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Abstract 1994), their effectiveness depends on how well the
feature proposal step relates to the overall learning

One of the reasons nonparametric Bayesian  piactive, and it can take considerable insight and

inference is attracting attention in computa-
tional linguistics is because it provides a prin-
cipled way of learning the units of generaliza-
tion together with their probabilities. Adaptor
grammars are a framework for defining a va-
riety of hierarchical nonparametric Bayesian
models. This paper investigates some of
the choices that arise in formulating adap-
tor grammars and associated inference proce-
dures, and shows that they can have a dra-
matic impact on performance in an unsuper-
vised word segmentation task. With appro-
priate adaptor grammars and inference proce-
dures we achieve an 87% word token f-score

experimentation to devise good feature proposals.
One of the main reasons for the recent interest in
nonparametric Bayesian inference is that it offers a
systematic framework for structural inference, i.e.,
inferring the features relevant to a particular prob-
lem as well as their weights. (Here “nonparamet-
ric” means that the models do not have a fixed set of
parameters; our nonparametric models do have pa-
rameters, but the particular parameters in a model
are learned along with their values). Dirichlet Pro-
cesses and their associated predictive distributions,
Chinese Restaurant Processes, are one kind of non-

on the standard Brent version of the Bernstein-
Ratner corpus, which is an error reduction of
over 35% over the best previously reported re-
sults for this corpus.

parametric Bayesian model that has received consid-
erable attention recently, in part because they can be
composed in hierarchical fashion to form Hierarchi-
cal Dirichlet Processes (HDP) (Teh et al., 2006).
Lexical acquisition is an ideal test-bed for explor-
ing methods for inferring structure, where the fea-
Most machine learning algorithms used in computaures learned are the words of the language. (Even
tional linguistics argarametric, i.e., they learn anu- the most hard-core nativists agree that the words of a
merical weight (e.g., a probability) associated witHanguage must be learned). We use the unsupervised
each feature, where the set of features is fixed b#ord segmentation problem as a test case for eval-
fore learning begins. Such procedures can be us&@ting structural inference in this paper. Nonpara-
to learn features or structural units by embeddingetric Bayesian methods produce state-of-the-art
them in a “propose_and_prune" a|gorithm: a featur@erformance on this task (Goldwater et al., 2006a;
proposal component proposes potentially useful fe43oldwater et al., 2007; Johnson, 2008).
tures (e.g., combinations of the currently most useful In a computational linguistics setting it is natu-
features), which are then fed to a parametric learneal to try to align the HDP hierarchy with the hi-
that estimates their weights. After estimating feaerarchy defined by a grammar. Adaptor grammars,
ture weights and pruning “useless” low-weight feawhich are one way of doing this, make it easy to ex-
tures, the cycle repeats. While such algorithms cgplore a wide variety of HDP grammar-based mod-
achieve impressive results (Stolcke and Omohundrels. Given an appropriate adaptor grammar, the fea-
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tures learned by adaptor grammars can correspoetild-directed speech (Bernstein-Ratner, 1987). Be-

to linguistic units such as words, syllables and coleause these phonemic representations are obtained

locations. Different adaptor grammars encode difby looking up orthographic forms in a pronounc-

ferent assumptions about the structure of these unitsy dictionary and appending the results, identifying

and how they relate to each other. A generic adaptdine word tokens is equivalent to finding the locations

grammar inference program infers these units frorof the word boundaries. For example, the phoneme

training data, making it easy to investigate how thesstring corresponding to “you want to see the book”

assumptions affect learning (Johnson, 2008). (with its correct segmentation indicated) is as fol-
However, there are a number of choices in the ddews:

sign of adaptor grammars and the associated infer-

ence procedure. While this paper studies the im- y u.,w a n t,t u,s i,D 6,b U k

pact of these on the word segmentation task, these

choices arise in other nonparametric Bayesian infel/e can represent any possible segmentation of any

ence problems as well, so our results should be uspossible sentence as a tree generated by the follow-

ful more generally. The rest of this paper is orgaing unigram grammar.

nized as follows. The next section reviews adaptor

grammars and presents three different adaptor gram- Sentence — Word "

mars for word segmentation that serve as running Word — Phoneme™

examples in this paper. Adaptor grammars contain _

a large number of adjustable parameters, and SetP€ nonterminalPhoneme expands to each pos-

tion 3 discusses how these can be estimated usifitp!® phoneme; the underlining, which identifies

Bayesian techniques. Section 4 examines severgdapted nonterminals”, will be explained below. In

implementation options within the adaptor grammaflis paper “+” abbreviates right-recursion through a

inference algorithm and shows that they can makgUmmy nonterminal, i.e., the unigram grammar ac-

a significant impact on performance. Cumulativelyually is:

these changes make a significant difference in word

segmentation accuracy: our final adaptor grammar

performs unsupervised word segmentation with an

87% token f-score on the standard Brent version

of the Bernstein-Ratner corpus (Bernstein-Ratner,

1987; Brent and Cartwright, 1996), which is an er- Phonemes — Phoneme Phonemes

ror reduction of over 35% compared to the best pre- . _
viously reported results on this corpus. A PCFG with these productions can represent all

possible segmentations of aByntence into a se-
2 Adaptor grammars quence ofWords. But because it assumes that the

_ o ) probability of a word is determined purely by mul-
This section informally introduces adaptor gramyiplying together the probability of its individual

mars using unsupervised word segmentation as i onemes, it has no way to encode the fact that cer-
motivating application; see Johnson et al. (2007R}j, strings of phonemes (the words of the language)
for a formal definition of adaptor grammars. have much higher probabilities than other strings
Consider the problem of learning language fromysntaining the same phonemes. In order to do this,
continuous speech: segmenting each utterance i{oCFG would need productions like the following

words is a nontrivial problem that language learngne which encodes the fact that “want” i&\ard.
ers must solve. Elman (1990) introduced an ideal-

ized version of this task, and Brent and Cartwright
(1996) presented a version of it where the data
consists of unsegmented phonemic representatiofgiaptor grammars can be viewed as a way of for-
of the sentences in the Bernstein-Ratner corpus @falizing this idea. Adaptor grammars learn the

1The adaptor grammar inference program is available foProbabilities of entire subtrees, much as in tree sub-
download at http://www.cog.brown.edu/"mj/Software.htm.  stitution grammar (Joshi, 2003) and DOP (Bod,

Sentence — Word
Sentence — Word Sentence
Word — Phonemes
Phonemes — Phoneme

Word - want
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1998). (For computational efficiency reasons adaptral numberszy, z5,..., wherez; = 1 and each
tor grammars require these subtrees to expand to tet; 1 < m + 1 wherem = max(zq,..., z,). In the
minals). The set of possible adapted tree fragment€hinese Restaurant” metaphor samples produced
is the set of all subtrees generated by the CFG whobg the adaptor are viewed as “customers” and
root label is a member of the set aflapted non- is the index of the “table” that theth customer is
terminals A (adapted nonterminals are indicated byseated at. In adaptor grammars each table in the
underlining in this paper). For example, in the uniadaptorCy is labeled with a tree sampled from the
gram adaptor grammat = {Word}, which means base distributior x that is shared by all customers
that the adaptor grammar inference procedure learasthat table; thus theth sample tree from the adap-
the probability of each possibMord subtree. Thus tor C is thez,th sample fromH x .
adaptor grammars are simple models of structure CRPs and PYPs differ in exactly how the
learning in which adapted subtrees are the units slequence{z;} is generated. @ Suppose =
generalization. (#1,...,2n) have already been generated and=

One might try to reduce adaptor grammar infermax(z). Then a CRP generates the next table index
ence to PCFG parameter estimation by introducing.+1 according to the following distribution:

a context-free rule for each possible adapted subtree, N { ne(2) itk <m

but such an attempt would fail because the numbeP (7,1 =k | z) N itk —mt 1

of such adapted subtrees, and hence the number of

corresponding rules, is unbounded. However noRyheren,,(z) is the number of times tableappears

parametric Bayesian inference techniques permit g » anda > 0 is an adjustable parameter that deter-

to sample from this infinite set of adapted subtreesmines how often a new table is chosen. This means

and only require us to instantiate the finite numbejhat if O is a CRP adaptor then the next tige

of them needed to analyse the finite training data. jt generates is the same as a previously generated
An  adaptor grammar is a 7-tuple treet with probability proportional to the number

(N,W,R,S,6,A,C) where (N,W,R,S,0) is oftimesCx has generatet before, and is a “fresh”

a PCFG with nonterminal$/, terminalsiV, rules tree t sampled fromH x with probability propor-

R, start symbolS € N and rule probabilities), tional toay Hy (t). This leads to a powerful “rich-

whered, is the probability of rule- € R, A C N is  get-richer” effect in which popular trees are gener-

the set ofadapted nonterminals and C' is a vector ated with increasingly high probabilities.

of adaptorsindexed by elements oA, soC is the Pitman-Yor Processes can control the strength of

adaptor for adapted nontermin&l € A. this effect somewhat by moving mass from existing
Informally, an adaptoiC'x nondeterministically tables to the base distribution. The PYP predictive

maps a stream of trees frombase distribution Hy  distribution is:

whose support iy (the set of subtrees whose root . { ne(z) —a ifk<m

node isX € N generated by the grammar’s rules)P(Z,+1 =k | 2) ma b ik —mt 1

into another stream of trees whose support is also
Tx. In adaptor grammars the base distributidhg  wherea € [0,1] andb > 0 are adjustable parame-
are determined by the PCFG rules expandingnd ters. It's easy to see that the CRP is a special case of
the other adapted distributions, as explained in Johflhe PRP where = 0 andb = a.
son etal. (2007b). When called upon to generate an- Each adaptor in an adaptor grammar can be
other sample tree, the adaptor either generates ayidwed as estimating the probability of each adapted
returns a fresh tree fronil x or regenerates a tree subtreet; this probability can differ substantially
it has previously emitted, so in general the adapteflom ¢'s probability Hx (t) under the base distribu-
distribution differs from the base distribution. tion. BecauséWords are adapted in the unigram
This paper uses adaptors based on Chinesgaptor grammar it effectively estimates the proba-
Restaurant Processes (CRPs) or Pitman-Yor Prbility of eachWord tree separately; the sampling es-
cesses (PYPs) (Pitman, 1995; Pitman and Yor, 199fmators described in section 4 only instantiate those
Ishwaran and James, 2003). CRPs and PYPs noWords actually used in the analysis ®ntences in
deterministically generate infinite sequences of nathe corpus. While th&Vord adaptor will generally
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prefer to reus&Vords that have been used elsewherplementation choices described below on a complex
in the corpus, itis always possible to generate a fredtierarchical nonparametric Bayesian model.
Word using the CFG rules expandingord into a The collocation-syllable adaptor grammar gen-
string of Phonemes. erates aSentence in terms of three levels of

We assume for now that all CFG ruldsy ex- Collocations (enabling it to capture a wider range
panding the nonterminak € N have the same of interword dependencies), and generdizsds as
probability (although we will explore estimatingy sequences of 1 to4yllables. Syllables are subcat-
below), so the base distributioAvw,.q iS @ “mon- egorized as to whether they are initial (1), final (F) or
keys banging on typewriters” model. That means thboth (IF).
unigram adaptor grammar implements the Goldwa- +
ter et al. (2006a) unigram word segmentation model,Sentence — Colloc3

: . : . Colloc3 — Colloc2™

and in fact it produces segmentations of similar ac- y
curacies, and exhibits the same characteristic undere2loc2 — Couoil
segmentation errors. As Goldwater et al. point out,Collocl — Word

. . Word — SyllablelF
becauséVords are the only units of generalization
available to a unigram model it tends to misanal-erd — Syllablel (Syllable) (Syllable) Syllablel?

yse collocations as words, resulting in a marked ten>Y1able — Onset Rhyme

+
dancy to undersegment. Onset — Consonant

Goldwater et al. demonstrate that modelling bi- L vme — Nucleus Coda
ucleus — Vowel

gram dependencies mitigates this undersegment% R ¢+

tion. While adaptor grammars cannot express theSOTabl—}F Onsgnanﬂ S

Goldwater et al. bigram model, they can get much>Y 47 €1t 7 2IUSERS (HAVIIE
. . . Onsetl — Consonant

the same effect by directly modelling collocations RhvmeF — Nucleus Codal

(Johnson, 2008). Awllocation adaptor grammar | nge _é e eust Fa—

generates Sentence as a sequence Gollocations, — —ooar — onsonal

. Syllablel — Omnsetl Rhyme
h of which dst Mbfrds.
eacn or wnich expands 10 a sequenc TdsS SyllableF . Onset RhymeF

Sentence — Colloc™
Colloc — Word*
Word — Phoneme™

Here Consonant and Vowel expand to all possible
consonants and vowels respectively, and the paren-
theses in the expansion ®¥ord indicate optional-

BecauseColloc is adapted, the collocation adap-ly: BecauseOnsets andCodas are adapted, the
tor grammar learn€ollocations as well afords. ~ collocation-syllable adaptor grammar learns the pos-
(Presumably these approximate syntactic, semanfiP!e consonant sequences that begin and end syl-
and pragmatic interword dependencies). JohnsdfPles. Moreover, becaud@nsets andCodas are
reported that the collocation adaptor grammar seg4Pcategorized based on whether they are word-
ments as well as the Goldwater et al. bigram modePeriPheral, the adaptor grammar learns which con-
which we confirm here. sonant clusters typically appear at word boundaries,

Recently other researchers have emphasised théen though the input contains no explicit word
utility of phonotactic constraints (i.e., modelingPoundary information (apart from what it can glean
the allowable phoneme sequences at word onsdf€M the sentence boundaries).
and endings) for word segmentation (Blanchard a
Heinz, 2008; Fleck, 2008). Johnson (2008) points
out that adaptor grammars that model words as se-
guences of syllables can learn and exploit these coAdaptor grammars as defined in section 2 have a
straints, significantly improving segmentation accularge number of free parameters that have to be
racy. Here we present an adaptor grammar that modhosen by the grammar designer; a rule probabil-
els collocations together with these phonotactic cority 6, for each PCFG rule € R and either one or
straints. This grammar is quite complex, permittingwo hyperparameters for each adapted nonterminal
us to study the effects of the various model and imX € A, depending on whether Chinese Restaurant

Bayesian estimation of adaptor
grammar parameters
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or Pitman-Yor Processes are used as adaptors. |€mset, Nucleus and Coda adaptors in this gram-
difficult to have intuitions about the appropriate setmar learn the probabilities of these building blocks
tings for the latter parameters, and finding the optief words, the phoneme probabilities (which is most
mal values for these parameters by some kind of exf what@ encodes) play less important a role.
haustive search is usually computationally impracti-

cal. Previous work has adopted an expedient such @2 Slice sampling adaptor hyper parameters

parameter tying. For example, Johnson (2008) s@(s far as we know, there are no conjugate priors for
6 by requiring all productions expandl_r_1g the samepe adaptor hyperparameters or by (which cor-
nor_1term|nal to have the same probablllty,.anc.l usesponds tavy in a Chinese Restaurant Process),
Chinese Restaurant Process adaptors with tied pg; it is not possible to integrate them out as we did
rametersyy, which was set using a grid search. ith the rule probabilitie®. However, it is possible
We now describe two methods of dealing with thgg perform Bayesian inference by putting a prior on
large number of parameters in these models that afigem and sampling their values.
both more principled and more practical than the ap- gacause we have no strong intuitions about the

proaches described above. First, we can integrafg es of these parameters we chose uninformative
out @, and second, we can infer values for the ada| Sriors. We chose a uniformeta(1, 1) prior onax
tor hyperparameters using sampling. These met%—nd a “vague’Gamma(10, 0.1) prior onby = ax

oc_js (the latter in particular) ma_lke it practical to US@MacKay, 2003). (We experimented with other pa-
Pitman-Yor Process adaptors in complex grammags meters in the Gamma prior, but found no signifi-
such as the collocation-syllable adaptor grammaggnt difference in performance).

where itis imprgctical to try to find pptimal parame-  afiar each Gibbs sweep through the parse trees
ter values by grid search. As we will show, they alsQyq resampled each of the adaptor parameters from

!mrlJIrove segmentation accuracy, sometimes dramgfje osterior distribution of the parameter using a
ically. slice sampler 10 times. For example, we resample

3.1 Integrating out 6 eachbx from:

Johnson et al. (2007a) describe Gibbs samplers fo

Bayesian inference of PCFG rule probabilitiés lp(bX 1) o P(t]bx) Gamma(bx | 10,0.1)
and these techniques can be used directly with adalg;]-ereP
tor grammars as well. Just as in that paper, Wﬁuenc
place Dirichlet priors o: herefx is the subvector

of 0 correspondi_ng to rules expgnding nontermir_mq the prior. The same formula is used for sampling
X € N,andBx is a cqrrgspondmg vector of posi- , , except that the prior is now a fl&eta(1, 1) dis-
tive real numbers specifying the hyperparameters ?Fi):)ution

the corresponding Dirichlet distributions:

P@|8) = ] Dir(6x | Bx)

XeN

(t | bx) is the likelihood of the current se-
e of sample parse trees (we only need the fac-
ors that depend oby) andGamma(bx | 10,0.1)

In general we cannot even compute the normaliz-
ing constants for these posterior distributions, so we
chose a sampler that does not require this. We use a
slice sampler here because it does not require a pro-
Because the Dirichlet distribution is conjugate to thgosal distribution (Neal, 2003). (We initially tried
multinomial distribution, it is possible to integratea Metropolis-Hastings sampler but were unable to
out the rule probabilitied, producing the “collapsed find a proposal distribution that had reasonable ac-
sampler” described in Johnson et al. (2007a). ceptance ratios for all of our adaptor grammars).

In our experiments we chose an uniform prior As Table 1 makes clear, sampling the adaptor pa-
6. = 1forall rulesr € R. As Table 1 shows, rameters makes a significant difference, especially
integrating out® only has a major effect on re- on the collocation-syllable adaptor grammar. This
sults when the adaptor hyperparameters themselvissnot surprising, as the adaptors in that grammar
are not sampled, and even then it did not havplay many different roles and there is no reason to
a large effect on the collocation-syllable adaptoto expect the optimal values of their parameters to
grammar. This is not too surprising: because thbe similar.
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~ondition Word token f-scores
% Sample average| Max. Marginal
c
s £ >
58 g 7
g O o < = =
E8 2 5 8¢ 7 | 2
c o = © o ®© 13} o © [8) &)
S5 & E El & 2| £ =8
a © E & & S 8 8 | 5 8 8
e o e e o (055 074 085056 0.76 0.87
e o o o 055 0.72 0.84 0.56 0.74 0.84
e o o 0.55 0.72 0.78 0.57 0.75 0.78
e o 0.54 0.66 0.75 0.56 0.69 0.76
e o e o | 054 070 0.87 056 0.74 0.88
° e o 055 042 054 057 051 0.55
° e o 074 0.83 0.88 0.81 0.86 0.89
e o 075 0.43 0.74 080 0.56 0.82
e ¢ | 071 041 0.76 0.77 049 0.82
° e ¢ | 071 073 0.870.77 0.75 0.88

Table 1: Word segmentation accuracy measured by word tolseonres on Brent's version of the Bernstein-Ratner
corpus as a function of adaptor grammar, adaptor and esimatocedure. Pitman-Yor Process adaptors were used
whenax was sampled, otherwise Chinese Restaurant Process axagt@rused. In runs whefewas not integrated
out it was set uniformly, and all x = bx were set to 100 they were not sampled.

4 Inferencefor adaptor grammars and evaluate those parses. In some other applica-

h | b) d ibe the basic ad tions of nonparametric Bayesian inference involv-
Johnson et al. (2007b) describe the basic a aptfhrg latent structure (e.g., clustering) it is difficult to

grammar inference procedure that we use here. Thales .y exploit multiple samples, but that is not the
paper leaves unspecified a number of |mplemer¥ase here

tation details, which we show can make a crucia . _ _
difference to segmentation accuracy. The adaptor N maximum marginal decoding we map each
grammar algorithm is basically a Gibbs sampler of@mple parse trefeonto its corresponding word seg-
the kind widely used for nonparametric Bayesian inmentations, marginalizing out irrelevant detail in
ference (Blei et al., 2004; Goldwater et al., 20060t (For example, the collocation-syllable adaptor
Goldwater et al., 2006a), so it seems reasonable @ammar contains a syllabification and collocational
expect that at least some of the details discussed pgtucture that is irrelevant for word segmentation).
low will be relevant to other applications as well.  Given a set of sample parse trees for a sentence we

The inference algorithm maintains a vector=  COMpute the set of corresponding word segmenta-
(ti,...,t,) of sample parses, whete € Tg is a t|or_15,_ and retum the one that occurs most frequently
parse for theth sentencey;. It repeatedly chooses a (this is @ sampling approximation to the maximum
sentencew; at random and resamples the parse tref¢f obability marginal structure).

t; for w; fromP(¢; | t_;, w;), i.e., conditioned om; For each setting in the experiments described in
and the parses_; of all sentencesxcept w;. Table 1 we ran 8 samplers for 2,000 iterations (i.e.,

) . ) passes through the training data), and kept the sam-
4.1 Maximum marginal decoding ple parse trees from every 10th iteration after itera-

Sampling algorithms like ours produce a stream dfiion 1000, resulting in 800 sample parses for every
samples from the posterior distribution over parsesentence. (An examination of the posterior proba-
of the training data. It is standard to take the outbilities suggests that all of the samplers using batch
put of the algorithm to be the last sample producednitialization and table label resampling had “burnt
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220000 S _ is sampled fron® (¢ | w;, G'), whereG' is the PCFG
batch initialization, no table label resampling—— . . . .

incremental initialization, table label resampling—— obtained from the adaptor grammar by Ignoring Its
215000 [f batch initialization, table label resampling—— last two componentﬂ andC (i.e., the adapted non-
terminals and their adaptors), and seated at a new
table. This means that in batch initialization each
initial parse tree is randomly generated without any
adaptation at all.

Incremental initialization assigns the initial parse
treest; to sentences; in order, updating the adaptor
grammar as it goes. That is,is sampled fronP (¢ |
wi, t1,...,t;—1). This is easy to do in the context

of Gibbs sampling, since this distribution is a minor
185000 200 1000 1500 2000 Variant of the distributiod(¢; | t_;, w;) used during

Figure 1: Negative log posterior probability (lower is bet-Glbbs sampllng |t.s.eh-‘. L. .
ter) as a function of iteration for 24 runs of the collo- INcremental initialization is greedier than batch

cation adaptor grammar samplers with Pitman-Yor adaljnitialization, and produces initial Sample trees with
tors. The upper 8 runs use batch initialization but no tamuch higher probability. As Table 1 shows, across
ble label resampling, the middle 8 runs use incrementalll grammars and conditions after 2,000 iterations
initialization and table label resampling, while the lowefincremental initialization produces samples with
8 runs use batch initialization and table label resampling, ,ch petter word segmentation token f-score than

does batch initialization, with the largest improve-
in” by iteration 1000). We evaluated the word to-ment on the unigram adaptor grammar.
ken f-score of the most frequent marginal word seg- However, incremental initialization results in
mentation, and compared that to average of the wogmple parses with lower posterior probability for
token f-score for the 800 samples, which is also rethe unigram and collocation adaptor grammars (but
ported in Table 1. For each grammar and setting weot for the collocation-syllable adaptor grammar).
tried, the maximum marginal segmentation was befFigure 1 plots the posterior probabilities of the sam-
ter than the sample average, sometimes by a largée treest at each iteration for the collocation adap-
margin. Given its simplicity, this suggests that maxtor grammar, showing that even after 2,000 itera-
imum marginal decoding is probably worth tryingtionS incremental initialization results in trees that

210000 fi!
205000 i
200000

195000

190000

when applicable. are much less likely than those produced by batch
S initialization. It seems that with incremental initial-
4.2 Batch initialization ization the Gibbs sampler gets stuck in a local op-

The Gibbs sampling algorithm is initialized with atimum which it is extremely unlikely to move away
set of sample parsésor each sentence in the train-from.
ing data. While the fundamental theorem of Markov It is interesting that incremental initialization re-
Chain Monte Carlo guarantees that eventually sansults in more accurate word segmentation, even
ples will converge to the posterior distribution, itthough the trees it produces have lower posterior
says nothing about how long the “burn in” phaseprobability. This seems to be because the most prob-
might last (Robert and Casella, 2004). In practicable analyses produced by the unigram and, to a
initialization can make a huge difference to the peresser extent, the collocation adaptor grammars tend
formance of Gibbs samplers (just as it can with otheio undersegment. Incremental initialization greed-
unsupervised estimation procedures such as Expély searches for common substrings, and because
tation Maximization). such substrings are more likely to be short rather
There are many different ways in which we couldhan long, it tends to produce analyses with shorter
generate the initial treels we only study two of the words than batch initialization does. Goldwater et
obvious methods hereBatch initialization assigns al. (2006a) show that Brent’s incremental segmenta-
every sentence a random parse tree in parallel. tion algorithm (Brent, 1999) has a similar property.
more detail, the initial parse treg for sentencew; We favor batch initialization because we are in-
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terested in understanding the properties of our mod- We expect table label resampling to have the
els (expressed here as adaptor grammars), and batgkatest impact on models with a rich hierarchi-
initialization does a better job of finding the mostcal structure, and the experimental results in Ta-
probable analyses under these models. Howeverhlte 1 confirm this. The unigram adaptor grammar
might be possible to justify incremental initializa-does not involve nested adapted nonterminals, so

tion as (say) cognitively more plausible. we would not expect table label resampling to have
any effect on its analyses. On the other hand, the
4.3 Tablelabel resampling collocation-syllable adaptor grammar involves a rich

gqierarchical structure, and in fact without table la-

Unlike the previous two implementation choice ] k ] ‘
el resampling our sampler did not burn in or mix

which apply to a broad range of algorithms, tablé’_

label resampling is a specialized kind of Gibbs steiﬁ"thin 2,000 iterations. As Figure 1 shows, table
for adaptor grammars and similar hierarchical mod'@P€l resampling produces parses with higher pos-

els that is designed to improve mobility. The adapt_erior probability, and Table 1 shows that table la-

tor grammar algorithm described in Johnson et aP€! resampling makes a significant difference in the
(2007b) repeatedly resamples parses for she word se:gmentaﬂon f-score of the collocation and
tences of the training data. However, the adaptofcllocation-syllable adaptor grammars.
grammar sampler itself maintains of a hierarchy o :
Chinese Restaurant Processes or Pitman-Yor Prr‘(s)- Conclusion
cesses, one per adapted nontermiale A, that This paper has examined adaptor grammar infer-
cache subtrees frorfiy. In general each of these ence procedures and their effect on the word seg-
subtrees will occur many times in the parses for thenentation problem. Some of the techniques inves-
training data sentences. Table label resampling régated here, such as batch versus incremental ini-
samples the trees in these adaptors (i.e., the talilalization, are quite general and may be applica-
labels, to use the restaurant metaphor), potentiallyle to a wide range of other algorithms, but some
changing the analysis of many sentences at onaaf. the other techniques, such as table label resam-
For example, eaclollocation in the collocation pling, are specialized to nonparametric hierarchi-
adaptor grammar can occur in masyntences, and cal Bayesian inference. We've shown that sampling
eachWord can occur in mangollocations. Resam- adaptor hyperparameters is feasible, and demon-
pling a singleCollocation can change the way it is strated that this improves word segmentation accu-
analysed intdWVords, thus changing the analysis ofracy of the collocation-syllable adaptor grammar by
all of the Sentences containing tha€ollocation. almost 10%, corresponding to an error reduction of
Table label resampling is an additional resam- over 35% compared to the best results presented in
pling step performed after each Gibbs sweegohnson (2008). We also described and investigated
through the training data in which we resample théable label resampling, which dramatically improves
parse trees labeling the tables in the adaptor for eathe effectiveness of Gibbs sampling estimators for
X € A. Specifically, if the adaptof’x for X € A complex adaptor grammars, and makes it possible
currently containsn tables labeled with the treesto work with adaptor grammars with complex hier-
t = (t1,...,ty,) then table label resampling re-archical structure.
places each;,j € 1,...,min turn with a tree sam-
pled fromP(t | t_;, w;), wherew; is the terminal ACKnowledgments

yield of ¢;. (Within each adaptor we actually resam+ye thank Erik Sudderth for suggesting sampling the
ple all of the treeg in a randomly chosen order).  pjtman-Yor hyperparameters and the ACL review-
Table label resampling is a kind of Gibbs sweepers for their insightful comments. This research was

but at a higher level in the Bayesian hierarchy thagunded by NSF awards 0544127 and 0631667 to
the standard Gibbs sweep. It's easy to show that t@tark Johnson.

ble label resampling preserves detailed balance for
the adaptor grammars presented in this paper, so in-
terposing table label resampling steps with the stan-
dard Gibbs steps also preserves detailed balance.
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