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Abstract

In unsupervised learning, where no train-
ing takes place, one simply hopes that
the unsupervised learner will work well
on any unlabeled test collection. How-
ever, when the variability in the data is
large, such hope may be unrealistic; a
tuning of the unsupervised algorithm may
then be necessary in order to perform well
on new test collections. In this paper,
we show how to perform such a tuning
in the context of unsupervised document
clustering, by (i) introducing a degree of
freedom o, into two leading information-
theoretic clustering algorithms, through
the use of generalized mutual informa-
tion quantities; and (ii) selecting the value
of o based on clusterings of similar, but
superviseddocument collections (cross-
instance tuning). One option is to perform
a tuning that directly minimizes the error
on the supervised data sets; another option
is to use “strapping” (Eisner and Karakos,
2005), which builds a classifier that learns
to distinguish good from bad clusterings,
and then selects the with the best pre-
dicted clustering on the test set. Experi-
ments from the “20 Newsgroups” corpus
show that, although both techniques im-
prove the performance of the baseline al-
gorithms, “strapping” is clearly a better
choice for cross-instance tuning.
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1 Introduction

The problem of combining labeled and unlabeled
examples in a learning tagkemi-supervised learn-
ing) has been studied in the literature under various
guises. A variety of algorithms (e.g., bootstrapping
(Yarowsky, 1995), co-training (Blum and Mitchell,
1998), alternating structure optimization (Ando and
Zhang, 2005), etc.) have been developed in order to
improve the performance of supervised algorithms,
by automatically extracting knowledge from lots of
unlabeledexamples. Of special interest is the work
of Ando and Zhang (2005), where the goal is to build
many supervised auxiliary tasks from the unsuper-
vised data, by creating artificial labels; this proce-
dure helps learn a transformation of the input space
that captures the relatedness of the auxiliary prob-
lems to the task at hand. In essence, Ando and Zhang
(2005) transform the semi-supervised learning prob-
lem to amulti-task learningproblem; in multi-task
learning, a (usually large) set efipervisedasks is
available for training, and the goal is to build mod-
els which carsimultaneouslylo well on all of them
(Caruana, 1997; Ben-David and Schuller, 2003; Ev-
geniou and Pontil, 2004).

Little work, however, has been devoted to study
the situation where lots of labeled examples, of one
kind, are used to build a model which is tested on
unlabeled data of a “different” kind. This problem,
which is the topic of this paper, cannot be cast as a
multi-task learning problem (since there are labeled
examples of only one kind), neither can be cast as a
semi-supervised problem (since there are no training

- _ labels for the test task). Note that we are interested
*This work was partially supported by the DARPA GALE . h h he hidd label h
program (Contract NdHR0011-06-2-0001) and by the JHU IN the case where the hidden test labels may have

WSE/APL Partnership Fund. no semantic relationship with the training labels; in
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some cases, there may not even be any informéerenttask instances where the correct clustering is
tion about the test labels—what they represent, holinown. The hope is that tuning the parameter learns
many they are, or at what granularity they describsomething about the task in general, which trans-
the data. This situation can arise in the case of utfiers from the supervised task instances to the un-
supervised clustering of documents from a large arglipervised one. Alternatively, we can tune a meta-
diverse corpus: it may not be known in what way thelassifier so as to select good valueswan the su-
resulting clusters split the corpus (is it in terms opervised task instances, and then use the same meta-
topic? genre? style? authorship? a combination afassifier to select a good (possibly different) value
the above?), unless one inspects each resulting clug-« in the unsupervised case.
ter to determine its “meaning.” The paper is organized as follows: Section 2 gives
At this point, we would like to differentiate be- a background on text categorization, and briefly de-
tween two concepts: a targetskrefers to a class scribes the algorithms that we use in our experi-
of problems that have a common, high-level dements. Section 3 describes our parameterization of
scription (e.g., the text document clustering task, thihe clustering algorithms using Jenseerii diver-
speech recognition task, etc.). On the other handence and Csigz’s mutual information. Experi-
a taskinstancerefers to a particular example frommental results from the “20 Newsgroups” data set
the class. For instance, if the task‘@ocument are shown in Section 4, along with two techniques
clustering,” a task instance could Belustering of for cross-instance learning: (i) “strapping,” which, at
a set of scientific documents into particular fielgs” test time, picks a parameter based on various “good-
or, if the task is‘parsing,” a task instance could be ness” cues that were learned from the labeled data
“parsing of English sentences from the Wall Streeset, and (ii) learning the parameter from a supervised
Journal corpus’ For the purposes of this paper, wedata set which is chosen to statistically match the test
further assume that there are task instances whishkt. Finally, concluding remarks appear in Section 5.
are unrelated in the sense that that there are no
common labels between them. For example, if the Document Categorization

task is“clustering from the 20 Newsgroups corpus,’

then“clustering of the computer-related documentéDocument gategonzauon is the task of deciding
into PC-related and Mac-relatedand “clustering whether a piece of text belongs to any of a set of

of the politics-related documents into Middle—EastpreSpeCiﬁeOI categories. Itis a generic text process-

related and non-Middle-East-relatecire two dis- N9 task useful in indexing documents for later re-
tinct, unrelated instances. In more mathematic

é{ieval, as a stage in natural language processing
terms, if task instances;, T, take sets of observa-

systems, for content analysis, and in many other
tions X 1, X as input, and try to predict labels from

roles (Lewis and Hayes, 1994). Here, we deal
setsS), S, respectively, then they are called unreWith the unsupervised version of document cate-
lated if X1 N X9 = @ andS; NSy, = @.

gorization, in which we are interested in cluster-
The focus of this paper is to study the problerrgng together d'ocuments Whic_h (hopefully)_ belong to
of cross-instance tuningf unsupervised algorithms: the ?ame t°p"_:’ without hgvmg any t_ralnlng exam-
how one can tune an algorithm, which is used tgles. Superwsednformatlon-theqretlc clustering
solve a particular task instance, using knowledg@'oproaches (Torkkola, 2002; Dhillon et al., 2003)

from an unrelated task instance. To the best of oﬁ]ave been shown to be very effecjuve, even_wr[h a
knowledge, this cross-instance learning problem hggnall amoun_t of labeled c!ata, vyhﬂmsuperwsed
only been tackled in (Eisner and Karakos, 2005£,')"erh()0|S (which are of par't!cular mtergst to us) ha}’,e
whose “strapping” procedure learns a meta-classifi Fen shown to be compet!twe, matching the classifi-
for distinguishing good from bad clusterings. cation accura.cy Of_ superws.ed methods.

In this paper, we introduce a scalar parameter OUr focus in this paper is on document catego-
(a new degree of freedom) into two basic unsupeflzat'on algorithms which use information-theoretic

Y'S_ed C|USter'ng_ algorlthms._ We can tungo mgx— 1By this, we mean that training examples having the same
imize unsupervised clustering performancedifi  category labels as the test examples are not available.
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criteria, since there are natural ways of generalizing.2 Iterative Denoising Trees

these criteria through the introduc_tion of_ tunable panqision trees are a powerful technique for equiva-
rameters. We use two such algorithms in our EXPClance classification, accomplished through a recur-

iments, th_e sequeqti_al Information Bottlene_ck (SIBgive successive refinement (Jelinek, 1997). In the
and lterative Denoising Trees (IDTs); details abouéontext of unsupervised classification, the goal of

these algorlthmssppea_r blelow. . decision trees is to cluster empirical distributions
A note on mat emgtlca notation: We assume (bags of words) into a given number of classes, with
that we have a collectionl = {X(1),..., X(N)} = gach class corresponding to a leaf in the tree. They

Of“N documents;’ Each _documekﬁ(z') IS e§§ent|a!ly _are built top-down (as opposed to the bottom-up
a "bag of words”, and induces an empirical distri-q 1 ,ction in IB) using maximization of mutual

bution Py ;) on the vocabulary¥'.  Given a sub- jy¢omation between words and clustereX; Z|1)

s_et ((_:Iuster)C of_documents, the _condltlonal dis- to drive the splitting of each nodethe hope is that
tribution on X', given the cluster, is just the cen-g,ch jgaf will contain data points which belong to
troid: Pxjc = ZX(Z‘)G_C Px ). If a subcollec- only one latent category.

tion S C A of documents is partitioned into clusters lterative Denoising Trees (also called Integrated

C1,...,Cm, and each documem (i) € §'is as- Sensing and Processing Decision Trees) were intro-

signed to a cluste’y;), whereZ(i) € {1,....m} g caq in (Priebe et al., 2004a), as an extension of

is the cluster index, then the mutual information befegular decision trees. Their main feature is that

tween words and corresponding clusters is given b%ey transformthe data at each node, before split-
I(X;Z|8) = Z P(Z‘S)D(pX|CzHPX|S)7 ting, by projecting into a low-dimensional space.

2e{L,..,m} This transformation corresponds to feature extrac-

tion; different features are suppressed (or ampli-

fied) by each transformation, depending on what
data points fall into each nodedrpus-dependent-
feature-extractiorproperty (Priebe et al., 2004b)).

2.1 The Information Bottleneck Method Thus, dimensionality reduction and clustering are

h that thgpintly optimize the local objec-
The Information Bottleneck (IB) method (Tishby et;:ivgsen so that thagintly optimize the local objec

al, 1999; Slonim and Tishby, 2000; S'O”'”? etal, In (Karakos et al., 2005), IDTs were used for an
2002) is one popular approach to unsupervised Ca&hsu ervised hyperspectral image segmentation ap-
egorization. The goal of the IB (with “hard” clus- P YPETSp g g P

) . \ ._plication. The objective at each notlevas to maxi-
tering) is to find clusters such that the mutual in-__. " .

. . mize the mutual information between spectral com-
formation(X; Z) between words and clusters is as

large as possible, under a constraint on the numb':%-(r)nemS and clusters given the pixels at ngd@m-
9 b ' puted from theprojectedempirical distributions. At

of clusters. The procedure for finding the maximiz- :
. L ) : ; each step of the tree-growing procedure, the node
ing clustering in (Slonim and Tishby, 2000) is ag- , . . . : .
. . o . which yielded the highest increase in the average,

glomerative clustering, while in (Slonim et al., 2002) ; : ;
2 ) . ’per-node mutual information, was selected for split-
it is based on many random clusterings, combinegd : .

. . . - ting (until a desired number of leaves was reached).
with a sequential update algorithm, similar fo-

) . In (Karakos et al., 2007b), the mutual information
means. The update algorithm re-assigns each data.’ . X .

. . e oDjective was replaced with a parameterized form of
point (document)! to its most “similar” clusterC,

) L . . mutual information, namely the Jense@+®i diver-
in order tominimizel(X; Z|C'U {d}), i.e., gence (Hero et al., 2001; Hamza and Krim, 2003), of

SD(Px |y || Px tayuc) +(1=8)D(Px c|| Px|ayuc).  Which more details are provided in the next section.

whereP(z|S) £ |C.|/|S] is the “prior” distribution
on the clusters and(-||-) is the Kullback-Leibler
divergence (Cover and Thomas, 1991).

_ 1 i i . . .
whered = op. This latter procedure is called 3 parameterizing Unsupervised Clustering
thesequential Information Bottlene¢klB) method,

and is considered the state-of-the-art in unsupefAs mentioned above, the algorithms considered in
vised document categorization. this paper (sIB and IDTs) are unsupervised, in the
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sense that they can be applied to test data withvherel,(X; Z|WW = w) is computed via (1) using

out any need for tuning. Our procedure of adapthe conditional distribution ok andZ given V.

ing them, based on some supervision on a different Except in trivial casesH,(-) is strictly larger

task instance, is by introducing a parameter into thihan H (-) when0 < « < 1; this means that the ef-

unsupervised algorithm. At least for simple crossfects of extreme sparsity (few words per document,

instance tuning, this parameter represents the infasr too few occurrences of non-frequent words) on

mation which is passed between the supervised atttk estimation of entropy and mutual information

the unsupervised instances. can be dampened with an appropriate choice.of
The parameterizations that we focused on havEehis happens because extreme sparsity in the data

to do with the information-theoretiobjectivesin  yields empirical distributions which lie at, or close

the two unsupervised algorithms. Specifically, folto, the boundary of the probability simplex. The

lowing (Karakos et al., 2007b), we replace the muentropy of such distributions is usually underesti-

tual information quantities in IDTs as well as sIBmated, compared to the smooth distributions which

with the parameterizedmutual information mea- generate the data. @Ryi's entropy is larger than

sures mentioned above. These two quantities pr&hannon’s entropy, especially in those regions close

vide estimates of the dependence between the ran-the boundary, and can thus provide an estimate

dom quantities in their arguments, just as the usualhich is closer to the true entropy.

mutual information does, but also have a scalar pa- o ,

rametera € (0, 1] that controls the sensitivity of the 3-2  CSisar's Mutual Information

computed dependence on the details of the joint di€sisAr defined the mutual information of ordelas

tribution of X andZ. As a result, the effect of data

sparseness on estimation of the joint distribution car$ (X; Z) = min » _ Pz (2)Da(Px|z(-2)|Q("),

be mitigated when computing these measures. @ = (3)

where D, (+||-) is the Renyi divergence (Csisu,
C _ 1995). It was shown thaf (X; Z) retains most
The Jensen-&nyi divergence was used in (Hero ety he properties of (X; Z)—it is a non-negative,

al., 2001; Hamza and Krim, 2003) as a measure @f,ntinyous, and concave function Bf, it is con-
similarity for image classification and retrieval. For, o, in Py, for @ < 1, and converges th(X; Z) as
two discrete random variable¥, Z with distribu- ¢ | ’

tions Px, Pz and conditionalPy, z, it is defined as Notably, I€(X; Z) < I(X;Z) for 0 < a < 1;
this means, as above, thatregulates the overesti-
Ia(X;Z) = Ha(Px) = Y Pz(2)Ha(Px|z(-|2)),  mation of mutual information that may result from
z (1) data sparseness.
There is no analytic form for the minimizer of the
right-hand-side of (3) (Csisz, 1995), but it may be
computed via an alternating minimization algorithm

1 e
T log (; P(x) ) , a#1. (2) (Karakos etal., 2007a).

3.1 Jensen-Rnyi Divergence

whereH,(+) is the Renyi entropy, given by

Ha(P) =

4 Experimental Methods and Results

If « € (0,1), H, is a concave function, and hence d he feasibility of _
1.(X; Z) is non-negative (and it is equal to zero ifWe emonstrate the feasibility of cross-instance tun-

and only if X and Z are independent). In the limit N9 With _experiments on unsupervised document cat-
asa — 1, Hu(-) approaches the Shannon entropy‘?gor'zat'c_’n from the 20 _Newsgroups corpus (Lang,
(not an obvious fact), sf,(-) reduces to the regular 19_95); this corpu_s_conS|sts of roughly 20,000 news
mutual information. Similarly, we define articles, evenly divided among 20 Usenet groups.
Random samples of 500 articles each were chosen

by (Slonim et al., 2002) to create multiple test col-
I.(X; Z|W) = P 1, (X Z|W = w), : .
( W) Zw: w(w)La( | w) lections: 250 each from 2 arbitrarily chosen Usenet
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groups for theBinary test collection, 100 articles 4.1 Selectingx with “Strapping”

each from 5 groups for th#ulti5 test collection, |, order to pick the value of the parameterfor
and 50 each from 10 groups for tMultil0test col- - g0 of the sIB and IDT test experiments, we use
lection. Three independent test collections of eao@trapping" (Eisner and Karakos, 2005), which, as
kind (Binary, Multi5 andMulti10) were created, for \ye mentioned earlier, is a technique for training a
atotal of 9 collections. The sIB method was used i eta-classifier that chooses among possible cluster-
separately cluster each collection, given the corregigs The training is based on unrelated instances of
number of clusters. the same clustering task. The final choice of cluster-

A comparison of sIB and IDTs on treame9 test  ing s still unsupervised, since no labels (or ground
collections was reported in (Karakos et al., 2007kyth, in general) for the instance of interest are used.
Karakos et al., 2007a). Matlab code from (Slonim, Here, our collection of possible clusterings for
2003) was used for the sIB experiments, while th@ach test collection is generated by varyingdhea-
parameterized mutual information measures of Segameter. Strapping does not care, however, how the
tion 3 were used for the IDTs. A comparison wagollection was generated. (In the original strapping
also made with the EM-based Gaussian mixtur%per, for examp|e’ Eisner and Karakos (2005) gen-
clustering toolmclust(Fraley and Raftery, 1999), erated their collection by bootstrapping word-sense
and with a simpleX’-means algorithm. Since the c|assifiers from 200 different seeds.)
two latter techniques gave uniformly worse cluster- Here is how we choose a particular unsupervised
ings than those of sIB and IDTs, we omit them from,.-clustering to output for a given test collection:
the following discussion. ] ] )

To show that our methods work beyond the 9 par-' We clqsterthe test_collectlon (e.g., the first Multi5
ticular 500-document collections described above, collection) with various values af, namelyo. =
in this paper we instead use fidéferentrandomly 0.1,0.2,..., 1.0.
sampled test collections for each of tf#nary, e We compute a feature vector from each of the
Multi5 and Multi10 cases, making for a total of 15  clusterings. Note that the features are computed

new test collections in this paper. For diversity, we from only the clusterings and the data points,
ensure that none of the five test collections (in each sjnce no labels are available.

case) contain any documents used in the three col- _
lections of (Slonim et al., 2002) (for the same case)® Based on the feature vectors, we predict the

We pre-process the documents of each test col- 900dness” of each clustering, and return the
lection using the procedifenentioned in (Karakos ~ P€St" One.

et al., 2007b). The 15 test collections are then How do we predict the “goodness” of a cluster-
converted to feature matrices—term-document freng? By first learning to distinguish good cluster-
quency matrices for sIB, and discounted tf/idf maings from bad ones, by using unrelated instances of
trices (according to the Okapi formula (Gatford ethe task on which we know the true labels:

al., 1995)) for IDTs—with each row of a matrix rep-

resenting one document in that test collection. e We cluster some unrelated datasets with various

values ofa, just as we will do in the test condi-

2Excluding the subject line, the header of each abstract is tion.
removed. Stop-words such asthe, is,etc. are removed, and . .
stemming is performed (e.g., common suffixes such as -ing, # We evaluate each of the resulting clusterings us-

er, -ed, etc., are removed). Also, all numbers are collapsed ing the true labels on its dataskt.
to one symbol, and non-alphanumeric sequences are converted

to whitespace. Moreover, as suggested in (Yang and Pedersep, ; “ _ T Ty ;
1997) as an effective method for reducing the dimensionality of We train a “meta-classifier” that predicts the true

the feature space (number of distinct words), all words which rank (or accuracy) of each clustering based on the
occur fewer thart times in the corpus are removed. For the feature vector of the clustering.
sIB experiments, we use= 2 (as was done in (Slonim et al.,

2002)), while for the IDT experiments we use= 3; these 3To evaluate a clustering, one only really needs the true la-
choices result in the best performance for each method, respdaels on ssampleof the dataset, although in our experiments we
tively, on another dataset. did have true labels on the entire dataset.
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Specifically, for each task (Binary, Multi5, andnumber of training labels should be equal to the
Multi10) and each clustering method (sIB and IDT) humber of desired clusters of the test collection; (ii)
a meta-classifier is learned thus: the training clusters should be topically similar to

_ ) the desired test clusters.
e We obtain 10 clusteringsy(= 0.1,0.2,...,1.0)

. In our scenario, we enjoy the luxury of plent
for each of 5 unrelated task instances (dataset% 10y y P . y
Lo : of labeled data that can be used to create similar
whose construction is described below).

instances. Thus, given a test collectighto be

e For each of these 50 clusterings, we compute tHdustered intoL clusters, we create similar train-
following 14 features: (i) One minus the aver-ing sets by identifying the. training newsgroups
age cosine of the angle (in tf/idf space) betweewhose centroids in tf/idf space (using the Okapi for-
each example and the centroid of the cluster t@ula mentioned earlier) have the smallest angle to
which it belongs. (ii) The averageé&Ryi diver- the centroid ofA.* (Of course, we exclude news-
gence, computed for parametérs, 0.5,0.1, be- groups that appear id.) We then form a supervised
tween the empirical distribution of each examplé&00-document training set’ by randomly choosing
and the centroid of the cluster to which it belongs?00/ L documents from each of thesenewsgroups;
(iii) We create 10 more features, one per For we do this 5 times to obtain 5 supervised training
the o used in this clustering, the feature value isets.
equal toe~ %17 wherer is the average rank of the ~ Table 1 shows averaged classification errors re-
clustering (i.e., the average of the 4 ranks resulsulting from strapping“6tr” rows) for the Jensen-
ing from sorting all 10 clusterings (per training Rényi divergence and CsigZs mutual information,
example) according to one of the 4 features in (iysed within IDTs and sIB, respectively. (We also
and (ii)). For all othera’s, the feature is set to tried the reverse, using JenseéfRgi in sIB and
zero. Thus, onlyy’'s which yield relatively good Csisar’s in IDTs, but the results were uniformly
rankings can have non-zero features in the modetorse in the former case and no better in the latter

case.) The “MI” rows show the classification errors

e We normalize each group of 10 feature vectorsy¢ ihe untuned algorithmsy(= 1), which, in almost
translating and scaling each of the 14 dimensiong .ases. are worse than the tuned ones.
to make itrange from O to 1. (We will do the same

at test time.) 4.2 Tuning « on Statistically Similar Examples

e We train ranking SVMs (Joachims, 2002), withWe now show that strapping outperforms a simpler
a Gaussian kernel, to learn how to rank these 58hd more obvious method for cross-instance tun-
clusterings given their respective normalized feaing. To cluster a test collectiod, we could simply
ture vectors. The values @f v (which control tune the clustering algorithm by choosing thé¢hat
regularization and the Gaussian kernel) were ogvorks best on a related task instance.
timized through leave-one-out cross validation in  We again take care to construct a training instance
order to maximize the average accuracy of thel’ that is closely related to the test instande In
top-ranked clustering, over the 5 training setsfact, we take even greater care this time. Givgn
Once a local maximum of the average accuracy
was obtained, further tuning ef v to maximize “For each of the Binary collections, the closest training
he S ' K lati b h newsgroups in our experiments werglk.politics.guns,
the Spearman rank correlation between the Pr&ak religion.mis¢ for each of the Multi5 collections

dicted and true ranks was performed. the closest newsgroups wersci.electronics rec.autos
sci.med talk.politics.mis¢ talk.religion.mis¢ and for

A model trained in this way knows somethingthe Multil0 collections they were talk.politics.mis¢

rec.motorcycles talk.religion.mis¢ comp.graphics
about the task, and may work well for many neWt:omp.sys.ibm.pc.hardwarere(:.sport.baseball comp.os.ms-

unseen instances of the task. However, we pr@indows.misc comp.windows,x  soc.religion.christian
sume that it will work best on a given test instancéalk.politics.mideast  Note that each of the Binary test
if trained imilar inst The ideal Id b collections happens to be closest to themetwo training

It traineéd on similar instances. € ideal wou %ewsgroups; a similar behavior was observed for the Multi5

to match the test collection in every aspect: (i) thand Multil0 newsgroups.
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Set| . . : «* and zero elsewhere), aid is the kernel matrix,

Method Binary | MUIS | MU0 | cre K (i, ) — exp(—(E(as) — E(ay)?/o?) is
” Mi 11.3% | 9.9% | 42.2% the value of the kernel which expresses the “sim-
'5 1, (str) 10.4% | 9.2% | 39.0% ilarity” between two clusterings of the same train-
- I, (rls) 10.1% | 10.4% | 42.7% ing dataset, in terms of their errors. The parame-
" Ml 12.0% | 6.8% | 38.5% terso,~ are set td0.5,0.1, respectively, after per-
% | IS (str) [11.2% | 6.9% | 35.8% forming a (local) maximization of the Spearman cor-

IS (rls) 11.1% | 7.4% | 37.4% relation between training accuracies and predicted

probabilitiesp, for all 15 training instances. Af-
Table 1: Average classification errors for IDTs ander performing a linear normalization @f to make
sIB, using strapping“étr” rows) and regularized it a probability vector, the average predicted value
least squaresi{s” rows) to picka in Jensen-Bnyi  of o, i.e., & = Z}glﬁi a;, (rounded-off to one of
divergence and Csiéir's mutual information. Rows {0.1,...,1.0}) is used to clusted.
“MI” show the errors resulting from thentunedal- Table 1 shows the average classification error re-
gorithms, which use the regular mutual informatiorsults using RLS“fls” rows). We can see that, on
objective (x = 1). Results which are better than theaverage over the 15 test instances, the error rate of
corresponding “MI” results are shown bold. the tuned IDTs and sIB algorithms is lower than that
of the untuned algorithms, so cross-instance tuning

we identify the same set df closest newsgroups as'Vas effec“‘_’e- On the other hand, th? errors are
enerally higher than that of the strapping method,

described above. This time, however, we carefull%h_ h - th its of using diff val
select.A|/L documents from each newsgroup rathe |c0r3<am|nes € resulls ot using diierenval-

than randomly choosing00/L of them. Specifi-
cally, for each test example (document)e A, we
add a similar training exampl&” into .A’, chosen as

follows: We have considered the problem of cross-instance
We associate each test exampleto the most tuning of two unsupervised document clustering al-
similar of the L training newsgroups, under a con-gorithms, through the introduction of a degree of
straint that only.A|/ L training examples may be as-freedom into their mutual information objective.
sociated to each newsgroup. To do this, we iteratgnis degree of freedom is tuned usitapeleddoc-
through all pairs(X, G) where X is a test example yment collections (which are unrelated to the test
andG is a training newsgroup, in increasing ordegollections); we explored two approaches for per-
by the angle betwee andG. If X is notyetasso- forming the tuning: (i) through a judicious sampling

ciated and is not yet “full,” then we associal&  of training data, to match the marginal statistics of
with G, and chooseX” to be the document i with  the test data, and (ii) via “strapping”, which trains a

5 Concluding Remarks

the smallest angle t&'. meta-classifier to distinguish between good and bad
We clusterA’” 10 times, fora: = 0.1,...,1.0, clusterings. Our unsupervised categorization exper-

and we collect supervised error resuft§y), o € jments from the “20 Newsgroups” corpus indicate

{0.1,...,1.0}. Now, instead of using the single besthat, although both approaches improve the base-

o = argmin, () to clusterA (which may re- |ine algorithms, “strapping” is clearly a better choice

sult in overfitting) we use regularized least-squaregr knowledge transfer between unrelated task in-
(RLS) (Hastie et al., 2001), where we try to approxXstances.

imate theprobability that ana is the best The esti-
mated probabilities are given by
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