
Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 66–70,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

ISI at the SIGMORPHON 2017 Shared Task on Morphological
Reinflection

Abhisek Chakrabarty and Utpal Garain
Computer Vision and Pattern Recognition Unit

Indian Statistical Institute
203 B.T. Road, Kolkata-700108, India

abhisek0842@gmail.com, utpal@isical.ac.in

Abstract

We present a system for morphological
reinflection based on the LSTM model.
Given an input word and morphosyntac-
tic descriptions, the problem is to classify
the proper edit tree that, applied on the in-
put word, produces the target form. The
proposed method does not require human
defined features and it is language inde-
pendent also. Currently, we evaluate our
system only for task 1 without using any
external data. From the test set results,
it is found that the proposed model beats
the baseline on 15 out of the 52 languages
in high resource scenario. But its perfor-
mance is poor when the training set size is
medium or low.

1 Introduction

The morphological reinflection task is to generate
the variant of a source word, given the morphosyn-
tactic descriptions of the target word. This year’s
shared task (Cotterell et al., 2017) is divided into
two sub-tasks. Task 1 demands to inflect the iso-
lated word forms based on labelled training data.
For example, given the source form ‘communi-
cate’ and the features ‘V;3;SG;PRS’, one has to
predict the target form ‘communicates’. Whereas,
in task 2, partially filled incomplete paradigms are
provided. The goal is to complete them using a re-
stricted number of full paradigms. For each of the
tasks, 3 separate training files are given per lan-
guage, which differ in size (low/medium/high), in
order to analyze systems’ generalization ability in
low and high resource situations. The competition
is spread over 52 languages. For each language, a
finite set of morphological tags are provided, from
which the target inflections are taken. Evaluation
is done separately under each of the three different

training sets. To make the shared task competition
fair, use of external resources are forbidden for the
main competition track. However, for those sys-
tems which make use of external monolingual cor-
pora, a list of approved external corpora selected
from the Wikipedia text dumps are provided.

So far, there have been several efforts on rein-
flection employing statistical learning based meth-
ods (Dreyer and Eisner, 2011; Durrett and DeN-
ero, 2013; Ahlberg et al., 2015; King, 2016) and
string transduction (Nicolai et al., 2015). These
methods entail feature definition which is hard to
generalize for all of the world’s languages.

In this article, we introduce a long short-term
memory (LSTM) network architecture to handle
the morphological reinflection task. The proposed
method is language independent and does not re-
quire features to be defined manually. Our model
is related to the encoder-decoder based approaches
such as (Aharoni et al., 2016; Faruqui et al., 2016;
Kann and Schütze, 2016a,b), but the main dif-
ference is that the proposed network is not de-
signed to generate sequence of characters as out-
put. Rather, we formulate the problem as to clas-
sify the transformation process required to convert
a source form to its target form (Chakrabarty et al.,
2017). Our goal is to model such a system which
receives an input word and the morphological tags
and returns the proper transformation that induces
the target word. The source-target transformation
is accomplished using edit tree (Chrupala et al.,
2008; Müller et al., 2015). Initially all edit trees
are extracted from the labelled pairs in the train-
ing data and then the distinct candidates from them
are marked as the class labels. We feed the charac-
ter sequence of the input word through the LSTM
network to encode it and finally, the encoded rep-
resentation is jointly trained with the input tags to
classify the correct edit tree.

Currently, we assess our system only for task 1

66

Figure 1: Edit tree for the source-target pair ‘sang-
sing’.

on all 52 languages, though it can be used for task
2 also. No external data such as the Wikipedia
dumps provided by the SIGMORPHON commit-
tee has been exploited in the present work. The
results obtained from the test sets indicate that the
proposed method is resource intensive. When the
training size is high, it achieves over the baseline
system on 15 out of the 52 languages. But on
medium and low amount training data, the perfor-
mance is poor beating the baseline on 5 and 4 lan-
guages only.

2 Methodology

Edit Trees: An edit tree encodes a transforma-
tion which maps a source string to a target string.
Given a source-target pair, the process of find-
ing the corresponding edit tree is as follows. At
first, the longest common substring (LCS) be-
tween them is found and then the prefix and suffix
pairs of the LCS are recursively modelled in the
same manner. The edit tree does not encode the
LCS itself. Instead, it contains the length of the
prefix and suffix in the source string for general-
ization. When no LCS is found between the source
and the target strings, they are kept as a substitu-
tion node.

Figure 1 shows an example of edit trees between
the source-target pair ‘sang-sing’. The LCS be-
tween them is ‘ng’. In the source string, the pre-
fix length of the LCS is 2 (for ‘sa’) and the suffix
length is 0. So, the root of the edit tree keeps the
information (2, 0). The left subtree of the root rep-
resents the edit tree between the prefix pair of the
LCS in the source and the target string i.e. for ‘sa-
si’ and following the same way, the right subtree
remains empty.

Note that, to generalize the transformation pat-
tern, the LCS is not stored in the edit tree. Con-

Figure 2: The model architecture.

sider the two source-target pairs ‘gives-give’ and
‘takes-take’ where the transformation rule is same
i.e. to omit the ending ‘s’ character. The root of
the corresponding edit tree contains (0, 1). If the
LCS were stored in the root, then the tree could not
be generalized for all the pairs like ‘comes-come’,
‘sleeps-sleep’ etc. where the same rule works.

2.1 The System Description

The architecture of our system is presented in Fig-
ure 2. At first, we use the LSTM network to make
a syntactic embedding of the source word, that
captures the morphological regularities. A charac-
ter alphabet of the concerned language is defined
as C. Let the input word w consists of the char-
acter sequence c1, . . . , cm where the word length
is m and each character ci is represented as a one
hot encoded vector 1ci . The particular dimension
of 1ci referring to the index of ci in the alpha-
bet C, is set to one and the other dimensions are
made zero. 1c1 , . . . , 1cm are passed to an embed-
ding layer Ec ∈ Rdc×|C|, which projects them to
dc dimensional vectors ec1 , . . . , ecm , by doing the
operation eci = Ec · 1ci where ‘·’ denotes matrix
multiplication.

When the sequence of vectors ec1 , . . . , ecm is
given to the LSTM network, it computes the state
sequence h1, . . . , hm using the following equa-

67

tions:

ft = σ(Wf ect + Uf ht−1 + Vf ct−1 + bf)

it = σ(Wiect + Uiht−1 + Vict−1 + bi)

ct = ft ⊙ ct−1

+ it ⊙ tanh(Wcect + Ucht−1 + bc)

ot = σ(Woect + Uoht−1 + Voct + bo)

ht = ot ⊙ tanh(ct),

σ denotes the sigmoid function and ⊙ stands for
the element-wise (Hadamard) product. LSTM uti-
lizes an extra memory ct that is controlled by three
gates - input (it), forget (ft) and output (ot). W, U,
V (weights), b (bias) are the parameters. Even-
tually, we take the final state hm as the encoded
representation of w.

In addition to the source word, we have mor-
phosyntactic features in hand to predict the target
form. From the training data, all distinct features
are sorted out to make a feature dictionary F . For
a training sample, the given features are mapped to
|F | dimensional feature vector f = (f1, . . . , f|F |)
where fi = 1 if the ith feature in the dictionary
is present in the input features, otherwise fi is set
to 0. Thus, f becomes a numeric representation of
the input features for the present training sample.

Another important point is that, for any arbi-
trary input word, all unique edit trees in the train-
ing data are not applicable due to incompatible
substitutions. For example, the edit tree for the
source-target pair ‘sang-sing’ (shown in Figure 1)
cannot be applied on the word ‘sleep’. In spite
of all unique edit trees are set as the class labels,
few of them are applicable for an input word to the
model. To sort out this issue, we put the informa-
tion over which classes the model should distribute
the output probability mass while training.

Let T = {t1, . . . , tk} be the distinct edit trees
set extracted from the training data. For the input
word w, its applicable edit trees vector is defined
as a = (a1, . . . , ak) where ∀j ∈ {1, . . . , k}, aj =
1 if tj is applicable for w, otherwise 0. Hence, a
holds the applicable edit tree information for w.
Finally, we combine the LSTM output hm, feature
vector f and applicable tree vector a together for
the edit tree classification task as following,

l = softplus(Lhhm + Lf f + Laa + b),

where ‘softplus’ is the activation function f(x) =
ln(1 + ex) and Lh, Lf , La and b are the network

parameters. Next, l is passed through the softmax
layer to get the output labels for w.

To pick the maximum probable edit tree for an
input word, we exploit the prior information about
applicable classes. Let o = (o1, . . . , ok) be the
output of the softmax layer. The particular edit
tree tj ∈ T is considered as the right candidate,
where

j = argmaxj′∈{1,...,k} ∧ aj′=1 oj′

In this way, we choose the maximum probable
class over the applicable classes only.

Language-
Training Set Size

Our Model’s
Acc. (%)

Baseline
Acc. (%)

albanian-high 79.1 78.9
arabic-high 60.2 50.7
armenian-high 89.5 87.2
dutch-high 90.2 87.0
georgian-high 94.4 93.8
hebrew-high 71.1 54.0
hindi-high 99.1 93.5
hungarian-high 77.5 68.5
icelandic-high 78.2 76.3
irish-high 60.6 53.0
italian-high 91.1 76.9
khaling-high 56.0 53.7
russian-high 86.1 85.7
turkish-high 73.5 72.6
urdu-high 98.2 96.5
english-medium 91.1 90.9
french-medium 73.9 72.5
hebrew-medium 46.6 37.5
italian-medium 75.7 71.6
scottish-gaelic-medium 62.0 48.0
albanian-low 21.6 21.1
danish-low 61.9 58.4
khaling-low 6.1 3.1
serbo-croatian-low 24.2 18.4

Table 1: Our model’s performance on the test
datasets for those languages where it beats the
baseline system.

3 Experimentation

Parameters of the Model: For all 52 languages,
we limit each word length to maximum 25 char-
acters. Null characters are padded to the smaller
words at the end and for words having more than
25 characters, extra characters are omitted. We
represent each character as 25 length sequence of
one hot encoded character vectors that are passed
to the embedding layer. The output dimension of
the embedding layer is set as the length of the one
hot encoded character vectors i.e. |C|, size of the
character alphabet of the concerned language.

Hyper parameters of the model are given as fol-
lows. The number of neurons in the hidden layer

68

Language-
Training Set Size

Our Model’s
Acc. (%)

Baseline
Acc. (%)

albanian-high 79.4 78.1
arabic-high 60 47.7
armenian-high 89.2 89.1
dutch-high 88 86.8
georgian-high 94.6 94
hebrew-high 72.3 55.8
hindi-high 99.1 94
hungarian-high 75.8 71.1
icelandic-high 80.6 76.1
irish-high 62.4 54.3
italian-high 91.6 79.9
khaling-high 56.2 53.8
russian-high 85.6 82
turkish-high 74.4 72.9
urdu-high 97.4 95.8
georgian-medium 90.4 90
hebrew-medium 47.3 40
italian-medium 78.2 73.8
scottish-gaelic-medium 68 52
danish-low 60.2 59.8
khaling-low 5 3.9
serbo-croatian-low 26.7 21.3
welsh-low 17 15

Table 2: Our model’s performance on the devel-
opment datasets for those languages where it beats
the baseline system.

of LSTM is set to 64 for all languages. We apply
online learning in our model. Number of epochs
and the dropout rate are set to 150 and 0.2 respec-
tively. We use ‘Adagrad’ (Duchi et al., 2011) opti-
mization algorithm for training. Categorical cross-
entropy function is used to measure the loss in our
model.

3.1 Results

As stated in section 1, our method overperforms
the baseline system on 15 out of the 52 languages
in high resource configuration for the test sets.
Whereas, in medium and low resource situations
separately, it beats the baseline on 5 and 4 lan-
guages respectively. We provide these results
in Table 1. The results show that the proposed
method is resource intensive.

We also provide our model’s performance on
the development datasets in Table 2. The results
are quite similar to the results given in Table 1.
When the training size is high, the proposed model
beats the baseline on 15 languages. For medium
and low resource scenario, it achieves over the
baseline on 4 languages only.

References
Roee Aharoni, Yoav Goldberg, and Yonatan Be-

linkov. 2016. Improving sequence to sequence
learning for morphological inflection generation:
The biu-mit systems for the sigmorphon 2016
shared task for morphological reinflection. In
Proceedings of the 14th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonol-
ogy, and Morphology. Association for Computa-
tional Linguistics, Berlin, Germany, pages 41–48.
http://anthology.aclweb.org/W16-2007.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learn-
ing of morphology. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 1024–
1029. http://www.aclweb.org/anthology/N15-1107.

Abhisek Chakrabarty, Onkar Arun Pandit, and Utpal
Garain. 2017. Context sensitive lemmatization us-
ing two successive bidirectional gated recurrent net-
works. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics.
Association for Computational Linguistics, Vancou-
ver, Canada.

Grzegorz Chrupala, Georgiana Dinu, and
Josef van Genabith. 2008. Learning mor-
phology with morfette. In Proceedings of
the Sixth International Conference on Lan-
guage Resources and Evaluation (LREC’08).
European Language Resources Association
(ELRA), Marrakech, Morocco. http://www.lrec-
conf.org/proceedings/lrec2008/pdf/594paper.pdf .

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in
52 languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection. Association for Computa-
tional Linguistics, Vancouver, Canada.

Markus Dreyer and Jason Eisner. 2011. Discovering
morphological paradigms from plain text using a
dirichlet process mixture model. In Proceedings of
the 2011 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Edinburgh, Scotland, UK., pages
616–627. http://www.aclweb.org/anthology/D11-
1057.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of
Machine Learning Research 12(Jul):2121–2159.
http://www.jmlr.org/papers/v12/duchi11a.html.

69

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms.
In Proceedings of the 2013 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, Atlanta, Georgia, pages 1185–1195.
http://www.aclweb.org/anthology/N13-1138.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection gener-
ation using character sequence to sequence learn-
ing. In Proceedings of the 2016 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, San Diego, California, pages 634–643.
http://www.aclweb.org/anthology/N16-1077.

Katharina Kann and Hinrich Schütze. 2016a. Med:
The lmu system for the sigmorphon 2016 shared
task on morphological reinflection. In Proceed-
ings of the 14th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonol-
ogy, and Morphology. Association for Computa-
tional Linguistics, Berlin, Germany, pages 62–70.
http://anthology.aclweb.org/W16-2010.

Katharina Kann and Hinrich Schütze. 2016b. Single-
model encoder-decoder with explicit morphologi-
cal representation for reinflection. In Proceed-
ings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
2: Short Papers). Association for Computational
Linguistics, Berlin, Germany, pages 555–560.
http://anthology.aclweb.org/P16-2090.

David King. 2016. Evaluating sequence alignment
for learning inflectional morphology. In Pro-
ceedings of the 14th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonol-
ogy, and Morphology. Association for Computa-
tional Linguistics, Berlin, Germany, pages 49–53.
http://anthology.aclweb.org/W16-2008.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with lemming. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, Lisbon, Portugal, pages
2268–2274. http://aclweb.org/anthology/D15-1272.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 922–
931. http://www.aclweb.org/anthology/N15-1093.

70

