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Abstract

Low-resource named entity recognition is
still an open problem in NLP. Most state-
of-the-art systems require tens of thou-
sands of annotated sentences in order to
obtain high performance. However, for
most of the world’s languages it is unfea-
sible to obtain such annotation. In this pa-
per, we present a transfer learning scheme,
whereby we train character-level neural
CRFs to predict named entities for both
high-resource languages and low-resource
languages jointly. Learning character rep-
resentations for multiple related languages
allows transfer among the languages, im-
proving F1 by up to 9.8 points over a log-
linear CRF baseline.

1 Introduction

Named entity recognition (NER) presents a chal-
lenge for modern machine learning, wherein a
learner must deduce which word tokens refer to
people, locations and organizations (along with
other possible entity types). The task demands that
the learner generalize from limited training data
and to novel entities, often in new domains. Tradi-
tionally, state-of-the-art NER models have relied
on hand-crafted features that pick up on distribu-
tional cues as well as portions of the word forms
themselves. In the past few years, however, neu-
ral approaches that jointly learn their own features
have surpassed the feature-based approaches in per-
formance. Despite their empirical success, neural
networks have remarkably high sample complexity
and still only outperform hand-engineered feature
approaches when enough supervised training data
is available, leaving effective training of neural net-
works in the low-resource case a challenge.

For most of the world’s languages, there is a very

Sandra works for Google in Manhattan, New York.
B-PER B-ORG B-LOC I-LOC I-LOCOO O

Figure 1: Example of an English sentence annotated with its
typed named entities.

limited amount of training data for NER; CoNLL—
the standard dataset in the field—only provides an-
notations for 4 languages (Tjong Kim Sang, 2002;
Tjong Kim Sang and De Meulder, 2003). Cre-
ating similarly sized datasets for other languages
has a prohibitive annotation cost, making the low-
resource case an important scenario. To get around
this barrier, we develop a cross-lingual solution:
given a low-resource target language, we addition-
ally offer large amounts of annotated data in a lan-
guage that is genetically related to the target lan-
guage. We show empirically that this improves the
quality of the resulting model.

In terms of neural modeling, we introduce a
novel neural conditional random field (CRF) for
cross-lingual NER that allows for cross-lingual
transfer by extracting character-level features using
recurrent neural networks, shared among multiple
languages and; this tying of parameters enables
cross-lingual abstraction. With experiments on 15
languages, we confirm that feature-based CRFs out-
perform the neural methods consistently in the low-
resource training scenario. However, with the ad-
dition of cross-lingual information, the tables turn
and the neural methods are again on top, demon-
strating that cross-lingual supervision is a viable
method to reduce the training data state-of-the-art
neural approaches require.

2 Neural Conditional Random Fields

Named entity recognition is typically framed as
a sequence labeling task using the BIO scheme
(Ramshaw and Marcus, 1995; Baldwin, 2009), i.e.,
given an input sentence, the goal is to assign a label
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to each token: B if the token is the beginning of an
entity, or I if the token is inside an entity, or O if
the token is outside an entity (see Fig. 1). Follow-
ing convention, we focus on person (per), location
(loc), organization (org), and miscellaneous (misc)
entity types, resulting in 9 tags: {B-ORG, I-ORG,
B-PER, I-PER, B-LOC, I-LOC, B-MISC, I-MISC}.

Conditional Random Fields (CRFs), first intro-
duced in Lafferty et al. (2001), generalize the classi-
cal maximum entropy models (Berger et al., 1996)
to distributions over structured objects, and are an
effective tool for sequence labeling tasks like NER.
We briefly overview the formalism here and then
discuss its neural parameterization.

2.1 CRFs: A Cursory Overview
We start with two discrete alphabets Σ and ∆. In
the case of sentence-level sequence tagging, Σ is a
set of words (potentially infinite) and ∆ is a set of
tags (generally finite; in our case |∆| = 9). Given
t = t1 · · · tn ∈ ∆n and w = w1 · · ·wn ∈ Σn,
where n is the sentence length. A CRF is a globally
normalized conditional probability distribution,

pθ(t | w) =
1

Zθ(w)

n∏
i=1

ψ (ti−1, ti,w;θ) , (1)

where ψ (ti−1, ti,w;θ) ≥ 0 is an arbitrary non-
negative potential function1 that we take to be a
parametric function of the parameters θ and the
partition function Zθ(w) is the sum over all tag-
gings of length n.

So how do we choose ψ (ti−1, ti,w;θ)? We
discuss two alternatives, which we will compare
experimentally in §5.

2.2 Log-Linear Parameterization
Traditionally, computational linguists have stuck to
a simple log-linear parameterization, i.e.,

ψ (ti−1, ti,w;θ) = exp
(
η>f (ti−1, ti,w)

)
,

(2)
where η ∈ Rd and the user defines a feature func-
tion f : Σ× Σ×∆n → Rd that extracts relevant
information from the adjacent tags ti−1 and ti and
the sentence w. In this case, the model’s parame-
ters are θ = {η}. Common binary features include
word form features, e.g., does the word at the ith po-
sition end in -ation?, and contextual features, e.g.,
is the word next to (i−1)th word the? These binary

1We slightly abuse notation and use t0 as a distinguished
beginning-of-sentence symbol.

features are conjoined with other indicator features,
e.g., is the ith tag I-LOC? We refer the reader to
Sha and Pereira (2003) for standard CRF feature
functions employed in NER, which we use in this
work. The log-linear parameterization yields a con-
vex objective and is extremely efficient to compute
as it only involves a sparse dot product, but the
representational power of model depends fully on
the quality of the features the user selects.

2.3 (Recurrent) Neural Parameterization

Modern CRFs, however, try to obviate the hand-
selection of features through deep, non-linear pa-
rameterizations of ψ (ti−1, ti,w;θ). This idea is
far from novel and there have been numerous at-
tempts in the literature over the past decade to find
effective non-linear parameterizations (Peng et al.,
2009; Do and Artières, 2010; Collobert et al., 2011;
Vinel et al., 2011; Fujii et al., 2012). Until re-
cently, however, it was not clear that these non-
linear parameterizations of CRFs were worth the
non-convexity and the extra computational cost. In-
deed, on neural CRFs, Wang and Manning (2013)
find that “a nonlinear architecture offers no benefits
in a high-dimensional discrete feature space.”

However, recently with the application of
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) recurrent neural networks
(RNNs) (Elman, 1990) to CRFs, it has become
clear that neural feature extractors are superior to
the hand-crafted approaches (Huang et al., 2015;
Lample et al., 2016; Ma and Hovy, 2016). As our
starting point, we build upon the architecture of
Lample et al. (2016), which is currently competi-
tive with the state of the art for NER.

ψ ( ti−1, ti,w; θ) = (3)

exp
(
a(ti−1, ti)+o(ti)>W s(w)i

)
,

where a(ti−1, ti) is the weight of transitioning from
t−1 to t and o(ti), s(w)i ∈ Rr are the output tag
and word embedding for the ith word, respectively.
We define sentence’s embeddings as the concate-
nation of an LSTM run forward and backward2

s(w) =
[−−−−→
LSTMθ(ω);

←−−−−
LSTMθ(ω)

]
. (4)

Note that the embedding for the ith word in
this sentence is s(w)i. The input vector ω =

2We take r = 100 and use a two-layer LSTM with 200
hidden units, each.
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[ω1, . . . , ω|w|] to this BiLSTM is a vector of em-
beddings: we define

ωi =
[
LSTMθ

(
c1 · · · c|wi|

)
; e(wi)

]
, (5)

where c1 · · · c|wi| are the characters in word wi. In
other words, we run an LSTM over the character
stream and concatenate it with a word embedding
for each type. Now, the parameters θ are the set of
all the LSTM parameters and other embeddings.

3 Cross-Lingual Extensions

One of the most striking features of neural net-
works is their ability to abstract general represen-
tations across many words. Our question is: can
neural feature-extractors abstract the notion of a
named entity across similar languages? For exam-
ple, if we train a character-level neural CRF on
several of the highly related Romance languages,
can our network learn a general representation enti-
ties in these languages?

3.1 Cross-Lingual Architecture
We now describe our novel cross-lingual architec-
ture. Given a language label `, we want to create a
language-specific CRF pθ(t | w, `) with potential:

ψ ( ti−1, ti,w, `;θ ) = exp (a(ti−1, ti)+ (6)

u>tanh(W [ s(w)i; l(`) ] + b)) ,

where l(`) ∈ Rr is an embedding of the lan-
guage ID, itself. Importantly, we share some
parameters across languages: the transitions be-
tween tags a() and the character-level neural net-
works that discover what a form looks like. Re-
call s(w) is defined in Eq. 4 and Eq. 5. The
part LSTMθ

(
c1 · · · c|wi|

)
is shared cross-lingually

while e(wi) is language-specific.
Now, given a low-resource target language τ and

a source language σ (potentially, a set of m high-
resource source languages {σi}mi=1). We consider
the following training objective

L (θ) =
∑

(t,w)∈Dτ
log pθ (t | w, τ) + (7)

µ ·
∑

(t,w)∈Dσ
log pθ (t | w, σ) ,

where µ is a trade-off parameter, Dτ is the set of
training examples for the target language and Dσ
is the set of training data for the source language σ.
In the case of multiple source languages, we add
a summand to the set of source languages used, in
which case set have multiple training sets Dσi .

Language Code Family Branch

Galician gl Indo-European Romance
Catalan cl Indo-European Romance
French fr Indo-European Romance
Italian it Indo-European Romance
Romanian ro Indo-European Romance
Spanish es Indo-European Romance

West Frisian fy Indo-European Germanic
Dutch nl Indo-European Germanic

Tagalog tl Austronesian Philippine
Cebuano ceb Austronesian Philippine

Ukranian uk Indo-European Slavic
Russian ru Indo-European Slavic

Marathi mr Indo-European Indo-Aryan
Hindi hi Indo-European Indo-Aryan
Urdu ur Indo-European Indo-Aryan

Table 1: List of the languages used in our experiments with
their ISO 639-1 codes, family and the branch in that family.

In the case of the log-linear parameterization,
we simply add a language-specific atomic fea-
ture for the language-id, drawing inspiration from
Daumé III (2007)’s approach for domain adaption.
We then conjoin this new atomic feature with the
existing feature templates, doubling the number of
feature templates: the original and the new feature
template conjoined with the language ID.

4 Related Work

We divide the discussion of related work topically.

Character-Level Neural Networks. In recent
years, many authors have incorporated character-
level information into taggers using neural net-
works, e.g., dos Santos and Zadrozny (2014) em-
ployed a convolutional network for part-of-speech
tagging in morphologically rich languages and
Ling et al. (2015) a LSTM for a myriad of dif-
ferent tasks. Relatedly, Chiu and Nichols (2016)
approached NER with character-level LSTMs, but
without using a CRF. Our work firmly builds upon
on this in that we, too, compactly summarize the
word form with a recurrent neural component.

Neural Transfer Schemes. Previous work has
also performed transfer learning using neural net-
works. The novelty of our work lies in the cross-
lingual transfer. For example, Peng and Dredze
(2017) and Yang et al. (2017), similarly oriented
concurrent papers, focus on domain adaptation
within the same language. While this is a related
problem, cross-lingual transfer is much more in-
volved since the morphology, syntax and semantics
change more radically between two languages than
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languages low-resource (|Dτ | = 100) high-resource (|Dτ | = 10000)

τ σi log-linear neural ∆ log-linear neural ∆

gl — 57.64 49.19 −8.45 87.23 89.42 +2.19
gl es 71.46 76.40 +4.94 87.50 89.46 +1.96
gl ca 67.32 75.40 +8.08 87.40 89.32 +1.92
gl it 63.81 70.93 +7.12 87.34 89.50 +2.16
gl fr 58.22 68.02 +9.80 87.92 89.38 +1.46
gl ro 59.23 67.76 +8.44 87.24 89.19 +1.95

fy — 62.71 58.43 −4.28 90.42 91.03 +0.61
fy nl 68.15 72.12 +3.97 90.94 91.01 +0.07

tl — 58.15 56.98 −1.17 74.24 79.03 +4.79
tl ceb 75.29 81.79 +6.50 74.02 79.51 +5.48

uk — 61.40 60.65 −0.75 85.63 87.39 +1.75
uk ru 70.94 76.74 +5.80 86.01 87.42 +1.41

mr — 42.76 39.02 −3.73 70.98 74.95 +4.86
mr hi 54.25 60.92 +6.67 70.45 74.49 +4.04
mr ur 49.32 58.92 +9.60 70.75 74.81 +4.07

Table 2: Results comparing the log-linear and neural CRFs in various settings. We compare the log-linear linear and the neural
CRF in the low-resource transfer setting. The difference (∆) is blue when positive and red when negative.

between domains.

Projection-based Transfer Schemes. Projec-
tion is a common approach to tag low-resource
languages. The strategy involves annotating one
side of bitext with a tagger for a high-resource
language and then project the annotation the over
the bilingual alignments obtained through unsu-
pervised learning (Och and Ney, 2003). Using
these projected annotations as weak supervision,
one then trains a tagger in the target language.
This line of research has a rich history, starting
with Yarowsky and Ngai (2001). For a recent
take, see Wang and Manning (2014) for project-
ing NER from English to Chinese. We emphasize
that projection-based approaches are incomparable
to our proposed method as they make an additional
bitext assumption, which is generally not present
in the case of low-resource languages.

5 Experiments

Fundamentally, we want to show that character-
level neural CRFs are capable of generalizing the
notion of an entity across related languages. To
get at this, we compare a linear CRF (see §2.2)
with standard feature templates for the task and a
neural CRF (see §2.3). We further compare three
training set-ups: low-resource, high-resource and

low-resource with additional cross-lingual data for
transfer. Given past results in the literature, we
expect linear CRF to dominate in the low-resource
settings, the neural CRF to dominate in the high-
resource setting. The novelty of our paper lies in
the consideration of the low-resource with transfer
case: we show that neural CRFs are better at trans-
ferring entity-level abstractions cross-linguistically.

5.1 Data

We experiment on 15 languages from the cross-
lingual named entity dataset described in Pan et al.
(2017). We focus on 5 typologically diverse3 tar-
get languages: Galician, West Frisian, Ukranian,
Marathi and Tagalog. As related source languages,
we consider Spanish, Catalan, Italian, French, Ro-
manian, Dutch, Russian, Cebuano, Hindi and Urdu.
For the language code abbreviations and linguistic
families, see Tab. 1. For each of the target lan-
guages, we emulate a truly low-resource condition,
creating a 100 sentence split for training. We then
create a 10000 sentence superset to be able to com-
pare to a high-resource condition in those same

3While most of these languages are from the Indo-
European family, they still run the gauntlet along a number of
typological axes, e.g., Dutch and West Frisian have far less
inflection compared to Russian and Ukrainian and the Indo-
Aryan languages employ postpositions (attached to the word)
rather than prepositions (space separated).
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languages. For the source languages, we only cre-
ated a 10000 sentence split. We also create disjoint
validation and test splits, of 1000 sentences each.

5.2 Results

The linear CRF is trained using L-BFGS until con-
vergence using the CRF suite toolkit.4 We train
our neural CRF for 100 epochs using ADADELTA

(Zeiler, 2012) with a learning rate of 1.0. The re-
sults are reported in Tab. 2. To understand the
table, take the target language (τ ) Galician. In
terms of F1, while the neural CRF outperforms the
log-linear CRF the high-resource setting (89.42 vs.
87.23), it performs poorly in the low-resource set-
ting (49.19 vs. 56.64); when we add in a source lan-
guage (σi) such as Spanish, F1 increases to 76.40
for the neural CRF and 71.46 for the log-linear
CRF. The trend is similar for other source lan-
guages, such as Catalan (75.40) and Italian (70.93).

Overall, we observe three general trends. i)
In the monolingual high-resource case, the neu-
ral CRF outperforms the log-linear CRF. ii) In the
low-resource case, the log-linear CRF outperforms
the neural CRF. iii) In the transfer case, the neural
CRF wins, however, indicating that our character-
level neural approach is truly better at generalizing
cross-linguistically in the low-resource case (when
we have little target language data), as we hoped. In
the high-resource case (when we have a lot of target
language data), the transfer learning has little to no
effect. We conclude that our cross-lingual neural
CRF is a viable method for the transfer of NER.
However, there is a still a sizable gap between the
neural CRF trained on 10000 target sentences and
the transfer case (100 target and 10000 source),
indicating there is still room for improvement.

6 Conclusion

We have investigated the task of cross-lingual trans-
fer in low-resource named entity recognition using
neural CRFs with experiments on 15 typologically
diverse languages. Overall, we show that direct
cross-lingual transfer is an option for reducing sam-
ple complexity for state-of-the-art architectures. In
the future, we plan to investigate how exactly the
networks manage to induce a cross-lingual entity
abstraction.

4
http://www.chokkan.org/software/crfsuite/
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