, we compare differératin- task on automatic editing of scientific papers written
ing strategiesexploring ways to make use of train- Py non-native speakers, with the objective of devel-
ing instances with label uncertainty. oping “tools which can help non-native speakers of
We also provide a detailegnalysisthat is inter- English (NNSs) (and maybe some native ones) write
esting from a sociolinguistic standpoint. Preciseljz¢@demic English prose of the kind that helps a pa-
what words distinguish non-native writing? HowPer get accepted.”
does the syntax of female authors differ from males? Lexical and pragmatic choices in academic writ-
What are the hallmarks of top-tier papers? Finallyng have also been analyzed within the applied lin-
we identify some strong correlations between ou@uistics community (Myers, 1989; Vassileva, 1998).

predictions and a paper’s citation count, even when .
controlling for paper venue and origin. 3 ACL Dataset and Preprocessing

We use papers from the ACL Anthology Network
(Radev et al., 2009b, Release 2011) and exploit its
manually-curated meta-data such as normalized au-
literature; citation analysisis a well-known bib- thor names, affiliations (including country, avail-
liometric approach for ranking authors and paper@PIe Up to 2009), and citation counts. We con-
(Borgman and Furner, 2001). Bibliometry and Styyert each PDF to te_i(tbut remove text before the
lometry can share goals but differ in technique<\PStract(to anonymize) and after thécknowledg-
For example, in a work questioning the blindnes§ents/Referencézeadings. We split the text into
of double-blind reviewing, Hill and Provost (2003) Sentencesand filter any documents with fewer than
predict author identities. They ignore the articlel00 (this removes some short/demo papers, mal-
body and instead consider (a) potential self-citationgonverted PDFs, etc. —about 23% of the 13K pa-
and (b) similarity between the article’s citation listP€rs With affiliation information). In case the text

and the citation lists of known papers. Radev et alV@S garbled, we then filtered the first 3 lines from

(2009a) perform a bibliometric analysis of compu£VerY file and any line with an '@’ symbol (which

tational linguistics. Teufel and Moens (2002) andMight be part of an affiliation). We remove foot-
Qazvinian and Radev (2008) summarize scientifi€’s IlkeProcged|ngs of ..table/figure captions, and
articles, the latter by automatically finding and fil-2nY lines with non-ASCII characters (e.g. math
tering sentences in other papers that cite the targgfuations). Papers are then parsed via the Berke-

article. 1Via the open-source utilitpdftotext
Our system does not consider citations; it is most 2Splitter fromcogcomp.cs.illinois.edu/page/tools

2 Related Work

Bibliometricsis the empirical analysis of scholarly
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Task | Training Set: | Dev | Test then built a list of common first names of English
Strict _Lenient| Set | Set speakers via the top 150 male and female names
Nativel | 2127 3963 | 450 | 477 from the U.S. censud. If the first author of a pa-
Venue | 2484 3991 | 400 | 421 per has an English first nanaed English-speaking-
Gender | 2125 3497 | 400 | 409 country affiliation, we mark ases.# If noneof the

authors have an English first namer an English-
Table 1: Number of documents for each task speaking-country affiliation, we mark asvs. We
use this rule to label our development and test data,
ley parser (Petrov et al., 2006), and part-of-speeds well as oulStrict training set. FolLenienttrain-
(PoS) tagged using CRFTagger (Phan, 2006). ing, we decide based solely on whether the first au-
Training sets always comprise papers from 2001hor is from an English-speaking country.
2007, while test sets are created by randomly shuf- . .
fling the 2008-2009 portion and then dividing it into4'2 Venue: Top-Tier vs. Workshop
development/test sets. We also use papers frohiis novel task aims to distinguish top-tier papers

1990-2000 for experiments {7.3 ands7.4. from those at workshops, based on style. We use
the annual meeting of the ACL as our canonical top-
4 Stylometric Tasks tier venue. For evaluation ar8trict training, we la-

_ o _ bel all main-session ACL papers tp-tier, and all
the data for which we are most confident in the lage assigrall conferences (LREC, Coling, EMNLP,
bels (as described below), and.anientset, which - etc ) to betop-tier except for their non-main-session

forcibly assigns every paper in the training periogyapers, which we label asorkshop
to some class (Table 1). All test papers are anno-

tated using &trict rule. While our approaches for 4.3 Gender: Male vs. Female

automatically-assigning labels can be coarse, thgyecause we are classifying an international set of
allow us to scale our analysis to a realistic Crosssythors, U.S. census names (the usual source of
section of academic papers, letting us discoversong%nder ground-truth) provide incomplete informa-
interesting trends. tion. We therefore use the data of Bergsma and Lin
(2006)° This data has been widely used in corefer-
ence resolution but never in stylometry. Each line
We introduce the task of predicting whether a sciin the data lists how often a noun co-occurs with
entific paper is written by a native English speakemale, female, neutral and plural pronouns; this is
(NES) or non-native speakenN(s). Prior work has commonly taken as an approximation of the true
mostly made this prediction in learner corpora (Kopgender distribution. E.g.pill clinton’ is 98% male
pel et al., 2005; Tsur and Rappoport, 2007; Won@n 8344 instances) whileisie wayngis 100% fe-
and Dras, 2011), although there have been attemptsle (in 23). The data also haggregate counts
in elicited speech transcripts (Tomokiyo and Jonegver all nouns with the same first token, e.glsie
2001) and e-mail (Estival et al., 2007). There has. is 94% female (in 255 instances). F@&trict
also been a large body of work aorrectinger-  training/evaluation, we label papers with the fol-
rors in non-native writing, with a specific focus onlowing rule based on the first author’s first name:
difficulties in preposition and article usage (Han e{m govigenealogy/namesinames_ fies
al., 2006; Chodorow et al., 2007; Felice and I:)U|F1tm| Wé also rﬁanually added common ni_cknémes for these,
man, 2007; Tetreault and Chodorow, 2008; GamoR,g. Robfor Robert Chris for Christopher Dan for Daniel, etc.
2010). 40f course, assuming the first author writes each paper is
We annotate papers using two pieces of associatisgperfect. In _fact, for some native/non-native_collaborations,
meta-data: (1) author first names and (2) countri oursys_tem gltlmgtely predicts the 2nq (non-native) author to b_e
o etﬁe main writer; in one case we confirmed the accuracy of this
of affiliation. We manually marked each country foryyegiction by personal communication with the authors.
whether English is predominantly spoken there. We Swww.clsp.jhu.edu/ - shergsma/Gender/

4.1 Nativel: Native vs. Non-Native English
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if the name has an aggregate cous80 and fe- 6.1 Bow Features

male probability>0.85, label as female; otherwise z yariety of “discouraging results” in the text cate-
if the aggregate count is-30 and male probabil- .z ation literature have shown that simple bag-of-
ity >0.85, label male. This rule captures many c’a/ords Bow) representations usually perform better
ACL's unambiguously-gendered names, both malg,,, «more sophisticated” ones (e.g. using syntax)
(Nathanael, Jens, Hiroyukiand female \Vidad, (sepastiani, 2002). This was also observed in sen-
Yael, Sunita For Lenienttraining, we assign all ment classification (Pang et al., 2002). One key
papers based only on whether the male or femalg, of our research is to see whether this is true of
probability for the first author is higher. While po- ggjengific stylometry. OuBow representation uses
tentially noisy, there is precedent for assigning a sin feature for each unique lower-case word-type in
gle gender to papers “co-authored by researchers g article. We also preprocess papers by making all

mixed gender” (Sarawgi et al., 2011). digits '0’. Normalizing digits and filtering capital-
o . ized words helps ensure citations and named-entities
5 Models and Training Strategies are excluded from our features. The feature value is

S the log-count of how often the corresponding word
Model: We take a discriminative approach to sty .curs in the document.

lometry, representing articles as feature vectts$ (
and classifying them using a linear, L2-regularize®.2 Style Features

SVM, trained viaLIBLINEAR (Fan et al., 2008). \whjle text categorization relies on keywords, sty-
SVMs are state-of-the-art and have been used prgimetry focuses on topic-independent measures like
viously in stylometry (Koppel et al., 2005). function word frequency (Mosteller and Wallace,

) ~1984), sentence length (Yule, 1939), and PoS (Hirst
Strategy: We test whether it's better to train with 54 Feiguina, 2007). We definesyle-wordto be:
a s_rr_laller, more accuratstrict set, or a _Iarger but (1) punctuation, (2) a stopword, or (3) a Latin abbre-
noisierLenientset. We also explore a third strategy,iation We createStylefeatures for all unigrams
motivated by work in learning from noisy web im- 54 bigrams, replacing nastyle-wordsseparately

ages (Bergamo and Torresani, 2010), in which Wg;it, hoth PoS-tags and spelling signatufe&ach
fix the Strict labels, but also include the remainingsaat.re is an N-gram, the value is its log-count in the

examples asnlabeledinstances. We then optimize 4 ricle. We also include stylistimeta-featuresuch

a TransductiveSVM, solving an optimization prob- oq mean-words-per-sentence and mean-word-length.
lem where we not only choose the feature weights,

but also labels for unlabeled training points. Like6.3 Syntax Features

a regular SVM, the goal is to maximize the margin|ike recent work using generative PCFGs (Ragha-
between the positive and negative vectors, but noy, , ot al., 2010; Sarawgi et al., 2011), we use syntax
the vectors have both fixed and imputed labels. Weire iy as features idiscriminativemodels, which
optimize using Joachims (1999)'s software. Whilg.ap, easily incorporate arbitrary and overlapping syn-
the classifier is trained using a transductive strategy, -iic clues. For example, we will see that one indi-
itis still testedinductively i.e., on unseen data. cator of native text is the use of certain determin-
ers as stand-alone noun phrases (NPs), thkgin
6 Stylometric Features Figure 2. This contrasts with a proposed non-native
phrase, “thisbT growingh/BG arealN,” wherethis
Koppel et al. (2003) describes a range of featurgisiead modifies a noun. ThBow features are

that have been used in stylometry, ranging fronjearly unhelpful: this occurs in both cases. The
early manual selection of potentially discriminative_____~

6 . .
words, to approaches based on automated text cat- The stopwordlllst isthe sFandard set of 524 SMART—gyStem
stopwords (following Tomokiyo and Jones (2001)). Latin ab-

egorization (Sebastiani, 2002). We use the fOIIOWBreViations arée., e.q., etc., o.f, airal,

ing three feature classes; the particular features were 7g g ' signaturel:C-ing means lower-case, ending ing.
chosen based on development experiments. These are created via a script included with the Berkeley parser.
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lometry, Post (2011) uses them to predict sentence
grammaticality(i.e. detecting pseudo-sentences fol-
lowing Okanohara and Tsujii (2007) and Cherry and
Quirk (2008)). We use PostBSG training settings
and his public codé.We parse with thasc gram-

mar and extract the fragments as features. We also
follow Post by having features for aggregatsc
statistics, e.g., how many fragments are of a given
size, tree-depth, etc. These syntactic meta-features
Figure 2: Motivating deeper syntactic features: Thére Somewhat similar to the manually-defined stylo-

shaded TSG fragment indicates native English, but is ndeetric features of Stamatatos et al. (2001).
directly encoded ifBow, Style nor standard CFG-rules.

c&J Reranking Features: We also extracted the
reranking features of Charniak and Johnson (2005).
Stylefeatures are likewise unhelpfuhis-vBG also These features were hand-crafted for reranking the
occurs in both cases. We need the deeper knowledgetput of a parser, but have recently been used for
that a specific determiner is used as a complete Nther NLP tasks (Post, 2011; Wong and Dras, 2011).

We evaluate three feature types that aim to cag-hey include lexicalized features for sub-trees and
ture such knowledge. In each case, we aggregate thead-to-head dependencies, and aggregate features
feature counts over all the parse trees constitutingfar conjunct parallelism and the degree of right-
document. The feature value is the log-count of howranching. We get the features using another script
often each feature occurs. To remmantentinfor-  from Post® While TsG fragments tile a parse tree
mation from the features, we preprocess the pargsto a few useful fragments;&J features can pro-
tree terminals: all nostyle-wordterminals are re- duce thousands of features per sentence, and are thus
placed with their spelling signature (s¢&2). much more computationally-demanding.

CFG Rules: We include a feature for every unique,7 Experiments and Results
single-level context-free-grammatKG) rule appli-

cation in a paper (following Baayen et al. (1996)
Gamon (2004), Hirst and Feiguina (2007), Won
and Dras (2011)). The Figure 2 tree would hav
featuresNP—PRP, NP—DT, DT—this, etc. Such fea-
tures do capture that a determiner was used as an
but they do not jointly encodehichdeterminer was

We take theminority classas the positive class:

NESs for Nativel, top-tier for Venueand female for
ender and calculate the precision/recall of these
classes. We tune three hyperparameters for F1-
§jore on development data: (1) the SVM regular-
ization parameter, (2) the threshold for classifying

used. This is an important omission; we'll see thaf" instance as positive (using the signed hyperplane-

other determiners acting as stand-alone NPs indicaq}-:‘s'[ance as the sc_ore), and (3) for transductive train-
non-nativewriting (e.g., the wordhat, see§7.2). ing .(§5), the _frgcﬂon_ of. l_mlabeled data to label as
positive. Statistical significance on held-out test data
TSG Fragments: A tree-substitution grammar is a iS assessed with McNemar's test,@.05. For F1-
generalization oftFGs that allow rewriting to tree Sscore, we use the following reasonaBleseline we
fragments rather than sequences of non-termindrbel all instances with the label of the minority class
(Joshi and Schabes, 1997). Figure 2 gives the exaf@chieving 100% recall but low precision).
le NP—(DT this). This fragment captures both the . -
Eientity E)f the d)eterminer%nd its sypntactic function7'1 Selection of Syntax and Training Strategy
as an NP, as desired. Efficient Bayesian procedurB§velopment experiments showed that using all fea-
have recently been developed that enable the traitires, Bow+StylerSyntax works best on all tasks,
ing of |arge-sca|e probab”isti‘cse grammars (Post but there was no benefit in Combining different
and Gildea, 2009; Cohn et al., 2010). " Bhtp/igithub.com/mipostidptsg
While TsGs have not been used previously in sty-  °http://github.com/mjpost/extract-spfeatures
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Syntax _Strategy] NativeL | Venue[| Gender| [ Features | NativeL || Venue| Gender|

Baseline 50.5 45.0 28.7 Baseline 49.8 45.5 33.1
CFG Strict 93.5 59.9 42.5 Bow 88.8 60.7 42.5
CFG Lenient 89.9 64.9 39.5 Style 90.6 61.9 39.8
TSG Strict 93.6 60.7 40.0 Syntax 88.7 64.6 41.2
TSG Lenient 90.9 64.4 39.1 Bow+Style 90.4 64.0 45.1
c&Jd Strict 90.5 62.3 37.1 Bow+Syntax 90.3 65.8 42.9
c&l Lenient 86.2 65.2 39.0 StylerSyntax 89.4 65.5 43.3

Bow+StylerSyntax| 91.6 66.7 48.2

Table 2: F1 scores fdBow+StylerSyntaxsystem orde-

velopment dataThe best training strategy and the bestrable 3: F1 scores with different featurestueid-out test

syntactic features depend on the task. data Including style and syntactic features is superior to
standardBowfeatures in all cases.

Syntaxfeatures. We also found no gain from trans-

ductive training, but greater cost, with more hypernative/non-nativetopics e.g., probabilities pre-
parameter tuning and a slower SVM solver. Thelicts native while fmorphological predicts non-
bestSyntaxfeatures depend on the task (Table 2)native. Several features, likebtained, indicate L1
Whether Strict or Lenienttraining: TSG was best interference; i.e., many non-natives have a cognate
for Nativel, caJ was best foMenue andcrFG was  for obtainin their native language and thus adopt the
best forGender These trends continue on test datagnglish word. As an example, the wodbtained
where TsG exceedscFG (91.6% vs. 91.2%). For occurs 3.7 times per paper from Spanish-speaking
the training strategystrict was best ofNativeLand greas (cognatebtenir) versus once per native paper
Gender while Lenientwas best orvenue(Table 2).  and 0.8 times per German-authored paper.

This latter result is interesting: recall that féenue Natives also prefer certain abbreviations (e.g.
Lenienttraining considers all conferences to be topre.g;) while non-natives prefer othersig’, ‘c.f’,

tier, but evaluation is just on detecting ACL papers.gic:y Exotic punctuation also suggests native text:
We suggest some reasons for this below, highlighte semi-colon, exclamation and question mark all

ing some general features of conference papers tr}ﬂ’edictNEs. Note this also varies by region; semi-

extend beyond partlcular venues. colons are most popular WES countries but papers
For the remainder of experiments on each taskyom |srael and Italy are close behind.

we fix the syntactic features and training strategy to

Table 5 gives highly-weightedsc features for
those that performed best on development data. v 'gnywelg .

predictingNativeL Note the determiner-asP us-
age described earlieg 6.3): these this and each
predict native when used as amp; thatas-annp
Genderremains the most difficult task destdata, predicts non-native. Furthermore, while not all na-
but our F1 still substantially outperforms the basetjye speakers use a comma before a conjunction in
line (Table 3). Results omMativeL are particu- a list, it's nevertheless a good flag for native writ-
larly impressive; in terms ofccuracy we classify ing (‘NP—NP, NP, (CC and) NP'). In terms of non-
94.6% of test articles correctly (the majority-classative syntax, the passive voice is more common
baseline is 66.9%). Regarding features, just usingvp—(vBz is) vP’ and ‘vP—VBN (PP (IN as) NP))).
StylerSyntaxalways works better than usirBow.  We also looked for features involving determiners
Combining all features always works better stillsince correct determiner usage is a common diffi-
The gains oBow+StylerSyntavover vanillaBoware  culty for non-native speakers. We found cases where
statistically significant in each case. determiners were missing where natives might have
We also highlight importarindividual features  used one §iP—JJ JJ NN), but also those where a de-
Nativel: Table 4 givesBow and Stylefeatures terminer might be optional and skipped by a native
for NativeL Some reflect differences in commonspeaker (\P—(DT the) NN NNS'). Note that Table 5

7.2 Test Results and Feature Analysis
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| Predicts native | Predicts non-native | TSG Fragment Example
Bowfeature  Wt. | Bowfeature Wi, Predicts native English author:
initial 2.25 | obtained -2.15 NP—NNP CD (l_\/lodeD (1)
techniques  2.11 proposed -2.08 NP—(DT thes¢ six of (thesg
probabilities  1.38| method -2.06 NP—(DT thaf) NN in (that) (language
additional ~ 1.23| morphological -1.96 NP—(DT this) we did(this) using ...
fewer 1.02| languages -1.23 vP—(VBN used s (used (to describe if
Stylefeature  Wt. | Stylefeature W. NP—NP, NP, (CCand) NP (X), (¥), (@nd) (2)
used to 192 ie. 260 NP—(DT each (each consists of ...
JIR NN 1.90! have to -1.65 Predicts non-native English author:
has VBN 1.90| thexxxxing 1.61 VP—(VBZ IS) VP it (is) (shown below
example 1.75 thus 161 vP—VBN (PP(IN as) NP)  (considerell(as) (a term)
all of 1.73 | usually 1.24 NP—JJ JJ NN in (other) (large) (corpug
'S 1.69 | mainly 1.21 NP—DT JJ(CD oné (a) (correct) (one
allow 1.47 | because 112 NP—(DT the) NN NNS seen inthe) (tes) (data)
hasxxxxed 1.45| the VBN 112 NP—(DT that) larger than(that) of ...
may be 1.35| JJ for 1.11 QP—(IN abou) cD (abou) (200,000 words
; and 1.21| cf -0.97
e.g. 1.10| etc. -0.55 Table 5: Nativel: Highly-weighted syntactic features
must VB 0.99| associated to -0.23 (descending order of absolute weight) and examples in

the Bowt+StylerSyntaxsystem.

Table 4:Nativel: Examples of highly-weighted style and

content features in thBow+StylerSyntaxsystem. . . .
yiesy Y and statistical significance checking. On the other

hand, there might be a bias at main conferences for
examples are based on actual usage in ACL papefecused, incremental papers; features of workshop
We also found thatomplexNPs were more asso- Papers highlight the exploration dhteresting new

ciated with native text. Features such me->DT 33 ideas/domains. Here, the objective might only be to
NN NN NN’, and ‘NP—DT NN NN NNS' predict native show what is possible’or what one isable td do.

writing. Main conference papers prefer work that improves
Non-natives also rely more on boilerplate. ForPerformanceby “#% on established tasks.
example, the exact phrase “The/This paper is orga- Gender: The CFG features foBenderare given
nized as follows” occurs 3 times as often in nonin Table 7. Several of the most highly-weighted
native compared to native text (in 7.5% of all nonfemale features include pronouns (e.grrs). A
native papers). Sentence re-use is only indirectkigher frequency of pronouns in female writing has
captured by our features; it would be interesting t&e€en attested previously (Argamon et al., 2003), but
encode flags for it directly. has not been traced to particular syntactic construc-
In general, we found very few highly—weightedtion_s' Likewi;e, we observg a higher frequency of
features that pinpoint ‘ungrammatical’ non-native'0tiust negation (noted previously) but advens)(
writing (the feature associated toin Table 4 is a N 9eneral (€.g.vP—~MD RB VP)). In terms ofBow
rare example). Our classifiers largely detect norf€atures (not shown), the worgsntrastand com-
native writing on a stylistic rather than grammaticaPa"son highly predict female, as do topical clues
basis. like verbandresource The top-three malBowfea-
Venue: Table 6 provides importafBowandStyle tures are (in order)simply, perform parsing
features for th&/enuetask (syntactic features omit- .
ted due to space). While some features are topicZﬂ3 Author Rankings
(e.g. biomedical), the table gives a blueprint for While our objective is to predict attributes ph-
writing a solid main-conference paper. That is, googers we also show how that we can identdythor
papers often have an explicit probability model (oattributes using a larger body of work. We make
algorithm), experimental baselines, error analysif\ativeLandGenderpredictions for all papers in the
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| Predicts ACL [ Predicts Workshop| CFG Rule Example
Bowfeature ~ Wt. | Bowfeature  Wt. Predicts female author:
model 2.64| semantic -2.16 NP—PRP$ NN NN (our) (uppe (boung
probability ~ 1.66| analysis -1.65 QP—RB CD (roughly) (6000
performance  1.40 verb -1.35 NP—NP, CC NP (a newnE tag), (or) (no NE tag)
baseline 1.36 lexical -1.33 NP—PRP$ 33 JJ NN (our) (first) (new) (approact)
= 1.26 | study -0.92 VP—MD RB VP (may) (not) (be useful
algorithm 1.18| biomedical  -0.87 ADVP—RB RBR (significantly (more)
large 1.16/ preliminary  -0.69 Predicts male author:
error 1.15| interesting  -0.69 ADVP—RB RB (only) (superficially
outperforms ~ 1.02 aim -0.64 NP—NP, SBAR we use(XY32), (which'is ..)
significant 0.96| manually -0.62 SECHE (Trust mg: (I'm a doctor)
statistically ~ 0.75| appears -0.54 S-S, NP VP (To do s9, (it) (needs help
Stylefeature  Wt. | Stylefeature  W. WHNP=WP NN depending orfwhay (path) is ...
by VBG 1.04| able to 0.99 PP—IN PRN (in) ((Jelinek, 1976)
#% 0.82| xxxxed out  -0.77
NN over 0.79| further NN  -0.71 Table 7: Gender Highly-weighted syntactic features
than the 0.79 NN should -0.69 (descending order of weight) and examples in the
improvement  0.75 will be -0.61 Bow+StylerSyntaxsystem.
best 0.71] possible -0.57
XXX%S by 0.70| have not -0.56 Highest NES Scores, non-English-country Gerald
much JJR 0.67 currently -0.56 Penn!® Ezra W. Black, Nigel Collier, Jean-Luc Gauvaip,

Dan Cristea, Graham J. Russell, Kenneth R. Beesley,
Table 6:Venue Examples of highly-weighted style con- | Dekai Wu, Christer Samuelsson, Raquel Martinez
tent features in thBow+StylerSyntaxsystem. Highest NES Scores, English-country Eric V. Siegel,
Lance A. Ramshaw, Stephanie Seneff, Victor W. Zue,
Joshua Goodman, Patti J. Price, Stuart M. Shieber, Jean
1990-2000 era using oBow+StylerSyntaxsystem. | Carletta, Lynn Lambert, Gina-Anne Levow
For each author+affiliation with>3 first-authored

papers, we take the average classifier score on thelsble 8: Authors scoring highest dtativel, in descend-
papers. ing order, based exclusively on article text.

N

14

Table 8 shows cases where our model strongly
predicts native, showing top authors with foreign afatc_ while many males focus on parsing. We also
filiations and top authors in English-speaking coungied making these lists withouow features, but
tries1® While not perfect, the predictions correctlyihe extreme examples still reflect topic to some ex-
identify some native authors that would be difficultiapt Topics themselves have their own style, which

to detect using only name and location data. For exne style features capture; it is difficult to fully sepa-
ample,Dekai Wu(Hong Kong) speaks English na-ya¢e style from topic.

tively; Christer Samuelssdists near-native English
on his C.V,; etc. Likewise, we have also been ablg 4 Correlation with Citations

to accurately identify a set afon-nativespeakers We also test wheth ¢ . i
with common American names that were working e also test whether our systenstylometricscores

at American universities. correlate with the most commdribliometric mea-

) . .. sure: citation count. To reduce the impactopic,
Table 9 provides some of the extreme predictions pactap

I I f . We pl -

of our system orsender The extreme male and fe- we only useStylerSyntax gatures € plot re
. sults separately foACL, Coling and Workshoppa-

male predictions are based on both style and content;

e . ers (1990-2000 era). Papers at each venue are
females tend to work on summarization, discours . o ) ) .
Sorted by their classifier scores and binned into five

ONote again that this is based on the affiliation of these aus-‘Core bins.  Each point in the plot is the mean-

thors during the 1990s; e.g. Gerald Penn published three pap&§0re/mean-number-of-citations for papers in a bin
while at the University of Tibingen. (within-community citation data is via the AARB
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Highest Model Scores (Male) John Aberdeen CQ% S Cé‘}iﬁ; ——
Chao-Huang Chang, Giorgio Satta, Stanley F. Chen, Workshop ««+ -+ Workshop =« 3§+
GuoDong Zhou, Carl Weir, Akira Ushioda, Hideki 0F E 10F E
Tanaka, Koichi Takeda, Douglas B. Paul, Hideo Watan- *
abe, Adam L. Berger, Kevin Knight, Jason M. Eisne x
Highest Model Scores (Female)Julia B. Hirschberg, xx*.aﬁ ,:"
Johanna D. Moore, Judy L. Delin, Paola Merlo, *
Rebecca J. Passonneau, Bonnie Lynn Webber, Beth 1} BK T 1 )le"‘ o
M. Sundheim, Jennifer Chu-Carroll, Ching-Long Yeh, 0.3 0.4 0.5 0.6 0.7 0.8 02 03 0.4 05 06
Mary Ellen Okurowski, Erik-Jan Van Der Linden NativeL-Score Venue-Score

@) (b)
Table 9: Authors scoring highest (absolute values) on
Gender in descending order, based exclusively on artiFigure 3: Correlation between predictions (x-axis) and
cle text. mean number of citations (y-axi®g-scalg.

and excludes self citations). We use a truncated
mean for citation counts, leaving off the top/bottormnter-annotator kappa of 66%. We divided the papers
five papers in each bin. into a test set and a development set. We applied our
For Nativel, we only plot papers marked as- Bow+StylerSyntaxsystem exactly as trained above,
tive by our Strict rule (i.e. English name/country). except we tuned its hyperparameters on the new de-
Papers with the lowe$ativel-scores receive many velopment data. The system performed quite well
fewer citations, but they soon level off (Figure 3(a))on this set, reaching 68% F1 over a baseline of only
Many junior researchers at English universities ar@7%. Moreover, the system also reached 90% accu-
non-native speakers; early-career non-natives migtacy, matching the level of human agreement.
receive fewer citations than well-known peers. The
correlation between citations andenuescores is )
even stronger (Figure 3(b)); the top-ranked Work8 Conclusion
shop papers receive five times as many citations
as the lowest ones, and are cited better than \ie have proposed, developed and successfully eval-
good portion of ACL papers. These figures suguated significant new tasks and methods in the sty-
gest that citation-predictors can get useful informalometric analysis of scientific articles, including the
tion beyond typicaBow features (Yogatama et al., novel resolution of publication venue based on pa-
2011). Although we focused on a past era, styligeer style, and novel syntactic features based on tree
tic/syntactic features should also be more robust gubstitution grammar fragments. In all cases, our
the evolution of scientific topics; we plan to next tessyntactic and stylistic features significantly improve
whether we can bettdorecastfuture citations. It over abag-of-words baseline, achieving 10% to 25%
would also be interesting to see whether these trengative error reduction in all three major tasks. We

transfer to other academic disciplines. have included a detailed and insightful analysis of
_ _ discriminative stylometric features, and we showed
7.5 Further Experiments onNativel a strong correlation between our predictions and a

For Nativel, we also created a special test corpus dfaper’s number of citations. We observed evidence
273 papers written by first-time ACL authors (2008for L1-interference in non-native writing, for dif-
2009 era). This set closely aligns with the system’ferences in topic between males and females, and
potential use as a tool to help new authors compoger distinctive language usage which can success-
papers. Two (native-speaking) annotators manualfylly identify papers published in top-tier confer-
annotated each paper for whether it was primarilgnces versus wokrshop proceedings. We believe that
written by a native or non-native speaker (considthis work can stimulate new research at the intersec-
ering both content and author names/affiliations)ion of computational linguistics and bibliometrics.
The annotators agreed on 90% of decisions, with an
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