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Abstract

One of the reasons nonparametric Bayesian
inference is attracting attention in computa-
tional linguistics is because it provides a prin-
cipled way of learning the units of generaliza-
tion together with their probabilities. Adaptor
grammars are a framework for defining a va-
riety of hierarchical nonparametric Bayesian
models. This paper investigates some of
the choices that arise in formulating adap-
tor grammars and associated inference proce-
dures, and shows that they can have a dra-
matic impact on performance in an unsuper-
vised word segmentation task. With appro-
priate adaptor grammars and inference proce-
dures we achieve an 87% word token f-score
on the standard Brent version of the Bernstein-
Ratner corpus, which is an error reduction of
over 35% over the best previously reported re-
sults for this corpus.

1 Introduction

Most machine learning algorithms used in computa-
tional linguistics areparametric, i.e., they learn a nu-
merical weight (e.g., a probability) associated with
each feature, where the set of features is fixed be-
fore learning begins. Such procedures can be used
to learn features or structural units by embedding
them in a “propose-and-prune” algorithm: a feature
proposal component proposes potentially useful fea-
tures (e.g., combinations of the currently most useful
features), which are then fed to a parametric learner
that estimates their weights. After estimating fea-
ture weights and pruning “useless” low-weight fea-
tures, the cycle repeats. While such algorithms can
achieve impressive results (Stolcke and Omohundro,

1994), their effectiveness depends on how well the
feature proposal step relates to the overall learning
objective, and it can take considerable insight and
experimentation to devise good feature proposals.

One of the main reasons for the recent interest in
nonparametric Bayesian inference is that it offers a
systematic framework for structural inference, i.e.,
inferring the features relevant to a particular prob-
lem as well as their weights. (Here “nonparamet-
ric” means that the models do not have a fixed set of
parameters; our nonparametric models do have pa-
rameters, but the particular parameters in a model
are learned along with their values). Dirichlet Pro-
cesses and their associated predictive distributions,
Chinese Restaurant Processes, are one kind of non-
parametric Bayesian model that has received consid-
erable attention recently, in part because they can be
composed in hierarchical fashion to form Hierarchi-
cal Dirichlet Processes (HDP) (Teh et al., 2006).

Lexical acquisition is an ideal test-bed for explor-
ing methods for inferring structure, where the fea-
tures learned are the words of the language. (Even
the most hard-core nativists agree that the words of a
language must be learned). We use the unsupervised
word segmentation problem as a test case for eval-
uating structural inference in this paper. Nonpara-
metric Bayesian methods produce state-of-the-art
performance on this task (Goldwater et al., 2006a;
Goldwater et al., 2007; Johnson, 2008).

In a computational linguistics setting it is natu-
ral to try to align the HDP hierarchy with the hi-
erarchy defined by a grammar. Adaptor grammars,
which are one way of doing this, make it easy to ex-
plore a wide variety of HDP grammar-based mod-
els. Given an appropriate adaptor grammar, the fea-
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tures learned by adaptor grammars can correspond
to linguistic units such as words, syllables and col-
locations. Different adaptor grammars encode dif-
ferent assumptions about the structure of these units
and how they relate to each other. A generic adaptor
grammar inference program infers these units from
training data, making it easy to investigate how these
assumptions affect learning (Johnson, 2008).1

However, there are a number of choices in the de-
sign of adaptor grammars and the associated infer-
ence procedure. While this paper studies the im-
pact of these on the word segmentation task, these
choices arise in other nonparametric Bayesian infer-
ence problems as well, so our results should be use-
ful more generally. The rest of this paper is orga-
nized as follows. The next section reviews adaptor
grammars and presents three different adaptor gram-
mars for word segmentation that serve as running
examples in this paper. Adaptor grammars contain
a large number of adjustable parameters, and Sec-
tion 3 discusses how these can be estimated using
Bayesian techniques. Section 4 examines several
implementation options within the adaptor grammar
inference algorithm and shows that they can make
a significant impact on performance. Cumulatively
these changes make a significant difference in word
segmentation accuracy: our final adaptor grammar
performs unsupervised word segmentation with an
87% token f-score on the standard Brent version
of the Bernstein-Ratner corpus (Bernstein-Ratner,
1987; Brent and Cartwright, 1996), which is an er-
ror reduction of over 35% compared to the best pre-
viously reported results on this corpus.

2 Adaptor grammars

This section informally introduces adaptor gram-
mars using unsupervised word segmentation as a
motivating application; see Johnson et al. (2007b)
for a formal definition of adaptor grammars.

Consider the problem of learning language from
continuous speech: segmenting each utterance into
words is a nontrivial problem that language learn-
ers must solve. Elman (1990) introduced an ideal-
ized version of this task, and Brent and Cartwright
(1996) presented a version of it where the data
consists of unsegmented phonemic representations
of the sentences in the Bernstein-Ratner corpus of

1The adaptor grammar inference program is available for
download at http://www.cog.brown.edu/˜mj/Software.htm.

child-directed speech (Bernstein-Ratner, 1987). Be-
cause these phonemic representations are obtained
by looking up orthographic forms in a pronounc-
ing dictionary and appending the results, identifying
the word tokens is equivalent to finding the locations
of the word boundaries. For example, the phoneme
string corresponding to “you want to see the book”
(with its correct segmentation indicated) is as fol-
lows:

y △u Nw △a △n △t Nt △u Ns △i ND △6 Nb △U △k

We can represent any possible segmentation of any
possible sentence as a tree generated by the follow-
ing unigram grammar.

Sentence → Word+

Word → Phoneme+

The nonterminalPhoneme expands to each pos-
sible phoneme; the underlining, which identifies
“adapted nonterminals”, will be explained below. In
this paper “+” abbreviates right-recursion through a
dummy nonterminal, i.e., the unigram grammar ac-
tually is:

Sentence → Word
Sentence → Word Sentence
Word → Phonemes
Phonemes → Phoneme
Phonemes → Phoneme Phonemes

A PCFG with these productions can represent all
possible segmentations of anySentence into a se-
quence ofWords. But because it assumes that the
probability of a word is determined purely by mul-
tiplying together the probability of its individual
phonemes, it has no way to encode the fact that cer-
tain strings of phonemes (the words of the language)
have much higher probabilities than other strings
containing the same phonemes. In order to do this,
a PCFG would need productions like the following
one, which encodes the fact that “want” is aWord.

Word → w a n t

Adaptor grammars can be viewed as a way of for-
malizing this idea. Adaptor grammars learn the
probabilities of entire subtrees, much as in tree sub-
stitution grammar (Joshi, 2003) and DOP (Bod,
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1998). (For computational efficiency reasons adap-
tor grammars require these subtrees to expand to ter-
minals). The set of possible adapted tree fragments
is the set of all subtrees generated by the CFG whose
root label is a member of the set ofadapted non-
terminals A (adapted nonterminals are indicated by
underlining in this paper). For example, in the uni-
gram adaptor grammarA = {Word}, which means
that the adaptor grammar inference procedure learns
the probability of each possibleWord subtree. Thus
adaptor grammars are simple models of structure
learning in which adapted subtrees are the units of
generalization.

One might try to reduce adaptor grammar infer-
ence to PCFG parameter estimation by introducing
a context-free rule for each possible adapted subtree,
but such an attempt would fail because the number
of such adapted subtrees, and hence the number of
corresponding rules, is unbounded. However non-
parametric Bayesian inference techniques permit us
to sample from this infinite set of adapted subtrees,
and only require us to instantiate the finite number
of them needed to analyse the finite training data.

An adaptor grammar is a 7-tuple
(N, W, R, S, θ, A,C) where (N, W, R, S, θ) is
a PCFG with nonterminalsN , terminalsW , rules
R, start symbolS ∈ N and rule probabilitiesθ,
whereθr is the probability of ruler ∈ R, A ⊆ N is
the set ofadapted nonterminals andC is a vector
of adaptors indexed by elements ofA, soCX is the
adaptor for adapted nonterminalX ∈ A.

Informally, an adaptorCX nondeterministically
maps a stream of trees from abase distribution HX

whose support isTX (the set of subtrees whose root
node isX ∈ N generated by the grammar’s rules)
into another stream of trees whose support is also
TX . In adaptor grammars the base distributionsHX

are determined by the PCFG rules expandingX and
the other adapted distributions, as explained in John-
son et al. (2007b). When called upon to generate an-
other sample tree, the adaptor either generates and
returns a fresh tree fromHX or regenerates a tree
it has previously emitted, so in general the adapted
distribution differs from the base distribution.

This paper uses adaptors based on Chinese
Restaurant Processes (CRPs) or Pitman-Yor Pro-
cesses (PYPs) (Pitman, 1995; Pitman and Yor, 1997;
Ishwaran and James, 2003). CRPs and PYPs non-
deterministically generate infinite sequences of nat-

ural numbersz1, z2, . . ., wherez1 = 1 and each
zn+1 ≤ m + 1 wherem = max(z1, . . . , zn). In the
“Chinese Restaurant” metaphor samples produced
by the adaptor are viewed as “customers” andzn

is the index of the “table” that thenth customer is
seated at. In adaptor grammars each table in the
adaptorCX is labeled with a tree sampled from the
base distributionHX that is shared by all customers
at that table; thus thenth sample tree from the adap-
tor CX is theznth sample fromHX .

CRPs and PYPs differ in exactly how the
sequence{zk} is generated. Supposez =
(z1, . . . , zn) have already been generated andm =
max(z). Then a CRP generates the next table index
zn+1 according to the following distribution:

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m
α if k = m + 1

wherenk(z) is the number of times tablek appears
in z andα > 0 is an adjustable parameter that deter-
mines how often a new table is chosen. This means
that if CX is a CRP adaptor then the next treetn+1

it generates is the same as a previously generated
tree t′ with probability proportional to the number
of timesCX has generatedt′ before, and is a “fresh”
tree t sampled fromHX with probability propor-
tional toαXHX(t). This leads to a powerful “rich-
get-richer” effect in which popular trees are gener-
ated with increasingly high probabilities.

Pitman-Yor Processes can control the strength of
this effect somewhat by moving mass from existing
tables to the base distribution. The PYP predictive
distribution is:

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m
ma + b if k = m + 1

wherea ∈ [0, 1] andb > 0 are adjustable parame-
ters. It’s easy to see that the CRP is a special case of
the PRP wherea = 0 andb = α.

Each adaptor in an adaptor grammar can be
viewed as estimating the probability of each adapted
subtreet; this probability can differ substantially
from t’s probabilityHX(t) under the base distribu-
tion. BecauseWords are adapted in the unigram
adaptor grammar it effectively estimates the proba-
bility of eachWord tree separately; the sampling es-
timators described in section 4 only instantiate those
Words actually used in the analysis ofSentences in
the corpus. While theWord adaptor will generally
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prefer to reuseWords that have been used elsewhere
in the corpus, it is always possible to generate a fresh
Word using the CFG rules expandingWord into a
string ofPhonemes.

We assume for now that all CFG rulesRX ex-
panding the nonterminalX ∈ N have the same
probability (although we will explore estimatingθ
below), so the base distributionHWord is a “mon-
keys banging on typewriters” model. That means the
unigram adaptor grammar implements the Goldwa-
ter et al. (2006a) unigram word segmentation model,
and in fact it produces segmentations of similar ac-
curacies, and exhibits the same characteristic under-
segmentation errors. As Goldwater et al. point out,
becauseWords are the only units of generalization
available to a unigram model it tends to misanal-
yse collocations as words, resulting in a marked ten-
dancy to undersegment.

Goldwater et al. demonstrate that modelling bi-
gram dependencies mitigates this undersegmenta-
tion. While adaptor grammars cannot express the
Goldwater et al. bigram model, they can get much
the same effect by directly modelling collocations
(Johnson, 2008). Acollocation adaptor grammar
generates aSentence as a sequence ofCollocations,
each of which expands to a sequence ofWords.

Sentence → Colloc+

Colloc → Word+

Word → Phoneme+

BecauseColloc is adapted, the collocation adap-
tor grammar learnsCollocations as well asWords.
(Presumably these approximate syntactic, semantic
and pragmatic interword dependencies). Johnson
reported that the collocation adaptor grammar seg-
ments as well as the Goldwater et al. bigram model,
which we confirm here.

Recently other researchers have emphasised the
utility of phonotactic constraints (i.e., modeling
the allowable phoneme sequences at word onsets
and endings) for word segmentation (Blanchard and
Heinz, 2008; Fleck, 2008). Johnson (2008) points
out that adaptor grammars that model words as se-
quences of syllables can learn and exploit these con-
straints, significantly improving segmentation accu-
racy. Here we present an adaptor grammar that mod-
els collocations together with these phonotactic con-
straints. This grammar is quite complex, permitting
us to study the effects of the various model and im-

plementation choices described below on a complex
hierarchical nonparametric Bayesian model.

The collocation-syllable adaptor grammar gen-
erates aSentence in terms of three levels of
Collocations (enabling it to capture a wider range
of interword dependencies), and generatesWords as
sequences of 1 to 4Syllables. Syllables are subcat-
egorized as to whether they are initial (I), final (F) or
both (IF).

Sentence → Colloc3+

Colloc3 → Colloc2+

Colloc2 → Colloc1+

Colloc1 → Word+

Word → SyllableIF
Word → SyllableI (Syllable) (Syllable) SyllableF
Syllable → Onset Rhyme
Onset → Consonant+

Rhyme → Nucleus Coda
Nucleus → Vowel+

Coda → Consonant+

SyllableIF → OnsetI RhymeF
OnsetI → Consonant+

RhymeF → Nucleus CodaF
CodaF → Consonant+

SyllableI → OnsetI Rhyme
SyllableF → Onset RhymeF

HereConsonant andVowel expand to all possible
consonants and vowels respectively, and the paren-
theses in the expansion ofWord indicate optional-
ity. BecauseOnsets andCodas are adapted, the
collocation-syllable adaptor grammar learns the pos-
sible consonant sequences that begin and end syl-
lables. Moreover, becauseOnsets andCodas are
subcategorized based on whether they are word-
peripheral, the adaptor grammar learns which con-
sonant clusters typically appear at word boundaries,
even though the input contains no explicit word
boundary information (apart from what it can glean
from the sentence boundaries).

3 Bayesian estimation of adaptor
grammar parameters

Adaptor grammars as defined in section 2 have a
large number of free parameters that have to be
chosen by the grammar designer; a rule probabil-
ity θr for each PCFG ruler ∈ R and either one or
two hyperparameters for each adapted nonterminal
X ∈ A, depending on whether Chinese Restaurant
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or Pitman-Yor Processes are used as adaptors. It’s
difficult to have intuitions about the appropriate set-
tings for the latter parameters, and finding the opti-
mal values for these parameters by some kind of ex-
haustive search is usually computationally impracti-
cal. Previous work has adopted an expedient such as
parameter tying. For example, Johnson (2008) set
θ by requiring all productions expanding the same
nonterminal to have the same probability, and used
Chinese Restaurant Process adaptors with tied pa-
rametersαX , which was set using a grid search.

We now describe two methods of dealing with the
large number of parameters in these models that are
both more principled and more practical than the ap-
proaches described above. First, we can integrate
outθ, and second, we can infer values for the adap-
tor hyperparameters using sampling. These meth-
ods (the latter in particular) make it practical to use
Pitman-Yor Process adaptors in complex grammars
such as the collocation-syllable adaptor grammar,
where it is impractical to try to find optimal parame-
ter values by grid search. As we will show, they also
improve segmentation accuracy, sometimes dramat-
ically.

3.1 Integrating out θ

Johnson et al. (2007a) describe Gibbs samplers for
Bayesian inference of PCFG rule probabilitiesθ,
and these techniques can be used directly with adap-
tor grammars as well. Just as in that paper, we
place Dirichlet priors onθ: hereθX is the subvector
of θ corresponding to rules expanding nonterminal
X ∈ N , andβX is a corresponding vector of posi-
tive real numbers specifying the hyperparameters of
the corresponding Dirichlet distributions:

P(θ | β) =
∏

X∈N

Dir(θX | βX)

Because the Dirichlet distribution is conjugate to the
multinomial distribution, it is possible to integrate
out the rule probabilitiesθ, producing the “collapsed
sampler” described in Johnson et al. (2007a).

In our experiments we chose an uniform prior
βr = 1 for all rules r ∈ R. As Table 1 shows,
integrating outθ only has a major effect on re-
sults when the adaptor hyperparameters themselves
are not sampled, and even then it did not have
a large effect on the collocation-syllable adaptor
grammar. This is not too surprising: because the

Onset, Nucleus and Coda adaptors in this gram-
mar learn the probabilities of these building blocks
of words, the phoneme probabilities (which is most
of whatθ encodes) play less important a role.

3.2 Slice sampling adaptor hyperparameters

As far as we know, there are no conjugate priors for
the adaptor hyperparametersaX or bX (which cor-
responds toαX in a Chinese Restaurant Process),
so it is not possible to integrate them out as we did
with the rule probabilitiesθ. However, it is possible
to perform Bayesian inference by putting a prior on
them and sampling their values.

Because we have no strong intuitions about the
values of these parameters we chose uninformative
priors. We chose a uniformBeta(1, 1) prior onaX ,
and a “vague”Gamma(10, 0.1) prior on bX = αX

(MacKay, 2003). (We experimented with other pa-
rameters in the Gamma prior, but found no signifi-
cant difference in performance).

After each Gibbs sweep through the parse treest
we resampled each of the adaptor parameters from
the posterior distribution of the parameter using a
slice sampler 10 times. For example, we resample
eachbX from:

P(bX | t) ∝ P(t | bX) Gamma(bX | 10, 0.1)

HereP(t | bX) is the likelihood of the current se-
quence of sample parse trees (we only need the fac-
tors that depend onbX ) andGamma(bX | 10, 0.1)
is the prior. The same formula is used for sampling
aX , except that the prior is now a flatBeta(1, 1) dis-
tribution.

In general we cannot even compute the normaliz-
ing constants for these posterior distributions, so we
chose a sampler that does not require this. We use a
slice sampler here because it does not require a pro-
posal distribution (Neal, 2003). (We initially tried
a Metropolis-Hastings sampler but were unable to
find a proposal distribution that had reasonable ac-
ceptance ratios for all of our adaptor grammars).

As Table 1 makes clear, sampling the adaptor pa-
rameters makes a significant difference, especially
on the collocation-syllable adaptor grammar. This
is not surprising, as the adaptors in that grammar
play many different roles and there is no reason to
to expect the optimal values of their parameters to
be similar.
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• • • • • 0.55 0.74 0.85 0.56 0.76 0.87
• • • • 0.55 0.72 0.84 0.56 0.74 0.84
• • • 0.55 0.72 0.78 0.57 0.75 0.78
• • 0.54 0.66 0.75 0.56 0.69 0.76
• • • • 0.54 0.70 0.87 0.56 0.74 0.88
• • • • 0.55 0.42 0.54 0.57 0.51 0.55

• • • • 0.74 0.83 0.88 0.81 0.86 0.89
• • • 0.75 0.43 0.74 0.80 0.56 0.82

• • 0.71 0.41 0.76 0.77 0.49 0.82
• • • 0.71 0.73 0.87 0.77 0.75 0.88

Table 1: Word segmentation accuracy measured by word token f-scores on Brent’s version of the Bernstein-Ratner
corpus as a function of adaptor grammar, adaptor and estimation procedure. Pitman-Yor Process adaptors were used
whenaX was sampled, otherwise Chinese Restaurant Process adaptors were used. In runs whereθ was not integrated
out it was set uniformly, and allαX = bX were set to 100 they were not sampled.

4 Inference for adaptor grammars

Johnson et al. (2007b) describe the basic adaptor
grammar inference procedure that we use here. That
paper leaves unspecified a number of implemen-
tation details, which we show can make a crucial
difference to segmentation accuracy. The adaptor
grammar algorithm is basically a Gibbs sampler of
the kind widely used for nonparametric Bayesian in-
ference (Blei et al., 2004; Goldwater et al., 2006b;
Goldwater et al., 2006a), so it seems reasonable to
expect that at least some of the details discussed be-
low will be relevant to other applications as well.

The inference algorithm maintains a vectort =
(t1, . . . , tn) of sample parses, whereti ∈ TS is a
parse for theith sentencewi. It repeatedly chooses a
sentencewi at random and resamples the parse tree
ti for wi from P(ti | t−i, wi), i.e., conditioned onwi

and the parsest−i of all sentencesexcept wi.

4.1 Maximum marginal decoding

Sampling algorithms like ours produce a stream of
samples from the posterior distribution over parses
of the training data. It is standard to take the out-
put of the algorithm to be the last sample produced,

and evaluate those parses. In some other applica-
tions of nonparametric Bayesian inference involv-
ing latent structure (e.g., clustering) it is difficult to
usefully exploit multiple samples, but that is not the
case here.

In maximum marginal decoding we map each
sample parse treet onto its corresponding word seg-
mentations, marginalizing out irrelevant detail in
t. (For example, the collocation-syllable adaptor
grammar contains a syllabification and collocational
structure that is irrelevant for word segmentation).
Given a set of sample parse trees for a sentence we
compute the set of corresponding word segmenta-
tions, and return the one that occurs most frequently
(this is a sampling approximation to the maximum
probability marginal structure).

For each setting in the experiments described in
Table 1 we ran 8 samplers for 2,000 iterations (i.e.,
passes through the training data), and kept the sam-
ple parse trees from every 10th iteration after itera-
tion 1000, resulting in 800 sample parses for every
sentence. (An examination of the posterior proba-
bilities suggests that all of the samplers using batch
initialization and table label resampling had “burnt
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batch initialization, table label resampling
incremental initialization, table label resampling

batch initialization, no table label resampling
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Figure 1: Negative log posterior probability (lower is bet-
ter) as a function of iteration for 24 runs of the collo-
cation adaptor grammar samplers with Pitman-Yor adap-
tors. The upper 8 runs use batch initialization but no ta-
ble label resampling, the middle 8 runs use incremental
initialization and table label resampling, while the lower
8 runs use batch initialization and table label resampling.

in” by iteration 1000). We evaluated the word to-
ken f-score of the most frequent marginal word seg-
mentation, and compared that to average of the word
token f-score for the 800 samples, which is also re-
ported in Table 1. For each grammar and setting we
tried, the maximum marginal segmentation was bet-
ter than the sample average, sometimes by a large
margin. Given its simplicity, this suggests that max-
imum marginal decoding is probably worth trying
when applicable.

4.2 Batch initialization

The Gibbs sampling algorithm is initialized with a
set of sample parsest for each sentence in the train-
ing data. While the fundamental theorem of Markov
Chain Monte Carlo guarantees that eventually sam-
ples will converge to the posterior distribution, it
says nothing about how long the “burn in” phase
might last (Robert and Casella, 2004). In practice
initialization can make a huge difference to the per-
formance of Gibbs samplers (just as it can with other
unsupervised estimation procedures such as Expec-
tation Maximization).

There are many different ways in which we could
generate the initial treest; we only study two of the
obvious methods here.Batch initialization assigns
every sentence a random parse tree in parallel. In
more detail, the initial parse treeti for sentencewi

is sampled fromP(t | wi, G
′), whereG′ is the PCFG

obtained from the adaptor grammar by ignoring its
last two componentsA andC (i.e., the adapted non-
terminals and their adaptors), and seated at a new
table. This means that in batch initialization each
initial parse tree is randomly generated without any
adaptation at all.

Incremental initialization assigns the initial parse
treesti to sentenceswi in order, updating the adaptor
grammar as it goes. That is,ti is sampled fromP(t |
wi, t1, . . . , ti−1). This is easy to do in the context
of Gibbs sampling, since this distribution is a minor
variant of the distributionP(ti | t−i, wi) used during
Gibbs sampling itself.

Incremental initialization is greedier than batch
initialization, and produces initial sample trees with
much higher probability. As Table 1 shows, across
all grammars and conditions after 2,000 iterations
incremental initialization produces samples with
much better word segmentation token f-score than
does batch initialization, with the largest improve-
ment on the unigram adaptor grammar.

However, incremental initialization results in
sample parses with lower posterior probability for
the unigram and collocation adaptor grammars (but
not for the collocation-syllable adaptor grammar).
Figure 1 plots the posterior probabilities of the sam-
ple treest at each iteration for the collocation adap-
tor grammar, showing that even after 2,000 itera-
tions incremental initialization results in trees that
are much less likely than those produced by batch
initialization. It seems that with incremental initial-
ization the Gibbs sampler gets stuck in a local op-
timum which it is extremely unlikely to move away
from.

It is interesting that incremental initialization re-
sults in more accurate word segmentation, even
though the trees it produces have lower posterior
probability. This seems to be because the most prob-
able analyses produced by the unigram and, to a
lesser extent, the collocation adaptor grammars tend
to undersegment. Incremental initialization greed-
ily searches for common substrings, and because
such substrings are more likely to be short rather
than long, it tends to produce analyses with shorter
words than batch initialization does. Goldwater et
al. (2006a) show that Brent’s incremental segmenta-
tion algorithm (Brent, 1999) has a similar property.

We favor batch initialization because we are in-
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terested in understanding the properties of our mod-
els (expressed here as adaptor grammars), and batch
initialization does a better job of finding the most
probable analyses under these models. However, it
might be possible to justify incremental initializa-
tion as (say) cognitively more plausible.

4.3 Table label resampling

Unlike the previous two implementation choices
which apply to a broad range of algorithms, table
label resampling is a specialized kind of Gibbs step
for adaptor grammars and similar hierarchical mod-
els that is designed to improve mobility. The adap-
tor grammar algorithm described in Johnson et al.
(2007b) repeatedly resamples parses for thesen-
tences of the training data. However, the adaptor
grammar sampler itself maintains of a hierarchy of
Chinese Restaurant Processes or Pitman-Yor Pro-
cesses, one per adapted nonterminalX ∈ A, that
cache subtrees fromTX . In general each of these
subtrees will occur many times in the parses for the
training data sentences. Table label resampling re-
samples the trees in these adaptors (i.e., the table
labels, to use the restaurant metaphor), potentially
changing the analysis of many sentences at once.
For example, eachCollocation in the collocation
adaptor grammar can occur in manySentences, and
eachWord can occur in manyCollocations. Resam-
pling a singleCollocation can change the way it is
analysed intoWords, thus changing the analysis of
all of theSentences containing thatCollocation.

Table label resampling is an additional resam-
pling step performed after each Gibbs sweep
through the training data in which we resample the
parse trees labeling the tables in the adaptor for each
X ∈ A. Specifically, if the adaptorCX for X ∈ A
currently containsm tables labeled with the trees
t = (t1, . . . , tm) then table label resampling re-
places eachtj , j ∈ 1, . . . , m in turn with a tree sam-
pled fromP(t | t−j , wj), wherewj is the terminal
yield of tj . (Within each adaptor we actually resam-
ple all of the treest in a randomly chosen order).

Table label resampling is a kind of Gibbs sweep,
but at a higher level in the Bayesian hierarchy than
the standard Gibbs sweep. It’s easy to show that ta-
ble label resampling preserves detailed balance for
the adaptor grammars presented in this paper, so in-
terposing table label resampling steps with the stan-
dard Gibbs steps also preserves detailed balance.

We expect table label resampling to have the
greatest impact on models with a rich hierarchi-
cal structure, and the experimental results in Ta-
ble 1 confirm this. The unigram adaptor grammar
does not involve nested adapted nonterminals, so
we would not expect table label resampling to have
any effect on its analyses. On the other hand, the
collocation-syllable adaptor grammar involves a rich
hierarchical structure, and in fact without table la-
bel resampling our sampler did not burn in or mix
within 2,000 iterations. As Figure 1 shows, table
label resampling produces parses with higher pos-
terior probability, and Table 1 shows that table la-
bel resampling makes a significant difference in the
word segmentation f-score of the collocation and
collocation-syllable adaptor grammars.

5 Conclusion

This paper has examined adaptor grammar infer-
ence procedures and their effect on the word seg-
mentation problem. Some of the techniques inves-
tigated here, such as batch versus incremental ini-
tialization, are quite general and may be applica-
ble to a wide range of other algorithms, but some
of the other techniques, such as table label resam-
pling, are specialized to nonparametric hierarchi-
cal Bayesian inference. We’ve shown that sampling
adaptor hyperparameters is feasible, and demon-
strated that this improves word segmentation accu-
racy of the collocation-syllable adaptor grammar by
almost 10%, corresponding to an error reduction of
over 35% compared to the best results presented in
Johnson (2008). We also described and investigated
table label resampling, which dramatically improves
the effectiveness of Gibbs sampling estimators for
complex adaptor grammars, and makes it possible
to work with adaptor grammars with complex hier-
archical structure.
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Scḧolkopf, editors,Advances in Neural Information
Processing Systems 16. MIT Press, Cambridge, MA.

Rens Bod. 1998.Beyond grammar: an experience-based
theory of language. CSLI Publications, Stanford, Cal-
ifornia.

M. Brent and T. Cartwright. 1996. Distributional reg-
ularity and phonotactic constraints are useful for seg-
mentation.Cognition, 61:93–125.

M. Brent. 1999. An efficient, probabilistically sound
algorithm for segmentation and word discovery.Ma-
chine Learning, 34:71–105.

Jeffrey Elman. 1990. Finding structure in time.Cogni-
tive Science, 14:197–211.

Margaret M. Fleck. 2008. Lexicalized phonotactic
word segmentation. InProceedings of ACL-08: HLT,
pages 130–138, Columbus, Ohio, June. Association
for Computational Linguistics.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2006a. Contextual dependencies in unsupervised
word segmentation. InProceedings of the 21st In-
ternational Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Com-
putational Linguistics, pages 673–680, Sydney, Aus-
tralia. Association for Computational Linguistics.

Sharon Goldwater, Tom Griffiths, and Mark Johnson.
2006b. Interpolating between types and tokens
by estimating power-law generators. In Y. Weiss,
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