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INTRODUCTION
Through their involvement in the Tipster project the Computing Research Laboratory at New Mexic o
State University and the Computer Science Department at Brandeis University are developing a method fo r
identifying articles of interest and extracting and storing specific kinds of information from large volumes o f
Japanese and English texts . We intend that the method be general and extensible . The techniques involve d
are not explicitly tied to these two languages nor to a particular subject area . Development for Tipster ha s
been going on since September, 1992 .

The system we have used for the MUC-4 tests has only implemented some of the features we pla n
to include in our final Tipster system . It relies intensively on statistics and on context-free text marking
to generate templates . Some more detailed parsing has been added for a limited lexicon, but lack of fulle r
coverage places an inherent limit on its performance . Most of the information produced in our MUC template s
is arrived at by probing the text which surrounds `significant' words for the template type being generated ,
in order to find appropriately tagged fillers for the template fields .

OVERVIEW OF THE TEMPLATE FILLING PROCES S
The overall system architecture is shown in Figure 1 . Three independent processes operate on an inpu t
text . One, the Text Tagger, marks a variety of strings with semantic information . The other two, the
Relevant Template Filter and the Relevant Paragraph Filter, perform word frequency analysis to determin e
whether a text should be allowed to generate templates for particular incident types and which paragraph s
are specifically related to each incident type . These predictions are used by the central process in th e
system, the Template Constructor, which uses a variety of heuristics to extract template information fro m
the tagged text . A skeleton template structure is then passed to the final process, the Template Formatter,
which performs some consistency checking, creates cross references and attempts to expand any names foun d
in the template to the longest form in which they occur in the text . Each of the above processes is described
in more detail below .

Relevancy Filters
We have developed a procedure for detecting document types in any language . The system requires train-
ing texts for the types of documents to be classified and is developed on a sound statistical basis usin g
probabilistic models of word occurrence [Guthrie and Walker 1991] . This may operate on letter grams of
appropriate size or on actual words of the language being targeted and develops optimal detection algorithm s
from automatically generated "word" lists . The system depends on the availability of appropriate training

223



Input file: TST2- :MLC.-0002
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Input

A FLAG FROM THE <\organ> MANUEL RODRIGUEZ'
PATRIOTIC FRONT Itvpef[TERRORIST '; ' NAME' DI
<\endorgan> (<\organ> FPMR Itypef[TERRORIST ',
' NAME 111 <\endorgan> ) WAS FOUN D
AT THE SCENE OF THE EXPLOSION. THE<\organ>
FPMR Itypet(TERRORIST, 'NAME' DI <\endorgan>
IS A CLANDESTINE LEFTIS T
<\organ GROUP ltypei('OTHER NOUN Di
<\endorgan> THAT PROMOTES "ALL FORMS O F
STRUGGLE"AGAINST THE <\organ> MILITAR Y
Itype((' MILITARY: 'NOUN'. Dl <\endorgan
<\organ> GOVERNMENT Itype(CGOVERNMENT' ,
'NOUN ' DI:<\endorgan> HEADED BY <\human >
GENERAL £type(rMILITARY'.'NOUN','RANK'DI
<\endhuman>, AUGUSTO PINOCHET.

<\human> POLICE Itype(('LAW ENFORCEM ENT'
.'NOUN'DI <\endhuman> SOURCES HAV E

REPORTED THAT THE EXPLOSION CAUSED SERIOUS

Tagger

A FLAG FROM THE <\organ> MANUEL
RODRIGUEZ PATRIOTIC FRONT Itypel[TERRORIST ,
' NAME' DI <\endorgan> (<\organ> FP'I R
£typet(TERRORIST. .'NAME' DI <\endorgan> ) WAS
FOUN D
AT THE SCENE OF THE EXPLOSION. THE <\organ >
FPMR type((TERRORIST '.'NAME DI<\endorgan >

Properl IS A CLANDESTINE LEFTIST
Names

	

<\organ> GROUP Itypeb1OTHEK, iNOUN ` DI
<\endorgan> THAT PROMOTES 'ALL FORMS O F
STRUGGLE" AGAINST THE <\organ>MILITARY
£type(CM ILI TARY' . 'NOUN' DI <\endorgan>
<\organ> GOVERNMENT ItypelrGOVERNMENT ,
'NOUN' DI <\endorgan> esuHEADED= BY
<\human GENERAL Itypef[ ' MILITARY', 'NOUN;
' RANK 'DI <\endhuman> -.nAUOUSTO=
=suPINOCHET ..

<\humart> POLICE ItYpe(CLAW ENFORCEMENT ..

Figure 1 : MucBruce - System Overvie w

texts . So far the method has been applied to English, discriminating between Tipster and MUC texts, an d

to Japanese between Tipster texts and translations of ACM proceedings . In both cases the classification
scheme developed was correct 99% of the time .

The method has now been extended to the identification of relevant paragraphs and relevant templat e

types for the MUC documents. This is a more complex problem due to the non-homogeneous nature of th e
texts and the difficulty of deriving training sets of text . Each process uses two sets of words, one whic h
occurs with high probability in the texts of interest, and the other which occurs in the `non-interesting '

texts . Due to the complexity of separating relevant from non-relevant information for the MUC texts w e
actually use three filters, two trained on sets of non-relevant and relevant paragraphs and one trained o n
sets of relevant and non-relevant texts . The lists of relevant and non-relevant paragraphs were derived using

the templates of the 1300 text test corpus . Any paragraph which contributed two or more string fills to a
particular template was used as part of the relevant training set ; paragraphs contributing only one string
fill were regarded as of dubious accuracy and were not placed in either set and all other paragraphs wer e

considered as non-relevant . Word lists were derived automatically by finding those words in the relevan t
training set which occurred within a threshold of most frequently occurring words in the relevant paragraphs
and not in the non-relevant paragraphs, and vice versa to obtain a set of non-relevant words .

The relevant template marker consists of two processes, the first trained on a set of texts consisting
of paragraphs from the MUC corpus which produced two or more string fills against text consisting o f
paragraphs which generated no string fills .

These allow us to determine, based on word counts taken at paragraph level, whether the whole tex t

should be checked for specific template types . The second stage is activated if any single paragraph in the
text is found to be `relevant' . This stage is trained on the set of texts which generated a particular templat e
type against texts which produced no templates . There are separate relevant and non-relevant lists of word s
used to determine each template type .

The result is a vector represented as a Prolog fact which determines whether the texts will be allowed t o

generate templates of a particular type . Thus :
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FREQUENCY

	

WORD
135

	

ELN
128

	

BOMB
122

	

KIDNAPPED
77

	

MURDER
77

	

ME N
75

	

MURDERE D
75

	

MORNIN G
75

	

MEDELLI N
75

	

INJURE D

Table 1 : Part of Relevant Text Word List

FREQUENCY	 WORD
136

	

PEACE
135

	

I
118

	

ELECTION S
104

	

STATES
96

	

MARC H
94

	

UNITED
75

	

ARENA
73

	

IF
71

	

MUST
69

	

THAN

Table 2: Part of Non-Relevant Text Word Lis t

FREQUENCY	 WORD
199

	

BOMB
115

	

EXPLOSION
99

	

INJURE D
83

	

EXPLODED
82

	

DYNAMIT E
65

	

CAR
65

	

BOMBS
58

	

STREET
53

	

PLACE D
49

	

DAMAGED

Table 3 : Part of Relevant Template Word List : BOMBING
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FREQUENCY

	

WORD
174

	

WERE
112

	

BOM B
91

	

ATTAC K
72

	

PEOPLE
69

	

POLICE
63

	

SAN
62

	

DYNAMIT E
61

	

EXPLOSION
60

	

WHO
54

	

INJURED

Table 4 : Part of Relevant Paragraph Word List : BOMBING

slot(4, ['NO', 'ARSON', 'NO', 'ATTACK', 'YES', 'BOMBING' ,

'NO', 'KIDNAPPING', 'NO', 'ROBBERY', 'NO', 'DUMMY']) .

The relevant paragraph filter is the final stage and uses word lists which were derived from relevant an d
non-relevant paragraphs for each template type .

Once again this operates at the paragraph level and produces a list of paragraph numbers for eac h
template type. These paragraph lists are only used if the relevant template filter has also predicted a
template of that type. This stage produces a vector of relevant paragraphs . Thus :

rel_paras([[1,3,5],'ARSON', [1,2,3,4,5],'ATTACK', [1,3],'BOMBING' ,
[],'KIDNAPPING', [],'ROBBERY', [],'DUMMY']) .

The two stages can be thought of as first distinguishing relevant texts for a particular template typ e
from among all texts and second, given a relevant text, to distinguish between the relevant and non-relevan t
paragraphs within that text for the template type .

Partial word lists for relevant and non-relevant texts are given in Tables 1 and 2 . The full lists contain 124
and 117 words respectively . Partial relevant word lists for BOMBING at the text level (relevant template )
and the paragraph level are given in Tables 3 and 4 . The full lists contain 176 and 51 words respectively .

Semantic Tagging
A key question for the Tipster and MUC tasks is the correct identification of place names, company an d
organization names, and the names of individuals . We now have available to us several sources of geographic ,
company and personal name information . In addition the templates provided for MUC also supplied nam e
information . These have been incorporated in a set of tagging files which provide lexical information as a
pre-processing stage for every text .

The details of the Text Tagger are shown in Figure 2, which is a screen dump of an interface which allow s
examination of the operation of each stage in the filter . The text window on the left shows the state of a
text after the group dates process has converted dates to standard form and on the right after the temporary
tags placed to identify date constituents have been removed . Each stage, apart from the last, marks the text
with tags in the form :

<\TYPE> ACTUAL TEXT STRING {SEMANTIC INFORMATION} <\ENDTYPE>

Thus for example a date takes the form :

<\date> 5 DAYS AGO {date("14 APR 89",890414)} <\enddate>

In general each stage in the pipeline is only allowed to modify text which is not already marked, althoug h
an examination of already marked text is allowed . Several stages also place temporary markers in the text
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Figure 2 : MucBruce - Tagging Pipeline

to allow subsequent grouping by following stages . These temporary markers are removed by the filter stages .
Each text is marked as follows :

Known Items Places, organizations, physical targets, human occupations, weapons .

Proper Names Human proper names .

Dates All standard date forms and other references to time.

Closed class Prepositions, determiners and conjunctions .

Residue All other words are marked as unknown .

The final tagged text looks like this :

<\name> GARCIA ALVARADO <\endname>, <\num> 56 {num(56)} <\endnum> ,

<\cs> WAS {closed(was,[pastv])} <\endcs> <\gls> KILLED

{action(killed,'ATTACK')} <\endgls> <\cs> WHEN

{closed(when,[conj,pron])} <\endcs> <\cs> A {closed(a,[determiner]) }

<\endcs> <\weapon> BOMB {type(['BOMB'])} <\endweapon> <\res> PLACE D

{atom(placed)} <\endres>

<\cs> BY {closed(by,[prep])} <\endcs> <\res> URBAN {atom(urban)} <\endres >

<\organ> GUERRILLAS {type(['TERRORIST', 'NOUN' ])} <\endorgan> <\cs >

ON {closed(on,[prep])} <\endcs> <\cs> HIS
{closed(his,[determiner,pron])} <\endcs> <\target> VEHICL E

{type(['TRANSPORT VEHICLE'])} <\endtarget> <\gls> EXPLODE D
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{action(exploded,'BOMBING')} <\endgls> <\cs> A S

{closed(as,[conj,pron,prep])} <\endcs> <\cs> IT {closed(it,[pron]) }

<\endcs> <\res> CAME {atom(came)} <\endres >

<\cs> TO {closed(to,[prep])} <\endcs> <\cs> A {closed(a,[determiner]) }

<\endcs> <\res> HALT {atom(halt)} <\endres >

<\cs> AT {closed(at,[prep])} <\endcs> <\cs> AN {closed(an,[determiner])} <\endcs >
<\res> INTERSECTION {atom(intersection)} <\endres> <\cs> IN {closed(in,[prep]) }

<\endcs> <\res> DOWNTOWN {atom(downtown)} <\endres> <\place> SAN SALVADOR

{type([['CITY','EL SALVADOR'],['DEPARTMENT','EL SALVADOR']])} <\endplace> .

For processing by the template constructor the final convert facts stage changes each sentence into a
Prolog fact, containing sentence and paragraph numbers and a list of structures holding the marked item s
Thus : .

sen(3,3,[name("GARCIA ALVARADO",null),',', num("86",num(86)),',' ,

cs("WAS",closed(was,[pastv])), gls("KILLED",action(killed,'ATTACK')) ,

cs("WHEN",closed(when,[conj,pron])), cs("A",closed(a,[determiner])) ,

weapon("BOMB",type(['BOMB'])), res("PLACED",atom(placed)) ,

cs("BY",closed(by,[prep])), res("URBAN",atom(urban)) ,

organ("GUERRILLAS",type(['TERRORIST', 'NOUN' ])), cs("ON",closed(on,[prep])) ,

cs("HIS",closed(his,[determiner,pron])), target("VEHICLE",type(['TRANSPORT VEHICLE'])) ,

gis("EXPLODED",action(exploded,'BOMBING')), cs("AS",closed(as,[conj,pron,prep])) ,

cs("IT",closed(it,[pron])), res("CAME",atom(came)) ,

cs("TO",closed(to,[prep])), cs("A",closed(a,[determiner])) ,

res("HALT",atom(halt)), cs("AT",closed(at,[prep])) ,

cs("AN",closed(an,[determiner])), res("INTERSECTION",atom(intersection)) ,

cs("IN",closed(in,[prep])), res("DOWNTOWN",atom(downtown)) ,

place("SAN SALVADOR",type([['CITY','EL SALVADOR'],['DEPARTMENT','EL SALVADOR']])),' .']) .

All the programs in the Tagger are written in `C' or Lex . We describe three of these components in mor e
detail .

Known Items

This program uses a large list of known strings which is held alphabetically . For each word in the text a
binary search is performed on the list . When a match is found it will be with the longest string beginnin g
with the word, subsequent words in the text are compared with the matched string . If the complete string i s
matched then this portion of text is marked with the information associated with the string . If a complet e
match is not achieved the word is checked against the previous item in the list, which may also match the
word, and the process is repeated.

The strings and information in the file are derived from a variety of sources . The place name information
provided for MUC, organization, target and weapon names derived from the MUC templates and furthe r
lists of human occupations and titles derived from Longman's .

Proper Names

The proper name filter uses a variety of methods to successfully identify a large majority of the huma n
names found in a MUC text . It uses two data resources ; a complete word list of all the Longman Dictionary
headwords and a list of English and Spanish first and last names . In addition it uses the hidden Marko v
Model algorithm described by BBN in MUC-3 to identify Spanish words . The first stage marks words no t
in Longman's, Spanish words and known first and last names . The second stage decides whether a group
of these items is indeed a name . Any group containing a Spanish word or a known name is recognized ,
unknown words on their own must be preceded by a title of some kind (identified by the Known Items step) .
Once an unknown item is identified as a name, however, it is added temporarily to the list of first and las t
names, so if it occurs in isolation later in the text it will be recognized correctly . A further complication to
the problem of name recognition was found in several names which contained text which had already bee n
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identified as a place name . In this case the proper name marker over-rides the previous marking and marks
the entire section of text as a human name .

Date Parts

The date marker uses a wide variety of patterns which have been identified in the MUC and Tipster texts a s
referring to time . Each date is converted to a standard form and the identified text marked. Relative time
expressions are always converted with reference to the headline date on the text . This assumption appears
to be valid in the vast majority of cases we have examined .

Template Construction

The template constructor uses the tagged text and the list of relevant paragraphs for each template typ e
to generate skeleton templates which are produced as a list of triples, SLOT NUMBER, SET FILL, STRING
FILL . For example :

[ [0 , 'TST2-MUC4-0048 ' ,null] ,

[1, '6' ,null] ,

[4, 'ATTACK ',null] ,

[2,'19 APR 89',null] ,

[3,'EL SALVADOR : SAN SALVADOR (CITY)',null] ,
[6, 'null' ,"BOMB"] ,

[7, 'BOMB' ,null] ,

[18, 'null' , "ROBERTO GARCIA ALVARADO"] ,

[8, 'TERRORIST ACT' ,null] ,

[9, 'null' ,"TERRORIST"] ,

[10, 'null ' , "THE FARABUNDO MARTI NATIONAL LIBERATION FRONT"] ,
[12,'null' ,"VEHICLE"] ,

[13,'TRANSPORT VEHICLE' ,null] ,

[19,'null' ,"GENERAL"] ,

[20,'MILITARY' ,null] ,
[21,'null' ,null] ,

[5, 'ACCOMPLISHED' ,null] ,

[16,'-',null] ,

[23, 'DEATH' ,null] ]

A sequence of paragraphs is assumed to generate a new template . The sentences in these paragraphs
are examined for a sentence containing a key verb for the template type . Sentences before this sentence ar e
held in reverse order and sentences after in normal order . Each sentence is stripped of any prefatory claus e
terminated by "that" (e .g . GOVERNMENT OFFICIALS REPORTED TODAY THAT) . The remainder of
the sentence is reordered into lists containing texts marked with specific semantic types . These correspond
to the appropriate fillers for the main sections of the template . The sentence is then marked as active or
passive . A search is then made in the current sentence and either the previous or the succeeding ones fo r
items satisfying the appropriate conditions to fill a template slot . Thus for an active sentence the perpetrator
will be sought in the head of the sentence and then, if not found, in previous sentences . This provides a
crude form of reference resolution as pronouns are not marked with any specific semantic information . The
target is checked for in the tail of the sentence and then in subsequent sentences . This process is repeated
for all the main fields of the template . It relies heavily on the fact that our text locating techniques are
accurate . If no appropriate action word is found the template creation process is abandoned . The process is
also abandoned if some of the template filling criteria are not satisfied (eg if the human target is a militar y
officer) . The template construction program is written in Prolog and was compiled to run stand-alone usin g
Quintus Prolog .

We obviously need to add more precise syntax and semantics at the sentence level and to provide a
structure which allows the inter-relationship of a group of sentences to be captured . The advantage of the
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method we are using at the moment is that it is robust and can be used as a fall-back whenever the mor e
precise methods fail . A limited amount of semantic parsing was implemented before the final MUC-4 test .
This over-rode the robust method whenever an appropriate parse was found . Due to the limited number of
lexical entries we were able to generate before the test, it was not possible to accurately assess the impac t
of the more precise grammar .

Below are given sample entries of the lexical structures used in the MUC-4 tests. The transitive ver b
murder and gerundive nominal killing illustrate the current state of the integration of lexical semanti c
information (seen in the qualia field) with corpus-related information derived from tuning (seen in th e
cospec field) [Pustejovsky 1991] . Cospecifacaiion is a semantic tagging of what collocational patterns th e
lexical item may enter into . The sem field specifies directly how to map the qualia values into the appropriat e
slots in the MUC templates .

gls("MURDER" ,

syn([type(v),subcati(H1),type(H1,np),subcat2(H2),type(H2,np) ,

subcat3(I1),type(I1,np)]) ,

qualia ( [agent iv e ( [human (H1)]),formal([human (H2),dead]) ,

const([instrument (I1)])]) ,

cospec ( [agentive ( [np (H1 ) , "*" , self] ) ,

formal( [self ,"*",np(H2)]) ,
const ( [self , "*" , "WITH" , np(I1)])]) ,

sem([type ('AMOK '),perp(H1),hum_tgt(H2),last (I1),hum_tgt_eff('DEATH')])) .

gls("KILLING" ,

syn ( [type (n) , subcat 1 (H1 ) , type (H1 ,np ) , subcat2 (H2) , type (H2 , np ) ] ) ,

qualia ([agent ive([human(H1)]),formal([human(H2),dead] )]) ,

cospec([agentive(["THE",self,"*","BY",np(H1)]) ,

formal([self,"OF",np(H2)])]) ,

sem([type('ATTACK'),perp(H1),hum_tgt(H2),inst(I1),hum_tgt_eff('DEATH')])) .

Parsing rules which allow indeterminate gaps are used to match the cospecification against the ke y
sentences found . A parser-generator uses the cospec fields of the GLS's to construct the parsing rules, wit h
type constraints obtained from the corresponding qualia fields . Certain operators within the rules (such
as np() and "*") allow varying degrees of unspecified material to be considered in the constituents of the
parse . The parsing rules can in this way be seen as specifying complex regular expressions . Because of thi s
looseness, the parser will not break due to unknown items or intervening material .

These parsing rules are individually pre-compiled into compact Prolog code (each a small expressio n
matching machine) before being included into the template constructor . The term-unification machinery
of Prolog automatically relates the syntactic constituents of the parse with the type constraints from th e
qualia and also with the arguments of the template semantics, avoiding the need for complex type matchin g
and argument matching procedures .

Performance is degraded by the current partial implementation of the cospec field in the lexical structure
definition . The statistical-based corpus-tuning program for the lexical structures was not included for th e
MUC-4 test runs, but is on development-schedule for inclusion in the Tipster test run later this summer .
The cospec for a lexical item ideally encodes corpus-based usage information for each semantic aspect of
the word (e .g . its qualia, event type, and argument structure) . This is a statistically-encoded structure o f
all admissible semantic collocations associated with the lexical item .

The initial seeding of the LS's is being done from lexical entries in the Longman Dictionary of Con -
temporary English [Proctor et al 1978], largely using tools described in [Wilks et al 1990] . These are the n
automatically adapted to the format of generative lexical structures . It is these lexical structures which ar e
then statistically tuned against the corpus, following the methods outlined in [Pustejovsky 1992] and [Anic k
and Pustejovsky 1990] . Semantic features for a lexical item which are missing or only partially specifie d
from dictionary seeding are, where possible, induced from a semantic model of the corpus .
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O . MESSAGE : ID TST2-MUC4-0048
1 . MESSAGE : TEMPLATE 6

2 . INCIDENT : DATE 19 APR 8 9

3 . INCIDENT: LOCATION EL SALVADOR : SAN SALVADOR (CITY )

4 . INCIDENT : TYPE ATTACK

5 . INCIDENT : STAGE OF EXECUTION ACCOMPLISHED

6 . INCIDENT: INSTRUMENT ID "BOMB "

7 . INCIDENT: INSTRUMENT TYPE BOMB: "BOMB "

8 . PERP : INCIDENT CATEGORY TERRORIST ACT

9 . PERP: INDIVIDUAL ID "TERRORIST"
10 . PERP : ORGANIZATION ID "THE FARABUNDO MARTI NATIONAL LIBERATION FRONT "
11 . PERP : ORGANIZATION CONFIDENCE *

12 . PHYS TGT : ID "VEHICLE"

13 . PHYS TGT : TYPE TRANSPORT VEHICLE: "VEHICLE" '
14 . PHYS TGT: NUMBER *

15 . PHYS TGT: FOREIGN NATION *

16 . PHYS TGT: EFFECT OF INCIDENT - : "VEHICLE "
17 . PHYS TGT : TOTAL NUMBER *

18 . HUM TGT : NAME "ROBERTO GARCIA ALVARADO "
19 . HUM TGT : DESCRIPTION "GENERAL" : "ROBERTO GARCIA ALVARADO "

20 . HUM TGT : TYPE MILITARY: "ROBERTO GARCIA ALVARADO"
21 . HUM TGT : NUMBER *

22 . HUM TGT : FOREIGN NATION *

23 . HUM TGT : EFFECT OF INCIDENT DEATH : "ROBERTO GARCIA ALVARADO "
24 . HUM TGT : TOTAL NUMBER *

_Table 5 : One of Four Templates Generated for TST2-MUC4-0048

Template Formatting

This final stage is also a Prolog program . This takes as input the lists of triples produced by the previou s
stage and a list of every name found in the text . It then produces the final template, introducing cros s
references between serially defined fields which are related to each other . The name list is used to attempt
to choose the fullest version of a name found in the text and substitute this for any shorter versions foun d
in the template outline.

TST2-MUC4-0048

MucBruce generates four templates for this text . All are related to the vehicle bomb described at th e
beginning of the text . The template and relevant paragraphs filters produce the following predictions :

slot(4, ['NO', 'ARSON', 'NO', 'ATTACK', 'YES', 'BOMBING', 'NO' ,

'KIDNAPPING', 'NO', 'ROBBERY', 'NO', 'DUMMY']) .

rel_paras([[1,3,5,6,13,18,19,20],'ARSON' ,

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21],'ATTACK' ,

[1,3,4,5,6,7,8,9,10,11,13,14,16,17,18,19,20],'BOMBING' ,

[1,3,6,7,16,17,20],'KIDNAPPING', [19,20],'ROBBERY', [],'DUMMY']) .

This means that only 4 BOMBING templates will be produced . The first of these produces a reasonably
complete match to the key ; details on the driver and bodyguards are omitted . The remaining three template s
are incorrect, carrying only the information that a bombing has taken place. The attack on the home i s
not identified by our naive method of multiple template generation, as it already occurs in a sequence o f
paragraphs in which only the first event is found .
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CONCLUSIONS
We feel that our present system, given its only partially completed state, shows potential . In particular th e
following techniques seem generally useful :

• The recognition of text types and sub-texts within a text using statistical techniques trained on larg e
numbers of sample texts .

• The use of the key templates to derive system lexicons .

• The automatic seeding of lexical structures from machine readable dictionaries .

• The use of lexically-driven cospecification to provide a robust parsing method at the sentence level .

• The successful combination of a variety of techniques in the human name recognizer .

• The production of a number of independent tools for tagging texts .

The system is robust and provides a good starting point for the application of more sophisticated tech-
niques . Given appropriate data it should be possible to produce a similar system for a different domain in a
matter of weeks. The tagger software is already being adapted to Japanese and we have already established
that we can achieve similar performance with the statistical methods for Japanese texts using characte r
bigrams .
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