An Unsupervised Word Sense Disambiguation System for
Under-Resourced Languages

Dmitry Ustalov*!, Denis Teslenko!, Alexander Panchenko*, Mikhail Chernoskutov',

Chris Biemann®, Simone Paolo Ponzetto*
* Data and Web Science Group, University of Mannheim, Germany
 Ural Federal University, Russia
¥ Universitit Hamburg, Department of Informatics, Language Technology Group, Germany
{dmitry,simone } @informatik.uni-mannheim.de, teslenkoden @ gmail.com,
mikhail.chernoskutov @urfu.ru, {panchenko,biemann} @informatik.uni-hamburg.de

Abstract
In this paper, we present Watasense, an unsupervised system for word sense disambiguation. Given a sentence, the system chooses the
most relevant sense of each input word with respect to the semantic similarity between the given sentence and the synset constituting the
sense of the target word. Watasense has two modes of operation. The sparse mode uses the traditional vector space model to estimate
the most similar word sense corresponding to its context. The dense mode, instead, uses synset embeddings to cope with the sparsity
problem. We describe the architecture of the present system and also conduct its evaluation on three different lexical semantic resources
for Russian. We found that the dense mode substantially outperforms the sparse one on all datasets according to the adjusted Rand index.

Keywords: word sense disambiguation, system, synset induction

1. Introduction

Word sense disambiguation (WSD) is a natural language
processing task of identifying the particular word senses of
polysemous words used in a sentence. Recently, a lot of
attention was paid to the problem of WSD for the Russian
language (Lopukhin and Lopukhina, 2016; |Lopukhin et al.,
2017; |Ustalov et al., 2017). This problem is especially dif-
ficult because of both linguistic issues — namely, the rich
morphology of Russian and other Slavic languages in gen-
eral — and technical challenges like the lack of software and
language resources required for addressing the problem.
To address these issues, we present Watasense, an unsuper-
vised system for word sense disambiguation. We describe
its architecture and conduct an evaluation on three datasets
for Russian. The choice of an unsupervised system is mo-
tivated by the absence of resources that would enable a su-
pervised system for under-resourced languages. Watasense
is not strictly tied to the Russian language and can be ap-
plied to any language for which a tokenizer, part-of-speech
tagger, lemmatizer, and a sense inventory are available.
The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 presents the Watasense
word sense disambiguation system, presents its architec-
ture, and describes the unsupervised word sense disam-
biguation methods bundled with it. Section 4 evaluates the
system on a gold standard for Russian. Section 5 concludes
with final remarks.

2. Related Work

Although the problem of WSD has been addressed in many
SemEval campaigns (Navigl et al., 2007; Agirre et al.,
2010; Manandhar et al., 2010, inter alia), we focus here
on word sense disambiguation systems rather than on the
research methodologies.

Among the freely available systems, IMS (“It Makes
Sense”) is a supervised WSD system designed initially for
the English language (Zhong and Ng, 2010). The system

uses a support vector machine classifier to infer the par-
ticular sense of a word in the sentence given its contex-
tual sentence-level features. Pywsd is an implementation
of several popular WSD algorithms implemented in a li-
brary for the Python programming language It offers both
the classical Lesk algorithm for WSD and path-based al-
gorithms that heavily use the WordNet and similar lexical
ontologies. DKPro WSD (Miller et al., 2013)) is a general-
purpose framework for WSD that uses a lexical ontology as
the sense inventory and offers the variety of WordNet-based
algorithms. Babelfy (Moro et al., 2014) is a WSD system
that uses BabelNet, a large-scale multilingual lexical ontol-
ogy available for most natural languages. Due to the broad
coverage of BabelNet, Babelfy offers entity linking as part
of the WSD functionality.

Panchenko et al. (2017b)) present an unsupervised WSD
system that is also knowledge-free: its sense inventory is
induced based on the JoBimText framework, and disam-
biguation is performed by computing the semantic similar-
ity between the context and the candidate senses (Biemann
and Riedl, 2013). Pelevina et al. (2016) proposed a simi-
lar approach to WSD, but based on dense vector represen-
tations (word embeddings), called SenseGram. Similarly
to SenseGram, our WSD system is based on averaging of
word embeddings on the basis of an automatically induced
sense inventory. A crucial difference, however, is that we
induce our sense inventory from synonymy dictionaries and
not distributional word vectors. While this requires more
manually created resources, a potential advantage of our
approach is that the resulting inventory contains less noise.

3. Watasense, an Unsupervised System for
Word Sense Disambiguation

Watasense is implemented in the Python programming
language using the scikit-learn (Pedregosa and others,

"https://github.com/alvations/pywsd

1018

Watasense Demo About

Cratbst COLEPXUT ONUCAHNE SKCNEPUMEHTOB.

Enter the text into the text area and click the
“Disambiguate” button.

The system will estimate the meaning of each
known word.

Additional details are available on NLPub.

Figure 1: A snapshot of the online demo, which is available at http://watasense.nlpub.org/ (in Russian).

2011) and Gensim (Iviehufek and Sojka, 2010) libraries.
Watasense offers a Web interface (Figure [1), a command-
line tool, and an application programming interface (API)
for deployment within other applications.

3.1. System Architecture

A sentence is represented as a list of spans. A span is a
quadruple: (w, p, [,), where w is the word or the token, p is
the part of speech tag, [is the lemma, i is the position of the
word in the sentence. These data are provided by tokenizer,
part-of-speech tagger, and lemmatizer that are specific for
the given language. The WSD results are represented as a
map of spans to the corresponding word sense identifiers.

The sense inventory is a list of synsets. A synset is rep-
resented by three bag of words: the synonyms, the hyper-
nyms, and the union of two former — the bag. Due to the
performance reasons, on initialization, an inverted index is
constructed to map a word to the set of synsets it is included
into.

Each word sense disambiguation method extends the
BaseWSD class. This class provides the end user with
a generic interface for WSD and also encapsulates com-
mon routines for data pre-processing. The inherited
classes like SparseWSD and DenseWSD should imple-
ment the disambiguate_word (.. .) method that dis-
ambiguates the given word in the given sentence. Both
classes use the bag representation of synsets on the initial-
ization. As the result, for WSD, not just the synonyms are
used, but also the hypernyms corresponding to the synsets.
The UML class diagram is presented in Figure [2]

Watasense supports two sources of word vectors: it can ei-
ther read the word vector dataset in the binary Word2Vec
format or use Word2Vec-Pyro4, a general-purpose word
vector server[] The use of a remote word vector server is
recommended due to the reduction of memory footprint per
each Watasense process.

Zhttps://github.com/nlpub/word2vec-pyro4

Inventory - ---- < Synset <

’ +synonyms: list<str>
+relations: list<str>
+bag: list<str>

+synsets: list<Synset>
+index: map<str, list<Synsets>>

(
|
1

BaseWSD
#inventory: Inventory +token: str
+disambiguate(sentence:list): map<Span, str> +pos: str
+disambiguate_word(sentence:list,index:int): str +lemma: str
T +index: int
7 \\

~
~

|
|
|
|
|
|
|
|
fffff > Span :
|
1
|
|
|
|
|
|

DenseWSD

SparseWSD

#sparse: DictVectorizer

#dense: map<Synset, list<float>>

disambiguate_word(..): str #sensegram(): list<float>

1
|
l
1
disambiguate_word(..): str :
|
1

Figure 2: The UML class diagram of Watasense.

3.2. User Interface

Figure [T| shows the Web interface of Watasense. It is com-
posed of two primary activities. The first is the text input
and the method selection (Figure[I). The second is the dis-
play of the disambiguation results with part of speech high-
lighting (Figure [3). Those words with resolved polysemy
are underlined; the tooltips with the details are raised on
hover.

3.3. Word Sense Disambiguation

We use two different unsupervised approaches for word
sense disambiguation. The first, called ‘sparse model’, uses
a straightforward sparse vector space model, as widely used
in Information Retrieval, to represent contexts and synsets.
The second, called ‘dense model’, represents synsets and
contexts in a dense, low-dimensional space by averaging
word embeddings.

Sparse Model. In the vector space model approach,
we follow the sparse context-based disambiguated
method (Faralli et al., 2016; |Panchenko et al., 2017b). For
estimating the sense of the word w in a sentence, we search
for such a synset 1w that maximizes the cosine similarity to
the sentence vector:

b= T 1
w arggl;i(cos(s,), (1)

1019

Watasense Demo About Results

1. CraTbsl COAEPXKUT OMNUCAHUE IKCTIEPUMEHTOB .

Lemma: 3KCNepUMEHT.
Synset N2 36055: 3KCNepUMEHT, IKCNEPUMEHTUPOBAHUE.

Hypernyms: nonbiTka, BOCNpou3BeAEHHE, UCCNen0BaHME,

MeTo.

Nouns are highlighted in red, adjectives are
highlighted in blue, and verbs are highlighted
in green.

The disambiguated word is underlined.

Additional details are available on NLPub.

Figure 3: The word sense disambiguation results with the word “experiments” selected. The tooltip shows its lemma

99 <

“experiment”, the synset identifier (36055), and the words forming the synset “experiment”, “experimenting” as well as its

99 <. ELINY3

hypernyms “attempt”, “reproduction”, “research”, “method”.

where S is the set of words forming the synset, T is the
set of words forming the sentence. On initialization, the
synsets represented in the sense inventory are transformed
into the tf—idf-weighted word-synset sparse matrix effi-
ciently represented in the memory using the compressed
sparse row format. Given a sentence, a similar transfor-
mation is done to obtain the sparse vector representation
of the sentence in the same space as the word-synset ma-
trix. Then, for each word to disambiguate, we retrieve the
synset containing this word that maximizes the cosine sim-
ilarity between the sparse sentence vector and the sparse
synset vector. Let wyax be the maximal number of synsets
containing a word and Sy, be the maximal size of a
synset. Therefore, disambiguation of the whole sentence
T requires O(|T| X Wmax X Smax) Operations using the ef-
ficient sparse matrix representation.

Dense Model. In the synset embeddings model approach,
we follow SenseGram (Pelevina et al., 2016) and apply it to
the synsets induced from a graph of synonyms. We trans-
form every synset into its dense vector representation by
averaging the word embeddings corresponding to each con-
stituent word:

S=—=3"w, 2

where w denotes the word embedding of w. We do the same
transformation for the sentence vectors. Then, given a word
w, a sentence T', we find the synset w that maximizes the
cosine similarity to the sentence:

N Zuesﬁ ZuGTﬁ
w—argrgl;fcos(Sl T).

3

On initialization, we pre-compute the dense synset vectors
by averaging the corresponding word embeddings. Given a
sentence, we similarly compute the dense sentence vector
by averaging the vectors of the words belonging to non-
auxiliary parts of speech, i.e., nouns, adjectives, adverbs,
verbs, etc. Then, given a word to disambiguate, we retrieve

the synset that maximizes the cosine similarity between the
dense sentence vector and the dense synset vector. Thus,
given the number of dimensions d, disambiguation of the
whole sentence T requires (|7 X wmax X d) operations.

4. Evaluation

We conduct our experiments using the evaluation method-
ology of SemEval 2010 Task 14: Word Sense Induction &
Disambiguation (Manandhar et al., 2010). In the gold stan-
dard, each word is provided with a set of instances, i.e.,
the sentences containing the word. Each instance is man-
ually annotated with the single sense identifier according
to a pre-defined sense inventory. Each participating sys-
tem estimates the sense labels for these ambiguous words,
which can be viewed as a clustering of instances, according
to sense labels. The system’s clustering is compared to the
gold-standard clustering for evaluation.

4.1. Quality Measure

The original SemEval 2010 Task 14 used the V-Measure ex-
ternal clustering measure (Manandhar et al., 2010). How-
ever, this measure is maximized by clustering each sentence
into his own distinct cluster, i.e., a ‘dummy’ singleton base-
line. This is achieved by the system deciding that every am-
biguous word in every sentence corresponds to a different
word sense. To cope with this issue, we follow a similar
study (Lopukhin et al., 2017) and use instead of the ad-
justed Rand index (ARI) proposed by [Hubert and Arabie
(1985)) as an evaluation measure.

In order to provide the overall value of ARI, we follow the
addition approach used in (Lopukhin et al., 2017)). Since the
quality measure is computed for each lemma individually,
the total value is a weighted sum, namely

1
ARI = S 11| ;Amw x [I(w)

, “

where w is the lemma, I(w) is the set of the instances for
the lemma w, ARI,, is the adjusted Rand index computed

1020

for the lemma w. Thus, the contribution of each lemma to
the total score is proportional to the number of instances of
this lemma.

4.2. Dataset

We evaluate the word sense disambiguation methods in
Watasense against three baselines: an unsupervised ap-
proach for learning multi-prototype word embeddings
called AdaGram (Bartunov et al., 2016J)), same sense for all
the instances per lemma (One), and one sense per instance
(Singletons). The AdaGram model is trained on the combi-
nation of RuWac, Lib.Ru, and the Russian Wikipedia with
the overall vocabulary size of 2 billion tokens (Lopukhin et
al., 2017).

As the gold-standard dataset, we use the WSD training
dataset for Russian created during RUSSE’2018: A Shared
Task on Word Sense Induction and Disambiguation for the
Russian Language (Panchenko et al., 2018). The dataset
has 31 words covered by 3 491 instances in the bts-rnc sub-
set and 5 words covered by 439 instances in the wiki-wiki
subset]

The following different sense inventories have been used
during the evaluation:

o WATLINK, a word sense network constructed automati-
cally. It uses the synsets induced in an unsupervised way
by the WATSET[CW 4105, MCL] method (Ustalov et al.,
2017) and the semantic relations from such dictionaries
as Wiktionary referred as Joint+Exp+SWN in [Ustalov
(2017). This is the only automatically built inventory we
use in the evaluation.

e RuThes, a large-scale lexical ontology for Rus-
sian created by a group of expert lexicogra-
phers (Loukachevitch, 2011)E]

o RuWordNet, a semi-automatic conversion of the
RuThes lexical ontology into a WordNet-like struc-
ture (Loukachevitch et al., 2016)E]

Since the Dense model requires word embeddings, we used
the 500-dimensional word vectors from the Russian Distri-
butional Thesaurus (Panchenko et al., 2017a)E] These vec-
tors are obtained using the Skip-gram approach trained on
the 1ib. rus.ec text corpus.

4.3. Results

We compare the evaluation results obtained for the Sparse
and Dense approaches with three baselines: the AdaGram
model (AdaGram), the same sense for all the instances per
lemma (One) and one sense per instance (Singletons). The
evaluation results are presented in Table [I] The columns
bts-rnc and wiki-wiki represent the overall value of ARI
according to Equation @). The column Avg. consists of
the weighted average of the datasets w.r.t. the number of
instances.

We observe that the SenseGram-based approach for word
sense disambiguation yields substantially better results in

3http://russe.nlpub.org/2018/wsi/
*http://www.labinform.ru/pub/ruthes/index_eng.htm
Shttp://www.labinform.ru/pub/ruwordnet/index_eng.htm
®https://doi.org/10.5281/zenodo.400631

Table 1: Results on RUSSE’ 2018 (Adjusted Rand Index).

Method bts-rnc wiki-wiki | Avg.
AdaGram 0.22 0.39 0.23
WATLINK Sparse 0.01 0.07 0.01

Dense 0.08 0.14 0.08

Sparse 0.00 0.17 0.01
RuThes Dense | 0.14 047 | 017

Sparse 0.00 0.11 0.01
RuWordNet 1, se | 012 050 | 0.15
One 0.00 0.00 0.00
Singletons 0.00 0.00 0.00

every case (Table [T). The primary reason for that is the
implicit handling of similar words due to the averaging of
dense word vectors for semantically related words. Thus,
we recommend using the dense approach in further stud-
ies. Although the AdaGram approach trained on a large
text corpus showed better results according to the weighted
average, this result does not transfer to languages with less
available corpus size.

5. Conclusion

In this paper, we presented Watasense[] an open source un-
supervised word sense disambiguation system that is pa-
rameterized only by a word sense inventory. It supports
both sparse and dense sense representations. We were able
to show that the dense approach substantially boosts the
performance of the sparse approach on three different sense
inventories for Russian. We recommend using the dense ap-
proach in further studies due to its smoothing capabilities
that reduce sparseness. In further studies, we will look at
the problem of phrase neighbors that influence the sentence
vector representations.

Finally, we would like to emphasize the fact that Watasense
has a simple API for integrating different algorithms for
WSD. At the same time, it requires only a basic set of lan-
guage processing tools to be available: tokenizer, a part-
of-speech tagger, lemmatizer, and a sense inventory, which
means that low-resourced language can benefit of its usage.

6. Acknowledgements

We acknowledge the support of the Deutsche Forschungs-
gemeinschaft (DFG) under the project “Joining Ontologies
and Semantics Induced from Text” (JOIN-T), the RFBR
under the projects no. 16-37-00203 mol_a and no. 16-37-
00354 mol_a, and the RFH under the project no. 16-04-
12019. The research was supported by the Ministry of Ed-
ucation and Science of the Russian Federation Agreement
no. 02.A03.21.0006. The calculations were carried out us-
ing the supercomputer “Uran” at the Krasovskii Institute of
Mathematics and Mechanics.

7. Bibliographical References

Agirre, E., de Lacalle, O. L., Fellbaum, C., Hsieh, S.-K.,
Tesconi, M., Monachini, M., Vossen, P., and Segers, R.
(2010). SemEval-2010 Task 17: All-words Word Sense
Disambiguation on a Specific Domain. In Proceedings

"https://github.com/nlpub/watasense

1021

of the 5th International Workshop on Semantic Evalua-
tion, SemEval " 10, pages 75-80, Los Angeles, CA, USA.
Association for Computational Linguistics.

Bartunov, S., Kondrashkin, D., Osokin, A., and Vetrov,
D. P. (2016). Breaking Sticks and Ambiguities with
Adaptive Skip-gram. Journal of Machine Learning Re-
search, 51:130-138.

Biemann, C. and Riedl, M. (2013). Text: now in 2D! A
framework for lexical expansion with contextual similar-
ity. Journal of Language Modelling, 1(1):55-95.

Faralli, S., Panchenko, A., Biemann, C., and Ponzetto, S. P.
(2016). Linked Disambiguated Distributional Semantic
Networks. In The Semantic Web — ISWC 2016: 15th In-
ternational Semantic Web Conference, Kobe, Japan, Oc-
tober 17-21, 2016, Proceedings, Part II, pages 56—64,
Cham, Germany. Springer International Publishing.

Hubert, L. and Arabie, P. (1985). Comparing partitions.
Journal of Classification, 2(1):193-218.

Lopukhin, K. A. and Lopukhina, A. A. (2016). Word
Sense Disambiguation for Russian Verbs Using Seman-
tic Vectors and Dictionary Entries. In Computational
Linguistics and Intellectual Technologies: Papers from
the Annual conference “Dialogue”, pages 393—-404,
Moscow, Russia. RSUH.

Lopukhin, K. A., Tomdin, B. L., and Lopukhina, A. A.
(2017). Word Sense Induction for Russian: Deep Study
and Comparison with Dictionaries. In Computational
Linguistics and Intellectual Technologies: Papers from
the Annual conference “Dialogue”. Volume 1 of 2. Com-
putational Linguistics: Practical Applications, pages
121-134, Moscow, Russia. RSUH.

Loukachevitch, N. V., Lashevich, G., Gerasimova, A. A.,
Ivanov, V. V., and Dobrov, B. V. (2016). Creating Rus-
sian WordNet by Conversion. In Computational Linguis-
tics and Intellectual Technologies: papers from the An-
nual conference “Dialogue”, pages 405-415, Moscow,
Russia. RSUH.

Loukachevitch, N. V. (2011). Thesauri in information re-
trieval tasks. Moscow University Press, Moscow, Rus-
sia. In Russian.

Manandhar, S., Klapaftis, 1., Dligach, D., and Pradhan, S.
(2010). SemEval-2010 Task 14: Word Sense Induction
& Disambiguation. In Proceedings of the 5th Interna-
tional Workshop on Semantic Evaluation, pages 63—68,
Uppsala, Sweden. Association for Computational Lin-
guistics.

Miller, T., Erbs, N., Zorn, H.-P., Zesch, T., and Gurevych,
I. (2013). DKPro WSD: A Generalized UIMA-based
Framework for Word Sense Disambiguation. In Pro-
ceedings of the 51st Annual Meeting of the Association
for Computational Linguistics: System Demonstrations,
pages 37-42, Sofia, Bulgaria.

Moro, A., Raganato, A., and Navigli, R. (2014). Entity
Linking meets Word Sense Disambiguation: A Unified
Approach. Transactions of the Association for Compu-
tational Linguistics, 2:231-244.

Navigli, R., Litkowski, K. C., and Hargraves, O. (2007).
SemEval-2007 Task 07: Coarse-Grained English All-
Words Task. In Proceedings of the Fourth Interna-

tional Workshop on Semantic Evaluations (SemEval-
2007), pages 30-35, Prague, Czech Republic. Associa-
tion for Computational Linguistics.

Panchenko, A., Ustalov, D., Arefyev, N., Paperno, D., Kon-
stantinova, N., Loukachevitch, N., and Biemann, C.,
(2017a). Human and Machine Judgements for Russian
Semantic Relatedness, pages 221-235. Springer Inter-
national Publishing, Cham, Germany.

Panchenko, A., Marten, F., Ruppert, E., Faralli, S., Ustalov,
D., Ponzetto, S. P., and Biemann, C. (2017b). Unsuper-
vised, Knowledge-Free, and Interpretable Word Sense
Disambiguation. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 91-96, Copenhagen,
Denmark. Association for Computational Linguistics.

Panchenko, A., Lopukhina, A., Ustalov, D., Lopukhin,
K., Leontyev, A., Arefyev, N., and Loukachevitch, N.
(2018). RUSSE’2018: A Shared Task on Word Sense In-
duction and Disambiguation for the Russian Language.
In Computational Linguistics and Intellectual Technolo-
gies: Papers from the Annual conference “Dialogue”,
Moscow, Russia. RSUH.

Pedregosa, F. et al. (2011). Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Research,
12:2825-2830.

Pelevina, M., Arefiev, N., Biemann, C., and Panchenko,
A. (2016). Making Sense of Word Embeddings. In Pro-
ceedings of the 1st Workshop on Representation Learn-
ing for NLP, pages 174—-183, Berlin, Germany. Associa-
tion for Computational Linguistics.

Ustalov, D., Panchenko, A., and Biemann, C. (2017). Wat-
set: Automatic Induction of Synsets from a Graph of
Synonyms. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1579-1590, Vancouver,
Canada. Association for Computational Linguistics.

Ustalov, D. (2017). Expanding Hierarchical Contexts for
Constructing a Semantic Word Network. In Computa-
tional Linguistics and Intellectual Technologies: Papers
from the Annual conference “Dialogue”. Volume 1 of
2. Computational Linguistics: Practical Applications,
pages 369-381, Moscow, Russia. RSUH.

Rehuiek, R. and Sojka, P. (2010). Software Framework
for Topic Modelling with Large Corpora. In New Chal-
lenges for NLP Frameworks Programme: A workshop at
LREC 2010, pages 51-55, Valetta, Malta. European Lan-
guage Resources Association (ELRA).

Zhong, Z. and Ng, H. T. (2010). It Makes Sense: A Wide-
Coverage Word Sense Disambiguation System for Free
Text. In Proceedings of the ACL 2010 System Demon-
strations, pages 78-83, Uppsala, Sweden. Association
for Computational Linguistics.

1022

	Introduction
	Related Work
	Watasense, an Unsupervised System for Word Sense Disambiguation
	System Architecture
	User Interface
	Word Sense Disambiguation

	Evaluation
	Quality Measure
	Dataset
	Results

	Conclusion
	Acknowledgements
	Bibliographical References

