

Sixth International Joint Conference on
Natural Language Processing

The Companion Volume of the Proceedings:
System Demonstrations

ii

We wish to thank our sponsors and supporters!

Platinum Sponsors

www.anlp.jp

Silver Sponsors

www.google.com

Bronze Sponsors

www.rakuten.com

Supporters

Nagoya Convention & Visitors Bureau

 iii

We wish to thank our organizers!

Organizers

Asian Federation of Natural Language Processing (AFNLP)

Toyohashi University of Technology

iv

c©2013 Asian Federation of Natural Language Processing

ISBN 978-4-9907348-1-7

v

Preface

Welcome to the companion volume of the proceedings of IJCNLP 2013. This companion volume
contains the papers of the system demonstrations presented at the 6th International Joint Conference
on Natural Language Processing, held in Nagoya, Japan, on October 14-18, 2013.

The system demonstrations program offers presentations of early research prototypes as well as
interesting mature systems. The system demonstration co-chairs and the members of the program
committee received 16 submissions, 12 of which were selected for inclusion in the program after reviews
by three members of the program committee.

We would like to thank the members of the program committee for their excellent job in reviewing the
submissions and providing their support for the final decision.

Demonstration Co-chairs
Kentaro Torisawa (NICT, Japan)
Hang Li (Huawei Technologies, China)

October 14-18, 2013
Nagoya, Japan

vi

Co-chairs:

Kentaro Torisawa, NICT, Japan
Hang Li, Huawei Technologies, China

Program Committee:

Eiji Aramaki, University of Tokyo, Japan
Timothy Baldwin, The University of Melbourne, Australia
Francis Bond, Nanyang Technological University, Singapore
Qingcai Chen, Harbin Institute of Technology Shenzhen Graduate School, China
Wenliang Chen, I2R, Singapore
Atsushi Fujita, Future University Hakodate, Japan
Guoping Hu, iFlyTEK Research, China
Yunhua Hu, Taobao, China
Jung-Jae Kim, Nanyang Technological University, Singapore
Jungi Kim, Technische Universität Darmstadt, Germany
Mamoru Komachi, Tokyo Metropolitan University, Japan
Cane Wing-Ki Leung, Huawei Noah’s Ark Lab, Hong Kong
Diana McCarthy, University of Cambridge (DTAL), United Kingdom
Manabu Sassano, Yahoo Japan Corporation, Japan
Young-In Song, NHN Corporation, Korea
Yoshimasa Tsuruoka, University of Tokyo, Japan
Naoki Yoshinaga, University of Tokyo, Japan
Yibo Zhang, Huawei Technologies, China

vii

Table of Contents

A Web-based Annotation Framework For Large-Scale Text Correction
Ossama Obeid, Wajdi Zaghouani, Behrang Mohit, Nizar Habash, Kemal Oflazer and Nadi Tomeh
. .1

An English Reading Tool as a NLP Showcase
Mahmoud Azab, Ahmed Salama, Kemal Oflazer, Hideki Shima, Jun Araki and Teruko Mitamura .
. .5

Dashboard: A Tool for Integration, Validation, and Visualization of Distributed NLP Systems on Hetero-
geneous Platforms

Pawan Kumar, Rashid Ahmad, Banshi Chaudhary and Mukul Sinha. .9

DIRA: Dialectal Arabic Information Retrieval Assistant
Arfath Pasha, Mohammad Al-Badrashiny, Mohamed Altantawy, Nizar Habash, Manoj Pooleery,

Owen Rambow, Ryan M. Roth and Mona Diab . 13

Keyphrase-Driven Document Visualization Tool
Gabor Berend and Richárd Farkas . 17

Making Headlines in Hindi: Automatic English to Hindi News Headline Translation
Aditya Joshi, Kashyap Popat, Shubham Gautam and Pushpak Bhattacharyya 21

MaltDiver: A Transition-Based Parser Visualizer
Miguel Ballesteros and Roberto Carlini . 25

NICT Disaster Information Analysis System
Kiyonori Ohtake, Jun Goto, Stijn De Saeger, Kentaro Torisawa, Junta Mizuno and Kentaro Inui . . .

. 29

SINNET: Social Interaction Network Extractor from Text
Apoorv Agarwal, Anup Kotalwar, Jiehan Zheng and Owen Rambow . 33

SmartNews: Towards content-sensitive ranking of comments
Marina Litvak and Leon Matz . 37

Tmuse: Lexical Network Exploration
Yannick Chudy, Yann Desalle, Benoit Gaillard, Bruno Gaume, Pierre Magistry and Emmanuel

Navarro . 41

WISDOM2013: A Large-scale Web Information Analysis System
Masahiro Tanaka, Stijn De Saeger, Kiyonori Ohtake, Chikara Hashimoto, Makoto Hijiya, Hideaki

Fujii and Kentaro Torisawa . 45

ix

Program of System Demonstrations

Wednesday October 16, 2013 (15:30 - 17:00)

A Web-based Annotation Framework For Large-Scale Text Correction
Ossama Obeid, Wajdi Zaghouani, Behrang Mohit, Nizar Habash, Kemal Oflazer
and Nadi Tomeh

An English Reading Tool as a NLP Showcase
Mahmoud Azab, Ahmed Salama, Kemal Oflazer, Hideki Shima, Jun Araki and
Teruko Mitamura

Dashboard: A Tool for Integration, Validation, and Visualization of Distributed NLP
Systems on Heterogeneous Platforms
Pawan Kumar, Rashid Ahmad, Banshi Chaudhary and Mukul Sinha

DIRA: Dialectal Arabic Information Retrieval Assistant
Arfath Pasha, Mohammad Al-Badrashiny, Mohamed Altantawy, Nizar Habash,
Manoj Pooleery, Owen Rambow, Ryan M. Roth and Mona Diab

Keyphrase-Driven Document Visualization Tool
Gabor Berend and Richárd Farkas

Making Headlines in Hindi: Automatic English to Hindi News Headline Translation
Aditya Joshi, Kashyap Popat, Shubham Gautam and Pushpak Bhattacharyya

MaltDiver: A Transition-Based Parser Visualizer
Miguel Ballesteros and Roberto Carlini

NICT Disaster Information Analysis System
Kiyonori Ohtake, Jun Goto, Stijn De Saeger, Kentaro Torisawa, Junta Mizuno and
Kentaro Inui

SINNET: Social Interaction Network Extractor from Text
Apoorv Agarwal, Anup Kotalwar, Jiehan Zheng and Owen Rambow

SmartNews: Towards content-sensitive ranking of comments
Marina Litvak and Leon Matz

Tmuse: Lexical Network Exploration
Yannick Chudy, Yann Desalle, Benoit Gaillard, Bruno Gaume, Pierre Magistry and
Emmanuel Navarro

WISDOM2013: A Large-scale Web Information Analysis System
Masahiro Tanaka, Stijn De Saeger, Kiyonori Ohtake, Chikara Hashimoto, Makoto
Hijiya, Hideaki Fujii and Kentaro Torisawa

xi

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 1–4,
Nagoya, Japan, 14-18 October 2013.

A Web-based Annotation Framework for Large-scale Text Correction
Ossama Obeid1 Wajdi Zaghouani1 Behrang Mohit1

Nizar Habash2 Kemal Oflazer1 Nadi Tomeh2

1Carnegie Mellon University in Qatar
{oobeid@,wajdiz@,behrang@,ko@cs.}cmu.edu

2Center for Computational Learning Systems, Columbia University
{habash,nadi}@ccls.columbia.edu

Abstract

We demonstrate a web-based, language-
independent annotation framework used
for manual correction of a large Arabic
corpus. Our framework provides intuitive
interfaces for annotating text and manag-
ing the annotation process. We describe
the details of both the annotation and the
administration interfaces as well as the
back-end engine. We also show how this
framework is able to speed up the annota-
tion process by employing automated an-
notators to fix basic Arabic spelling errors.

1 Introduction

Errors in natural language text, such as incorrect
spelling, word choice, or grammar, are problem-
atic for natural language processing (NLP) sys-
tems: they contribute to data sparseness and limit
the effectiveness of NLP models. Automatic cor-
rection of these errors have been studied for dif-
ferent languages (Kukich, 1992). QALB (Qatar
Arabic Language Bank)1 is a project on automatic
correction of errors in Arabic text. Our approach
has two components: (a) large scale manual anno-
tation (correction) of Arabic errors, and (b) statis-
tical modeling of the text correction.

In this paper we focus on the first task and
describe the design and implementation of our
language-independent, web-based annotation sys-
tem. Our framework provides intuitive interfaces
for both managing the annotation process and per-
forming the annotations. Additionally, we show
how our framework employs automatic annotators
to correct basic Arabic spelling mistakes to speed
up the annotation process.

Our framework consists of two major inter-
faces: (a) an Admin interface, which enables the
lead annotator to create, assign, monitor, evaluate
and export annotation tasks in large scale; and (b)

1http://nlp.qatar.cmu.edu/qalb

an Annotation interface, which enables annotators
to conduct and review annotation tasks for differ-
ent types of text. The interface is flexible for han-
dling monolingual annotation (e.g. Arabic text)
and also bilingual annotation (e.g. post-editing
of MT output). The interface provides the re-
quired annotation functionality for moving, merg-
ing, replacing and editing words within a para-
graph along with the undo and redo actions.

In addition to the Admin tools, the framework
provides the lead annotator with components for
automatic correction of basic errors and also qual-
ity control. The annotation framework is currently
deployed and is expected to be used by up to
twenty users, annotating an aggregated corpus of
two million words.

2 Related Work

Traditionally, manual text correction is performed
under the context of post-editing machine transla-
tion (MT) output. The goal of post-editing is to
evaluate MT systems rather than building corpora
of edits.

Tools like PET (Aziz et al., 2012) and BLAST
(Stymne, 2011) provide annotators a text-editor-
like interface to identify, record, and correct er-
rors. Text-editor-like interfaces are very flexible
and allow all forms of corrections to be performed,
but, they are not capable of accurately tracking to-
ken alignment, if at all.

Frameworks such as EXMARaLDA (Schmidt,
2010) and GATE (Cunningham et al., 2011) facil-
itate multi-layer and multi-round annotations. An
example of such approach is the work of Dickin-
son and Ledbetter (2012) who annotated errors in
Hungarian students essays using multiple annota-
tion layers from phonology to syntax in different
stages.

TCTool (Llitjós and Carbonell, 2004) provides
a token-based correction interface. It allows for
tokens to be moved around, deleted, or added, but,
does not allow for tokens to be merged or split.

1

This is because it assumes all input text to be out-
puts of MT systems, which do not produce merged
or split words. Since our source text contains a
majority of manually written text, this assumption
does not hold. Furthermore, TCTool is designed
to deal with short sentences while we aim to an-
notate larger documents in order to benefit from
wider context.

Above all, these tools are not designed for large-
scale, distributed annotation projects. They do not
provide facilities for managing thousands of docu-
ments, distributing tasks to tens of annotators and
evaluating inter-annotator agreement (IAA). Our
system draws on the advantages of the above tools
while adding the required facilities to manage a
large annotation project. In this aspect, our system
is similar to the COLABA project annotation tool,
a web application for dialectal Arabic text annota-
tion (Benajiba and Diab, 2010; Diab et al., 2010).

3 System Requirements and Constraints

The QALB project aims to produce a large corpus
(two million words) of manually corrected Ara-
bic text. Our system must allow for quick anno-
tation of texts without sacrificing annotation cor-
rectness and consistency. This section describes
the requirements and constraints that our annota-
tion system needs to fulfill.

Text Correction The QALB corpus will contain
corrections of errors produced by native speakers
of various dialects, non-native speakers and ma-
chine translation systems in a variety of contexts
including news, Wikipedia articles, forum posts,
and student essays. Therefore, our annotation sys-
tem should not just account for spelling mistakes.
Our annotation interface allows annotators to per-
form different types of actions which correspond
to the following types of corrections: (a) Edit
actions: words that are misspelled or mistyped
should be modified. (b) Move actions: Words that
are not in the right location should be moved to
the right location. (c) Add actions: words that are
missing need to be added. (d) Delete actions: ex-
traneous words should be deleted. (e) Merge ac-
tions: words that have been split by mistake should
be merged. (f) Split actions: words that have been
merged by mistake should be split.

Token Alignment Since we allow a large range
of corrections, we need to be able to track the
alignment of corrected tokens to the original text.
In addition to token alignment, we want to track
the list of actions performed by each annotator in

the hope that we may learn from the human cor-
rection process.

Efficiency Due to the large amount of text that
needs to be corrected, our Annotation interface
should allow annotators to concurrently log into
the system and perform their annotation tasks very
quickly.

Quality Control To ensure the quality of correc-
tions in our corpus we should be able to monitor
the performance of each individual annotator and
the consistency of annotators among each other.
Therefore, our system should allow us to perform
inter-annotator agreement (IAA) evaluation. We
also need to ensure that all source documents are
of reasonable quality. For this we need a mecha-
nism for annotators to flag low quality (e.g. highly
dialectal) text.

4 Annotation Web Interface

In this section we present our framework, the An-
notation Web Interface, which will be used to
carry out the annotation process. Our main contri-
bution is the Annotation interface (Figure 1) which
provides an intuitive drag-and-drop interface to
manipulate tokens in a document. We describe the
design and implementation of each component in
further details.

4.1 Architecture

Our framework has three core components: the
Annotation interface, the Admin interface, and the
application programming interface (API) server.

The Annotation interface is used by annotators
to correct assigned documents. The Admin inter-
face is used by the lead annotator to manage anno-
tators and documents, assign tasks, evaluate IAA,
and monitor the overall progress of the annotation
process. Figure 2 illustrates how these compo-
nents interact with each other.

Both Admin and Annotation interfaces are web
pages that complete their respective tasks by send-
ing HTTP requests to the API server. The API
server handles these requests and performs the
necessary operations using the local file system
and a database.

In addition to the three core components, there
are automated annotators. Automated annotators
are scripts that interface with the API server to per-
form automatic corrections. We discuss how we
use an automated annotator to speed up the anno-
tation process.

2

Figure 1: Sample of corrections of a token: (a) Moving (b) Deleting (c) Editing (d) Splitting (e) Merging

Figure 2: General Architecture Diagram.

4.2 Annotation Interface

Annotators need to be able to view their assigned
tasks, perform corrections, and submit their final
corrections. This is done through the Annotation
Interface. The Annotation Interface first displays a
list of tasks assigned to an annotator. The annota-
tor selects a task and then displays the Annotation
Window, where corrections are performed.

The Annotation Window displays tokens in sep-
arate boxes. Each box can either be dragged or
double-clicked. Tokens can be moved by dragging
and dropping tokens to the desired location. To-
kens can be merged by dragging a token slightly to
the left or to the right to be merged with the previ-
ous or the next token, respectively. Double click-
ing on a token opens a dialog box with a text input
which contains the current value of the clicked to-
ken and can be used to modify the token’s text.
Adding a space between two characters of a token

Figure 3: A single token box.

performs a split. Annotators cannot modify a to-
ken and split it at the same time. This allows us to
track individual changes so that we have a consis-
tent action history.

As illustrated in Figure 3, each box has addi-
tional buttons that can be used to either delete a
token, add a new token before the selected token,
or add a new line after the selected token. Figure
1 shows screen-shots of each action performed in
sequence.

The Annotation Interface also has few other fea-
tures to help with the annotation task. Undo and
Redo buttons are provided to allow annotators to
go back and fix mistakes. The interface also pro-
vides access to both the original Arabic text, and,
if the text was the output of a machine transla-
tion system, the original English text. This addi-
tional information help annotators in determining
how much their corrections alter the meaning of
the original text. If a document has poor quality
of writing or translation, the interface provides the
annotator with a Flag button, which alerts the lead
annotator about the issue.

3

4.3 Admin Interface
The lead annotator will be managing a team of
about twenty annotators who can use the system
remotely and concurrently. The Admin Interface
contains: (a) a user management tool for creat-
ing new annotator accounts and viewing annota-
tor progress; (b) a document management tool for
uploading new documents, assigning them for an-
notation, and viewing submitted annotations; and
(c) a monitoring tool for viewing overall annota-
tion progress and evaluating IAA.

4.4 API Server and Automated Annotators

The API server lies at the heart of our frame-
work. It is a Python server that provides a web
API through HTTP requests for retrieving, creat-
ing, and modifying content such as user records,
source documents, and annotation submissions.
All responses by the API server are JSON objects.
This allows us to easily create dynamic web pages
for the Annotation and Admin interfaces as well
as automated annotators. One automated annota-
tor we deployed to automatically correct �

è (Ta
Marbuta) versus è (Ha) errors and Z' (Hamza)
placement errors by running each document
through the MADA system (Habash et al., 2009).
All documents are corrected by our automated an-
notator before being assigned to annotators to cut
down annotation time.

5 Demonstration Script
During the demonstration, we will present the use
of the Admin and Annotator interfaces using sim-
ple and complex examples of various kinds of ed-
its as discussed above. In particular, we will show
how the Annotation tool can be used for correcting
a sample piece of text using the various allowed
operations.

6 Conclusion and Future Work
We presented a detailed overview of our web-
based annotation framework for correcting writing
errors. Deployment for error correction in other
languages is a natural extension of this work since
almost all functionalities of our system are lan-
guage independent. In the future, we plan to in-
clude new functionalities for increasing annota-
tors’ search and lookup power and a web-based
component for training new annotators. We also
plan to make use of the created annotations to
develop automatic error detection and correction
systems.

7 Acknowledgements

We thank anonymous reviewers for their valuable
comments and suggestions. This publication was
made possible by grants NPRP-4-1058-1-168 and
YSREP-1-018-1-004 from the Qatar National Re-
search Fund (a member of the Qatar Foundation).
The statements made herein are solely the respon-
sibility of the authors.

References
Wilker Aziz, Sheila Castilho Monteiro de Sousa, and

Lucia Specia. 2012. PET: a tool for post-editing
and assessing machine translation. In Proceedings
of the LREC’2012.

Yassine Benajiba and Mona Diab. 2010. A web appli-
cation for dialectal Arabic text annotation. Proceed-
ings of the LREC Workshop for Language Resources
(LRs) and Human Language Technologies (HLT) for
Semitic Languages: Status, Updates, and Prospects.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, Niraj Aswani, Ian
Roberts, Genevieve Gorrell, Adam Funk, Angus
Roberts, Danica Damljanovic, Thomas Heitz,
Mark A. Greenwood, Horacio Saggion, Johann
Petrak, Yaoyong Li, and Wim Peters. 2011. Text
Processing with GATE (Version 6). University of
Sheffield.

Mona Diab, Nizar Habash, Owen Rambow, Mohamed
Altantawy, and Yassine Benajiba. 2010. Colaba:
Arabic dialect annotation and processing. LREC
Workshop on Semitic Language Processing, pages
66–74.

Markus Dickinson and Scott Ledbetter. 2012. Anno-
tating errors in a Hungarian learner corpus. In Pro-
ceedings of the LREC’2012.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
MADA+TOKAN: A toolkit for Arabic tokeniza-
tion, diacritization, morphological disambiguation,
pos tagging, stemming and lemmatization. In Pro-
ceedings of the Second International Conference on
Arabic Language Resources and Tools.

Karen Kukich. 1992. Techniques for automatically
correcting words in text. ACM Comput. Surv.,
24(4):377–439, December.

Ariadna Font Llitjós and Jaime G. Carbonell. 2004.
The translation correction tool: English-Spanish
user studies. In Prceedings of the LREC’04.

Thomas Schmidt. 2010. Linguistic tool develop-
ment between community practices and technology
standards. In Proceedings of the LREC Workshop
Language Resource and Language Technology Stan-
dards.

Sara Stymne. 2011. Blast: a tool for error analysis
of machine translation output. In Proceedings of the
ACL’2011: Systems Demonstrations, pages 56–61.

4

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 5–8,
Nagoya, Japan, 14-18 October 2013.

An English Reading Tool as a NLP Showcase

Mahmoud Azab Ahmed Salama Kemal Oflazer
Carnegie Mellon University-Qatar

Doha, Qatar
{mazab,ahmedsaa,ko}@qatar.cmu.edu

Hideki Shima Jun Araki Teruko Mitamura
Carnegie Mellon University,

Pittsburgh, PA, USA
{hideki,junaraki,teruko}@cs.cmu.edu

Abstract
We introduce -SmartReader- an English
reading tool for non-native English readers
to overcome language related hindrances
while reading a text. It makes extensive
use of widely-available NLP tools and re-
sources. SmartReader is a web-based ap-
plication that can be accessed from stan-
dard browsers running on PCs or tablets.
A user can choose a text document from
the system’s library they want to read or
can upload a new document of their own
and the system will display an interac-
tive version of such text, that provides the
reader with an intelligent e-book function-
ality.

1 Introduction
Reading texts in a second language presents the
language readers with a number of comprehen-
sion problems, especially when the reader does
not have access to aids that would enable her to
get over them including the problem of unknown
words interpretation, unrecognized and forgotten
names, difficult and hard-to-understand sentences,
and lack of or forgetting the prior context in a for-
mer session of reading. There are many NLP-
based tools, that offer various kinds of aids, to
non-native English readers to help them in under-
standing a document. Many tools focus on as-
sisting the reader in understanding of a specific
word which may lead to better comprehension and
vocabulary acquisition such as (Nerbonne et al.,
1997) and (Eom et al., 2012). Some other tools
focus on assisting the reader and second language
learner with highlighting different patterns in the
documents and providing the learner a visually en-
hanced version of the document (Meurers et al.,).

SmartReader is an implementation of a NLP-
powered tool to aid in reading texts in English by

non-native readers of the language which aims to
make reading an active and interactive experience.
In this paper, we present the underlying client-
server architecture of SmartReader; for a detailed
presentation of the user functionality provided by
SmartReader, we refer the reader to Azab et al.
(2013).

The main contribution of SmartReader is the
integration of NLP tools and resources under the
UIMA framework within a client-server architec-
ture. The resulting web-accessible reading appli-
cation can run on various browser platforms to
help secondary language learners of English over-
come language hindrances. Although currently
SmartReader has currently been developed for En-
glish, it is language independent; it can easily be
adapted to another language provided the relevant
annotation tools and resources are available.

2 System Overview
Our system is based on client-server architecture
as shown in Figure 1. The server is responsible
for annotating plain text with NLP-related annota-
tions and retrieving them based on the user’s in-
teractions. The client is a standard web browser
running on PCs or touch tablets and interacts with
a server running under a Tomcat web server. It
passes user queries to the server and presents menu
options and responses to the user. All annota-
tions that are needed to respond to user requests
(except for summarization), are produced, by pre-
processing the text documents through a series of
document annotators and storing their outputs in
a UIMA Document Library file accessible to the
server

SmartReader is based on significant prepro-
cessing and annotation of texts using many pub-
licly and fairly mature available NLP compo-
nents for English, integrated in a UIMA (Un-
structured Information Management Architecture)

5

Figure 1: Client-Server Architecture

based server. UIMA is an architecture for the man-
agement and analysis of unstructured information
such as text and voice, which is based on referen-
tial annotation (Ferrucci and Lally, 2004). It fa-
cilitates developing and integrating different text
analysis engines and annotators. The input can
be monotonically enriched while passing from one
NLP analysis engine to the next, using a common
data repository to all components (Götz and Suhre,
2004). UIMA also supports a flexible combination
of individual NLP components into larger process-
ing pipelines. Thus, we can re-use the same anno-
tations (e.g., segmentation, tokenization, POS tag-
ging) for all the next NLP components. It also pro-
vides a very powerful querying and search mech-
anisms for retrieving the annotations from the an-
notated documents.

The SmartReader server has two major func-
tionalities: (1) annotating documents through pre-
processing with UIMA annotators, (2) query pro-
cessing in response to user requests.

Documents Annotation: During annotation,
the input plain text is passed to a preprocessor
to validate and normalize its orthography. Using
Stanford CoreNLP tools, we segment the text into
sentences, and then tokenize and perform POS
tagging.1 We then use the following NLP com-
ponents to annotate the text:

• The Stanford Dependency Parser
(De Marneffe et al., 2006), provides
grammatical relation annotations for each
word within the sentence.

• The Stanford Named Entity Recognizer
(Finkel et al., 2005) and then the Stanford
Co-reference Resolution (Lee et al., 2013;
Lee et al., 2011; Raghunathan et al., 2010)
are used to determine the entities in the text
and the relationships between them.

1http://nlp.stanford.edu/software/
corenlp.shtml

• A simple Word Sense Annotator based on
the Princeton WordNet (Fellbaum, 1998) is
used as a broad-coverage machine-readable
dictionary of English. As many words in
WordNet have more than one sense, we nar-
row down the available senses by incorporate
morphological analysis and part-of-speech
filtering then annotate words with the most
frequent WordNet sense under the selected
part-of-speech. We are currently working on
integrating a word sense disambiguation an-
notator.

• A Compound Annotator identifies and
looks up the meaning of the phrasal verbs and
the compound nouns in the text from Word-
Net.

• An In-text Question Answering Annotator
assigns the questions to the related named
entities, and ranks them. This is done in
two phases. In the first phase, questions are
generated using Heilman’s question genera-
tor tool (Heilman and Smith, 2010). This tool
generates a list of questions on every sentence
by performing a set of syntactic and seman-
tic transformations. Then, it ranks the gener-
ated questions for each sentences according
to certain features. In the second phase, we
go through the previously annotated named
entities and the coreference chains they be-
long to and assign to every single mention a
set of related questions that are generated in
the first phase.

Once annotated, a document is loaded into the
library. Figure 2, shows the annotation compo-
nents that each document goes through. Figure 3
shows a logical view of a subset of the annotations
for one sentence.

Query Processing: All queries from the user
client application are translated into a character
offset in the text. Thus when this character off-
set is passed to UIMA, it returns efficiently all the

6

Figure 2: Document Annotation (modules with dotted lines are under development)

Figure 3: UIMA annotations for one sentence

annotations associated with the word overlapping
with that position. These are which are then inter-
preted by the query processing unit as described
earlier.

This step is responsible for processing the user
queries and returning the required information. It
consists of the following modules:

• Information Extractor module: This mod-
ule efficiently searches a loaded document,
then extracts and prepares the relevant infor-
mation in response to the user’s query.

• Intention Detection module: This module
receives the annotations from the Informa-
tion Extractor module then orders the set of
response options to be presented to the user.
It assumes that the annotations available for
word/selection and its context indicates the
intent of the user making the query.

3 Summary of User Functionality
From a reader’s perspective, SmartReader is a
web-based browser application, that runs on many
browsers running on PCs or touch tablets; so on
the reader side no additional software is needed.
It has a simple and intuitive web interface to
sign up/in, browse available texts to the system’s

library and to upload user’s texts. Users also
have the option to either upload their input text
or try available preprocessed documents in the
system library. After uploading/opening a text,
SmartReader then loads an interactive version of
the text into a distraction-free tab, and then the
reader can start interacting with the text either by
clicking on a word or selecting any segment of
text.

The system in turn queries the server, which
takes into account all the annotations around the
clicked/selected word’s/segment’s and based on
these annotations, highlights a segment of the text
depending on the selection context, and presents a
response, which most likely fits the reader’s intent
at the click position.2 For instance:

• If the reader clicks on a content word,
SmartReader will present the word mean-
ing, along with word type, sentence exam-
ples including the inquired word, as the de-
fault response. In case the clicked word is a
part of a (possibly discontinuous) compound
verb/noun, the tool highlights the whole com-
pound structure and provides its meaning.

2For a much more detailed overview of user functionality,
please refer to Azab et al. (2013).

7

• If the reader clicks on a pronoun, the system
will inform the reader to whom this pronoun
refers by highlighting both the pronoun and
the antecedent in context. It will also pro-
vides the reader with the ability to navigate
through all previous and future mentions in
the text.

• The reader can also inquire about the gram-
matical role of a word within the sentence.
SmartReader provides the reader with the
grammatical role in a user-friendly fashion by
mapping dependency labels to more descrip-
tive and meaningful labels.

• The reader can explore beyond the default re-
sponse by using the additional menu items
provided: for instance she may select from a
set of questions that SmartReader can gener-
ate involving a selected named-entity and get
the response.

• Beyond these sentences/words interactions,
SmartReader provides the reader with dif-
ferent levels of text summarization such as
multi-section and whole document summa-
rization. For this purpose, we use the Mead
toolkit for English to provide the summariza-
tion functionality. 3

4 Conclusion

We presented the implementation and architecture
of a tool for helping non-native readers of En-
glish text to overcome language related hindrances
while reading text. Our tool dubbed SmartReader
can also be seen as a showcase of English NLP
tools and resources that have been built by the
NLP community, integrated into an e-book reader
application. Our system architecture is general
so that SmartReader can be adapted to more lan-
guages provided annotations resources are avail-
able for use in the UIMA framework. We are cur-
rently completing our implementation and are in
the process of planning a test deployment for stu-
dents for experimentation.

Acknowledgments

This publication was made possible by grant
NPRP-09-873-1-129 from the Qatar National Re-
search Fund (a member of the Qatar Foundation).
The statements made herein are solely the respon-
sibility of the authors.

3Available at http://www.summarization.com/
mead/

References
Mahmoud Azab, Ahmed Salama, Kemal Oflazer,

Hideki Shima, Jun Araki, and Teruko Mitamura.
2013. An NLP-based reading tool for aiding non-
native English readers. In Proceedings of RANLP,
Hissar, Bulgaria.

Marie-Catherine De Marneffe, Bill MacCartney, and
Christopher D Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of LREC, volume 6, pages 449–454.

Soojeong Eom, Markus Dickinson, and Rebecca
Sachs. 2012. Sense-specific lexical information for
reading assistance. In Proceedings of the Seventh
Workshop on Building Educational Applications Us-
ing NLP.

Christiane Fellbaum. 1998. WordNet: An electronic
lexical database. The MIT Press.

David Ferrucci and Adam Lally. 2004. UIMA: an
architectural approach to unstructured information
processing in the corporate research environment.
Natural Language Engineering.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs
sampling. In Proceedings of ACL’05.

T. Götz and O. Suhre. 2004. Design and implemen-
tation of the UIMA common analysis system. IBM
Syst. J., 43(3):476–489.

Michael Heilman and Noah Smith. 2010. Extract-
ing simplified statements for factual question gener-
ation. In Proceedings of the 3rd Workshop on Ques-
tion Generation.

Heeyoung Lee, Yves Peirsman, Angel Chang,
Nathanael Chambers, Mihai Surdeanu, and Dan Ju-
rafsky. 2011. Stanford’s multi-pass sieve corefer-
ence resolution system at the CONLL shared task.
In Proceedings CONLL’11, pages 28–34.

Heeyoung Lee, Angel Chang, Yves Peirsman,
Nathanael Chambers, Mihai Surdeanu, and Dan Ju-
rafsky. 2013. Deterministic coreference resolu-
tion based on entity-centric, precision-ranked rules.
Computational Linguistics, pages 1–54.

Detmar Meurers, Ramon Ziai, Luiz Amaral, Adriane
Boyd, Ar Dimitrov, Vanessa Metcalf, Niels Ott,
and UniversitŁt Tbingen. Enhancing authentic web
pages for language learners.

John Nerbonne, Lauri Karttunen, Elena Paskaleva, Ga-
bor Proszeky, and Tiit Roosmaa. 1997. Reading
more into foreign languages. In Proceedings of
ANLP’97.

Karthik Raghunathan, Heeyoung Lee, Sudarshan Ran-
garajan, Nathanael Chambers, Mihai Surdeanu, Dan
Jurafsky, and Christopher Manning. 2010. A multi-
pass sieve for coreference resolution. In Proceed-
ings of EMNLP’10, pages 492–501.

8

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 9–12,
Nagoya, Japan, 14-18 October 2013.

Dashboard: A Tool for Integration, Validation, and Visualization of
Distributed NLP Systems on Heterogeneous Platforms

Pawan Kumar
Expert Software Consultants Ltd

New Delhi, India
hawahawai@gmail.com

B. D. Chaudhary
CSED, MNNIT
Allahabad, India

bdc@mnnit.ac.in

Rashid Ahmad
LTRC, IIIT

Hyderabad, India
rashid.ahmed@research.iiit.ac.in

Mukul K. Sinha
Expert Software Consultants Ltd

New Delhi, India
mukulksinha@gmail.com

Abstract

Dashboard is a tool for integration, validation,
and visualization of Natural Language
Processing (NLP) systems. It provides infra-
structural facilities using which individual
NLP modules may be evaluated and refined,
and multiple NLP modules may be combined
to build a large end-user NLP system. It helps
system integration team to integrate and vali-
date NLP systems. The tool provides a visuali-
zation interface that helps developers to profile
(time and memory) for each module. It helps
researchers to evaluate and compare their
module with the earlier versions of same mod-
ule. The tool promotes reuse of existing mod-
ules to build new NLP systems. Dashboard
supports execution of modules that are distri-
buted on heterogeneous platforms. It provides
a powerful notation to specify runtime proper-
ties of NLP modules. It provides an easy-to-
use graphical interface that is developed using
Eclipse RCP. Users can choose an I/O pers-
pective (view) that allows him better visualiza-
tion of intermediate outputs. Additionally, Ec-
lipse RCP provides plugin architecture; hence
customized end-user specific functionality can
be easily added to the tool.

1 Introduction

Dashboard is a tool for integration, validation,
and visualization of Natural Language
Processing (NLP) systems on heterogeneous
platforms. Dashboard tool has been designed to
build NLP systems reusing multiple heterogene-
ous (or homogeneous) NLP components.

Dashboard provides a common representation
called Shakti Standard Format (SSF) (Akshar
Bharati et al. 2007), a tree data structure, for stor-
ing linguistic information (analysis) produced by
an NLP module in attribute/value pairs called

feature structure. The SSF format has both in-
memory representation as well as stream repre-
sentation. They are inter-convertible using a
Reader (stream to memory) and Printer (memory
to stream). The in-memory representation is
good in speed of processing, while the stream
representation is good for portability, heteroge-
neous platforms, and flexibility, in general.

The tool provides SSF API for integrating
NLP modules; modules use APIs for accessing
in-memory data in multiple programming lan-
guages. For integration of existing modules SSF
adapters are used. These adapters transform va-
rying input/output representations to SSF format.

Dashboard has a frontend called Dashboard
and a backend called Dashboard Runtime. Dash-
board provides a graphical interface for setting
up and configuring NLP systems. Dashboard
Runtime performs the tasks of coordination and
communication between the NLP modules.
A. Dashboard – the frontend

The Dashboard frontend provides a
mechanism to setup and configure the NLP
Systems that are based on Blackboard
Architecture (Hayes-Roth 1985, Sangal 2004)
runs on the Dashboard platform.
B. Dashboard Runtime

Dashboard Runtime performs the tasks of
coordination and communications between the
modules.
C. Dashboard as a Visualization Tool

Dashboard provides visualization and
debugging functionality to researchers and
developers.

This tool is now released and is being used by
consortium members at 11 research institutions.
Eighteen machine translation systems which
translate between 9 pairs of Indian languages
have been integrated and tested using this tool

9

(Sampark MT 2013, Anthem 2010). A compre-
hensive description of Dashboard tool is availa-
ble in (Pawan et al. 2010, 2013).

2 Dashboard Features
Distinguishing features of Dashboard tool are:

A) NLP System can be partitioned, and dif-
ferent partitions (comprised of one or
more modules) can reside on heteroge-
neous platforms on distributed machines.

B) Dashboard Tool provides powerful nota-

tion for describing runtime properties of
individual modules as well as complete
NLP system.
 New modules can be added/removed

either using user-interface or using
declarative notation in specs file,

 Switch runtime modes (speed, debug
or stepwise) by the user/developer

 Conditional-run for each module,
i.e., at runtime user can skip execu-
tion of a module depending on
(presence or absence of a feature
structure in SSF data) input data,

 Triggers for modules to promote ro-
bustness, e.g., set timeout for module
that goes into an infinite loop.

C) Visualization interface is developed us-

ing Eclipse Rich Client Platform (RCP).
RCP provides plugin architecture
(McAffer et al. 2010). Developers can
build user-defined plugins leveraging
this plugin architecture.

D) Unlike other frameworks like GATE,
UIMA and OpenNLP, Dashboard lin-
guistic pipeline is created by specifying
module properties in attribute/value
pairs, which is compiled to generate an
efficient runtime.

E) Similar to GATE, UIMA and OpenNLP,
Dashboard can output linguistic analysis
in SSFXML format that can be trans-
formed to various formats using XSLT.

3 Sampark MT System: An Application
Using Dashboard

We provide here screen shots of Punjabi-Hindi
Sampark MT System (sampark-pan2hin). Figure
1 shows the normal view of the Dashboard. For
reasons of clarity, we have labeled the icons in
Figure 1, with numbers in red. On the Tool bar

(labeled-2) we have Run button (labeled-1), and
View button (labeled-6) on extreme right.

Below the Tool bar on extreme left is the Ap-
plication Explorer pane (labeled-8). It shows the
list of Dashboard applications (sampark-pan2hin
system and sampark-hin2pan system). Just be-
low that, i.e., sampark-pan2hin system all the
modules of sampark-pan2hin system is listed.
On the right of this pane we have a tabbed win-
dow where input text (labeled-3), in Punjabi lan-
guage, punjabi.txt (visible), and output text (la-
beled-4), in Hindi language, punjabi-output.txt
(this tab is invisible) are shown. Below this pane
input/output from a module, lexical-transfer is
shown (labeled-9 and labeled-10). Label-11
shows the error log if any from the system. La-
bel-12 shows the selected module name along
with selected sentence number. Label-13 shows
the time profile for the selected module. Label -
15 and 16 show tool bar for switching views of
input and output data useful to computational
linguists. The user can select views from a list of
views i.e., SSF or XML or Native.

Figure 2, shows complete translation of Pun-
jabi text into Hindi. Left pane shows the input
text composed of 10 sentences, written in source
language Punjabi, and the right pane shows
translated output text, as the output from Sam-
park system written in target language Hindi.

Once the system is executed completely, the
session can be saved for future analysis. In case
the user wants to analyze the intermediate output
of any specific module for a specific sentence, he
can do so through Dashboard. For this he has to
first expand the module list in the Application
Explorer pane. Select the module whose inter-
mediate output he wants to analyze. Once the
user selects the module, he gets a Dashboard
view as shown in Figure 3.

Figure 3, shows input to lexical-transfer mod-
ule in the left pane, and output from lexical-
transfer module into the right pane for sentence
number 5 in SSF format. Time taken to execu-
tion of lexical-transfer module is shown at the
bottom of the pane earlier labeled-13 in Figure 1.

To start any application/project system has to
be configured/setup, which is done chronologi-
cally earlier but is being explained now. Figure 4
shows how a Sampark system is setup and confi-
gured for a new application/project. In the Appli-
cation Explorer pane user has to add an applica-
tion first. Once he adds an application, Dash-
boardSpec.xml icon appears in the Application
Explorer pane. When the user selects Dash-
boardSpecs.xml icon, a tab window, earlier la-

10

beled-5 becomes visible, ‘Applications Module
Specification’ pane is opened. On the bottom of
this pane there are 5 tabs, viz., Overview, Global
Prop., Runtime, Modules, and Dash-
boardSpec.xml. Overview tabs gives an overview
about system configuration and setup. ‘Global
Prop’ tab configures the global properties for
Dashboard Runtime, like, location of SSF API
for various languages. Currently SSF API is
available for C/C++, Perl, Python, and Java.
Runtime tab allows for adding runtime arguments
to the Dashboard (like UNIX command line pa-
rameters). Modules tab allows defining runtime
properties of each module. Figure 4 shows the
runtime properties of Punjabi Morph Analyzer.
In the figure, only standard properties are de-
fined. In the DashboardSpec.xml tab, user can
manually edit the DashboardSpec.xml file.

Acknowledgments

We sincerely thank TDIL group, Dept. of IT,
Govt. of India in granting and supporting such a
challenging project. All NLP researchers and
software engineers of the participating
institutions (viz., IIIT Hyderabad, IIT Mumbai,
IIT Kharagpur, Central University Hyderabad,
AU-KBC Research Center Chennai, C-DAC
NOIDA, Jadavpur University, Kolkata, IIIT
Allahabad, and IISc Bangalore) need special
thanks who have been using this tool and have
helped in identifying new requirements for its
improvement. Their continuous feedback has not
only improved its functionality, but also
stabilized it as a product.

We thank our colleagues, Rambabu, Phani,
Avinash, and Sanket without whose tireless effort
current version of the tool would not be possible.

We sincerely thank Prof. Rajeev Sangal, who
allowed us to work on such an innovative
project, because ‘Dashboard as NLP Tool’ was
primarily his idea.

References
Akshar Bharati, Rajeev Sangal and Dipti M. Sharma.

2007. SSF: Shakti Standard Format Guide, LTRC,
IIIT, Hyderabad, Report No: TR-LTRC-33.

Sampark MT. Machine Translation System among
Indian languages. http://sampark.org.in, last ac-
cessed on 15-Feb-2013.

G. Anthes. 2010. Automated Translation of Indian
Languages. CACM, vol. 53 (1), pp. 24-26.

B. Hayes-Roth. 1985. Blackboard Architecture for
Control, Art. Intelligence.

R. Sangal. 2004. Architecture of Shakti Machine
Translation System. IIIT Hyderabad.

Pawan Kumar, et al. 2010. Dashboard: An Integra-
tion and Testing Platform based on Blackboard
Architecture for NLP Applications. Proc. of IEEE
6th Intl. Conf. on Natural Language Processing and
Knowledge Engineering, Beijing, China. Report
No: IIIT/TR/2010/84.

Jeff McAffer. 2010. Eclipse Rich Client Platform,
Second Edition, Addison Wesley.

Pawan Kumar, et al. 2013. Enriched Dashboard: An
Integration and Visualization Tool for Distributed
NLP Systems on Heterogeneous Platforms. Proc. of
IEEE 13th Intl. Conf. on Computational Science
and Applications, Ho Chi Minh City, Vietnam.

Figure 1: Normal view of Dashboard Tool, icons/panes/buttons are labeled to describe the tool’s functionality.

11

Figure 2: Shows Punjab-Hindi MT system, shows input and output text for 10 sentences.

Figure 3: Module level input and output for lexical-transfer module, data in SSF format for sentence number 5.

Figure 4: Application Setup and Configuration view. Right pane shows runtime properties for Punjabi Morph

Analyzer. Also shows help text, if the mouse is hovered on the text labels.

12

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 13–16,
Nagoya, Japan, 14-18 October 2013.

DIRA: Dialectal Arabic Information Retrieval Assistant

Arfath Pasha, Mohammad Al-Badrashiny, Mohamed Altantawy, Nizar Habash,
Manoj Pooleery, Owen Rambow and Ryan M. Roth

Center for Computational Learning Systems
Columbia University, New York, NY

Mona Diab
Department of Computer Science

The George Washington University
dira@ccls.columbia.edu

Abstract
DIRA is a query expansion tool that gen-
erates search terms in Standard Arabic
and/or its dialects when provided with
queries in English or Standard Arabic. The
retrieval of dialectal Arabic text has re-
cently become necessary due to the in-
crease of dialectal content on social me-
dia. DIRA addresses the challenges of
retrieving information in Arabic dialects,
which have significant linguistic differ-
ences from Standard Arabic. To our
knowledge, DIRA is the only tool in exis-
tence that automatically generates dialect
search terms with relevant morphological
variations from English or Standard Ara-
bic query terms.

1 Introduction

The Arabic language poses two problems for in-
formation retrieval (IR). First, Arabic is mor-
phologically rich, which increases the likelihood
of mismatch between words used in queries and
words in documents. Much work has been done
on addressing this issue in the context of Mod-
ern Standard Arabic (MSA), primarily using dif-
ferent methods of stemming and query reformula-
tion (Al-Kharashi and Evens, 1999; Darwish et al.,
2005; Habash et al., 2006; Larkey et al., 2007).1

Secondly, the Arabic-speaking world displays
diglossia, meaning that a standard language,
MSA, co-exists with dialects, such as Egyptian
Arabic (EGY). The dialects differ from MSA in
many dimensions, which limits the effectiveness
of using MSA tools to handle the dialects. Rel-
evant to IR are lexical and morphological differ-
ences. Lexically, different words may be used to

1For more information on Arabic natural language pro-
cessing issues, see (Habash, 2010).

English MSA Egyptian Levantine
to see ø

@P rÂý

	
¬A

�
� šAf

	
¬A

�
� šAf

only ¡
�
®

	
¯ faqaT ��. bas ��. bas

table �
éËðA£ TAwilah̄ �

è
	Q�
K. Q£ tarabayzah̄ �

éËðA£ TAwlih̄
wife [of] �

ék. ð 	P zawjah̄ �
H@QÓ mirAt �

HQÓ mart
these ZB

ñë haŵlA’ ÈðX dawl ÈðYë hadawl

Table 1: Four examples showing lexical variation
among Arabic dialects and MSA.

convey the same meaning in different dialects and
MSA. Table 1 presents the same set of four words
in English, MSA, Egyptian Arabic and Levantine
Arabic.2

Morphologically, the dialects may use different
forms from MSA, e.g., the short phrase ‘he writes’
appears as I.

�
JºK
 yaktubu in MSA , but as I.

�
JºJ
K.

biyiktib in EGY, I.
�
JºK
X dayiktib in Iraqi Arabic

and I.
�
JºJ
» kayiktib in Moroccan Arabic. The dif-

ferences between MSA and dialect morphology
can be rather large: Habash et al. (2012a) report
that over one-third of EGY words cannot be ana-
lyzed using an MSA morphological analyzer; and
Habash and Rambow (2006) report similar figures
for Levantine verbs.

Furthermore, while MSA has a standard orthog-
raphy, the dialects are not orthographically stan-
dardized, which leads to the coexistence of mul-
tiple spellings for the same word, e.g., the future
marker in EGY may be written as ë h or h H. We
address this problem in the context of natural lan-
guage processing of Arabic dialect by proposing a
conventional orthography for representing dialec-

2Arabic transliteration throughout the paper is
presented in the Habash-Soudi-Buckwalter scheme
(Habash et al., 2007): (in alphabetical order)
AbtθjHxdðrzsšSDTĎςγfqklmnhwy and the additional
symbols: ’ Z, Â

@, Ǎ @

, Ā

�
@, ŵ

ð', ŷ Zø', h̄ �
è, ý ø.

13

tal Arabic elsewhere (Habash et al., 2012b).
Traditionally, almost all written Arabic was in

MSA and not in the dialects. The retrieval of
dialectal Arabic text has recently become neces-
sary due to the increase of dialectal content on so-
cial media that is not “curated” (i.e., not chosen
or edited by professionals). Our tool, DIRA (Di-
alectal [Arabic] Information Retrieval Assistant),
is a query expansion tool that generates search
terms, comprising both lexical and morphological
variants, in MSA and EGY when provided with
queries in English or MSA. No stemming deci-
sions are made as part of DIRA in order to al-
low its output to be usable by a variety of IR sys-
tems with different stemming decisions. While
the problem of morphological richness in IR has
been addressed before, our DIRA system is, to
our knowledge, the only system that addresses the
problem of dialectal variation.

In the next three sections, we discuss DIRA’s
functionality, some of DIRA’s implementation de-
tails, and two use scenarios.

2 DIRA’s Functionality

DIRA is designed to be used as a component in
a cross-lingual information retrieval system (Gey
and Oard, 2001). Its purpose is to allow English
and Arabic speakers to search for MSA and di-
alectal content using English or MSA queries. For
instance, teachers and language learners may use
English queries in DIRA to search the web for sen-
tences containing certain MSA or EGY inflected
word forms. An Arabic speaker may use MSA
queries in DIRA to search for online EGY content.

The interface accepts English or MSA lemmas
(citation forms) as input. MSA lemmas can be
undiacritized or (partially) diacritized. Depend-
ing on user choice, DIRA outputs a set of MSA
or EGY inflected forms for each lemma. The ex-
pansions are scored and ranked based on their fre-
quency of use in large MSA and EGY corpora.
Advanced settings give the users of DIRA the abil-
ity to specify weights for different inflectional fea-
ture values such as singular number, imperfective
aspect, masculine gender, etc. This allows the sys-
tem to prefer certain feature values that may be
used more often in certain types of content. For
instance, 1st and 2nd person may be used more of-
ten than 3rd person in blog articles while the con-
verse may be true for news related articles. The
weight of specific feature-value pairs can also be
set to zero, thus eliminating their corresponding
inflected forms from the expanded query.

We demonstrate DIRA’s utility in a web appli-
cation that uses Google search as the IR system. In
this application, DIRA first translates (if needed)
user queries (in English or MSA) and then mor-
phologically expands the lemmas in the target lan-
guage or dialect. Google’s boolean search oper-
ators are used to concatenate a user-selected sub-
set of the generated search terms to build the final
search query. This final search query is used to
perform a Google search for related online mate-
rial. The demo web application shows the gen-
erated search terms as well as the Google search
results. See Figures 1 and 2.

The online demo is available at
http://nlp.ldeo.columbia.edu/dira.

3 DIRA’s Implementation

DIRA expansion consists of three stages: lemma
translation, morphological generation, and out-
put ranking. First, DIRA translates each in-
put lemma into a set of target lemmas using a
trilingual English-MSA-EGY dictionary contain-
ing about 70,000 entries (Diab et al., in prepara-
tion). Second, DIRA morphologically expands the
target lemmas into sets of inflected word forms
using a target-language morphological generator
(Habash, 2007). For MSA, the generator uses the
databases of the BAMA/SAMA morphological
analyzer (Buckwalter, 2004; Graff et al., 2009).
For EGY, it uses the databases of the CALIMA-
ARZ analyzer (Habash et al., 2012a). Since the
CALIMA-ARZ analyzer maps a set of common
spelling variations to the conventional orthogra-
phy we use for EGY (Habash et al., 2012b), in
generation mode, different spelling variants are
produced. This is a desirable feature as it allows
us to match more terms. In order to speed up the
expansion process, DIRA utilizes a lookup cache
created from large MSA and EGY corpora and ex-
tended online with new generated forms. Third,
DIRA ranks the expansions using a weighted com-
bination of (a) lemma-feature probabilities esti-
mated from large MSA and EGY annotated cor-
pora, and (b) user-provided weights for various
feature-value pairs.

The DIRA framework has been designed to be
easily extended to other dialects. At a minimum, a
dialectal-MSA-English dictionary and a databases
for morphological generation are required. Addi-
tional optional resources include corpora for the
new dialects that can be used to estimate different
probabilities.

14

Figure 1: Screenshot of the DIRA demo web application. In this example, the user entered the English
query ‘see’ and requested that the translation and expansion target Egyptian Arabic.

4 Two Use Scenarios

We discuss next two use scenarios. In the first sce-
nario, a teacher of Arabic as a foreign language
wishes to use real materials to teach the negation
forms in Egyptian Arabic. This scenario is il-
lustrated in Figure 1. She selects English as the
input language and Egyptian Arabic as the out-
put language. She chooses to search for the verb
“see”. The system provides an English gloss for
each lemma to help semantically distinguish dif-
ferent lemmas. The teacher can change the lemma
choice, but she doesn’t because the first lemma is
strongly dialectal. To see the available inflected
forms for this lemma, she clicks on the plus sign
next to the lemma. The online system proposes a
maximum of five inflected forms per lemma. The
first two are automatically selected by the system
and both happen to express morphological nega-
tion. She additionally selects the third term, which
is also negated.

As soon as the English search query is entered,
the system immediatelty returns four lemmas, uses
two inflected forms of the top-ranked lemma to
construct the search query, and diisplays the re-
sults of the search with that seach query. The
query and the results of the Google search are
shown on the right hand side of the interface. As
the user modifies the choice of lemma or inflected

forms on the left-hand side of the interface, the
query and search results are immediately updated
to the right. In Figure 1, we see the search query
is the disjunction of the three inflected forms our
user selected.

In the second scenario, a native speaker of Ara-
bic who may not know Egyptian Arabic wishes to
conduct a search in Egyptian Arabic. This sce-
nario is illustrated in Figure 2. He selects Stan-
dard Arabic as the input language and Egyptian
Arabic as the output language. He enters the MSA
question ‘ú

æ�QÓ 	áK

@’ Âyn mrsy ‘where is Morsi’ as

his base query. DIRA expands identifies two pos-
sible lemma matches for each term. For the first
word, it generates the verbal lemma 	á

�
K

@ Âyn ‘ion-

ize’ and the interrogative particle lemma 	á�

	
¯ fyn

‘where’. For the second word, it generates the
noun lemma úæ�QÓ mrsý ‘harbor’ and the proper

noun lemma ú

æ�QÓ mrsy ‘Morsi’. For both terms,

the first lemma is automatically selected. The
user deselects the system’s automatic choices and
clicks on the second reading for each term as these
choices fit his intended query. As in the first sce-
nario, after each choice is made, the query terms
are adjusted and the search results presented im-
mediately.

15

Figure 2: Screenshot of the DIRA demo web application. In this example, the user entered the MSA
query ‘ú

æ�QÓ 	áK

@’ Âyn mrsy ‘where is Morsi’ and requested that the translation and expansion target

Egyptian Arabic.

References
Ibrahim A Al-Kharashi and Martha W Evens. 1999.

Comparing words, stems, and roots as index terms
in an Arabic information retrieval system. Jour-
nal of the American Society for Information Science,
45(8):548–560.

Tim Buckwalter. 2004. Buckwalter Arabic Morpho-
logical Analyzer Version 2.0. LDC catalog number
LDC2004L02, ISBN 1-58563-324-0.

Kareem Darwish, Hany Hassan, and Ossama Emam.
2005. Examining the effect of improved con-
text sensitive morphology on Arabic information re-
trieval. Computational Approaches to Semitic Lan-
guages, 100:25.

Mona Diab, Abdelati Hawwari, Heba Elfardy, Pradeep
Dasigi, Mohammad Al-Badrashiny, Ramy Eskan-
der, and Nizar Habash. in preparation. Tharwa: A
multi-dialectal multi-lingual machine readable dic-
tionary.

F. Gey and D. Oard. 2001. The TREC-2001 Cross-
Language Information Retrieval Track: Searching
Arabic Using English, French or Arabic Queries. In
The 10th Text Retrieval Conference (TREC-10).

David Graff, Mohamed Maamouri, Basma Bouziri,
Sondos Krouna, Seth Kulick, and Tim Buckwal-
ter. 2009. Standard Arabic Morphological Analyzer
(SAMA) Version 3.1. Linguistic Data Consortium
LDC2009E73.

Nizar Habash and Owen Rambow. 2006. MAGEAD:
A Morphological Analyzer and Generator for the
Arabic Dialects. In Proceedings of ACL’06, Sydney,
Australia.

Nizar Habash, Clinton Mah, Sabiha Imran, Randy
Calistri-Yeh, and Páraic Sheridan. 2006. Design,
Construction and Validation of an Arabic-English
Conceptual Interlingua for Cross-lingual Informa-
tion Retrieval. In LREC-2006, Genoa, Italy.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den
Bosch and A. Soudi, editors, Arabic Computa-
tional Morphology: Knowledge-based and Empir-
ical Methods. Springer.

N. Habash, R. Eskander, and A. Hawwari. 2012a.
A Morphological Analyzer for Egyptian Arabic.
In NAACL-HLT 2012 Workshop on Computational
Morphology and Phonology (SIGMORPHON2012),
pages 1–9.

Nizar Habash, Mona Diab, and Owen Rabmow. 2012b.
Conventional Orthography for Dialectal Arabic. In
Proceedings of the Language Resources and Evalu-
ation Conference (LREC), Istanbul.

Nizar Habash. 2007. Arabic Morphological Repre-
sentations for Machine Translation. In A. van den
Bosch and A. Soudi, editors, Arabic Computa-
tional Morphology: Knowledge-based and Empir-
ical Methods. Springer.

Nizar Habash. 2010. Introduction to Arabic Natural
Language Processing. Morgan & Claypool Publish-
ers.

Leah S. Larkey, Lisa Ballesteros, and Margaret E. Con-
nell, 2007. Arabic Computational Morphology:
Knowledge-based and Empirical Methods, chapter
Light Stemming for Arabic Information Retrieval.
Springer Netherlands, Kluwer/Springer edition.

16

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 17–20,
Nagoya, Japan, 14-18 October 2013.

Keyphrase-Driven Document Visualization Tool

Gábor Berend and Richárd Farkas
Department of Informatics,

University of Szeged
Árpád tér 2., Szeged, 6720, Hungary

{berendg,rfarkas}@inf.u-szeged.hu

Abstract

The need to navigate through massive
document sets is getting common due
to the abundant data available around
us. To alleviate navigation, tools that
are able to grasp the most relevant as-
pects of document subsets and their re-
lations to other parts of the corpus can
be highly beneficial. In this paper, we
shall introduce an application1 that pro-
cesses and visualizes corpora to reveal
the main topics and their relative roles
to each other. Our suggested solution
combines natural language processing and
graph theoretic techniques for the visual-
ization of documents based on their au-
tomatically detected keyphrases. Further-
more keyphrases that describe themati-
cally related subcorpora are also extracted
based on information-theoretic grounds.
As for demonstration purposes our appli-
cation currently deals with papers pub-
lished at ACL workshops.

1 Introduction

The abundance of textual data that surrounds us
often poses difficulties when we are looking for
relevant documents in some field. For instance,
when a researcher faces a new problem to be
solved, she often has to process large amounts of
academic papers that are not necessarily directly
related to her field of expertise. Difficulties can
arise simply from the amount of data to be pro-
cessed as well as from the absence of knowledge
about which articles to regard as relevant. Various
solutions exist that try to alleviate data manage-
ment, such as assigning keyphrases or generating
summaries to documents and document subsets,

1available at http://www.inf.u-szeged.hu/
˜berendg/keyphraseViz

but probably the most useful way of doing so is
to support these approaches with some kind of vi-
sualization.

Our application constructs a similarity graph of
documents and performs a force-directed layout
implementation on that graph. Document simi-
larity can be measured based on multiple crite-
ria, i.e. bibliographic similarity – based on co-
authorships and citations – or contextual similar-
ity – based on the shared vocabulary or proper
keyphrases that documents have in common. In
our demonstration – which provides a visualiza-
tion framework for ACL workshop papers – we
present a contextual similarity-based visualization
which is based on keyphrases.

In order to determine the kepyhrases of arti-
cles our state-of-the-art keyphrase extraction mod-
ule was utilized. Then similarity between pairs
of documents is calculated based on the extracted
keyphrases and a similarity graph of the docu-
ments is formed.

As a subsequent step document communities,
i.e. subcorpora of thematically related articles are
formed. The most representative keyphrases are
then assigned to the identified document subsets
which are determined relying on information theo-
retic grounds. Using a few keyphrases to describe
a cluster can help the users in identifying topics
they are interested in.

Representing documents in a bag-of-keyphrases
fashion – instead of a bag-of-word one – had mul-
tiple benefits, i.e.

1. our representation is less influenced by the
problem of measuring similarities in high di-
mensional spaces and

2. we naturally enjoyed computational benefits
by representing documents with their most
relevant terms only.

For some empirical support regarding these obser-
vations see our previous studies (2013).

17

2 Related work

Recently, several methods have been suggested for
a more effective handling of large document sets.

Quazvinian et al. (2013) proposed a graph-
based approach – utilizing the so-called Citation
Summary Network built from sentences citing a
particular paper – to create extractive summaries
of scientific articles. They employed their ap-
proach not only for single documents but for scien-
tific topics, i.e. multiple documents from the same
area as well. Even though their suggested method-
ology is appealing, it treated the topics to be sum-
marized and the assignment of documents to those
topics to be known in advance. Also, summaries
can be beneficial in getting to know a topic from a
glance, however, it can hardly be utilized to reveal
the intra-topic document relations, nor the related-
ness of different topics to each other.

Topic models such as Latent Dirichlet Alloca-
tion (Blei et al., 2003) provide an efficient way to
analyse document sets. In their model, documents
are treated as a mixture of topics where each topic
has a distribution over the vocabulary of words.
Although topic models are able to reveal general
trends and identify topics based on word usage of
documents, it does not really make it clear how
documents are organized within each topic and it
is also unclear how different topics connect to each
other.

Eisenstein et al. (2012) introduced TopicViz, an
LDA-based document visualization system, which
can be regarded as a visually-aided information
retrieval system. There are two basic differences
between their approach and ours. First, they re-
lied on topic models, whereas we employed graph
partitioning in order to automatically determine
document subtopics. Second, in their work they
manually identified the topics determined by LDA
whereas we let the automatically detected com-
munities “speak for themselves”, i.e. the most in-
formative sets of keyphrases of size 3 were de-
termined based on information theoretic grounds.
Our proposed method did not need to know the
number of topics to be identified in advance and its
time requirements are also more favourable com-
pared to the training of topic models, i.e. it can
be performed on the fly during the initialization
of our application. A further possible advantage
of our approach compared to other LDA models
as topic models tend to be trained on the single
tokens level, whereas our approach can easily ex-

tract informative noun phrases and multi-word ex-
pressions as it operates on n-gram level.

In scientific document set visualization, citation
analysis is often taken into consideration. The ex-
plicit relations among documents like citations can
be naturally taken into consideration in our graph-
based approach (which is not straightforward in
LDA-based solutions). However, citation-based
methods have the limitation that they are mostly
useful for scientific document sets where citations
exist.

3 Document set representation

Our representation used for the visualization of
document collections is based on a weighted,
undirected graph having individual documents as
its nodes. In our case study – when our purpose
was to visualize a document set that is clearly in-
terpretable for computational linguists and which
is comprised of easily distinguishable, themati-
cally related subcorpora – we relied on the work-
shop papers present in the ACL Anthology Corpus
(Schäfer et al., 2012).

3.1 Single-Document Keyphrase Extraction
System

To have an efficient representation of the
documents we first used our single-document
keyphrase extraction system. Keyphrase extrac-
tion was treated as a supervised learning task
where successive n-grams extracted from a doc-
ument (i.e. keyphrase candidates) have to be clas-
sified as proper and improper keyphrases.

We utilized the NUS Keyphrase Corpus (2007)
and the database of the SemEval-2 shared task on
scientific keyphrase extraction (Kim et al., 2010)
as training data for our supervised keyphrase can-
didate ranker. Our keyphrase ranking solution was
based on the posterior probability of a “keyphrase
or not” binary MaxEnt model trained within the
MALLET (2002) framework and using a combi-
nation of our feature sets from our previous works
on keyphrase extraction as described in (2010) and
(2011).

3.2 Visualizing and partitioning the
document set

Keyphrases extracted from the individual papers
were used next as an input for the construction of
a similarity graph which served as the basis of vi-
sualization.

18

3.2.1 Similarity graph
Gn,t = (V,En, wt) was defined as a weighted
graph of documents, where En = {(u, v) : v ∈
neigh(u, n) ∨ u ∈ neigh(v, n)} and neigh(u, n)
is a function which returns the set of the n vertices
that are closest to vertex u based on the similarity
measure wt.

The similarity measure wt(u, v) assigns a pos-
itive similarity score to documents u and v com-
paring the overlap between their top-t keyphrases
that best describe them. Values n and t are thus
hyperparameters that can be adjusted in our appli-
cation to see their effects on the connectedness of
the document graph.

Since a pair of documents can have multiple
keyphrases in common, the weight assigned to a
pair of nodes can be determined in multiple ways
(which can be adjusted in the applet). For a sim-
ilarity graph Gn,t, the similarity of documents u
and v is 0 if the two documents have no keyphrases
in common, otherwise it is aggregated due to one
of the following strategies, via calculating

1. the Jaccard or Dice similarity between them,
accordingly to the formulae A∩B

A∪B and 2|A∩B|
|A|+|B| ,

2. the cosine similarity of the two documents
based on their top-t ranked keyphrases

3.
∑

k∈A∩B p(k, u)p(k, v)

4. mink∈A∩B(p(k, u), p(k, v))

5. maxk∈A∩B(p(k, u), p(k, v))

where sets A and B consist of the top-t ranked
keyphrases of documents u and v, respectively and
p(k, u) is the probability that is assigned to the
event that phrase k is a proper keyphrase of docu-
ment u.

3.2.2 Visualization of the similarity graph
A force-directed layout visualization is employed
based on the publicly available Java implementa-
tion of TouchGraph.2 Their source code was ex-
tended and modified to our special needs, e.g. the
awt windowing scheme was replaced by the more
standardized Swing technology and various input
fields for user interaction were added to the user
interface. User interactions supported by the cur-
rent version of the program are

1. Filter documents for keyphrases
2http://sourceforge.net/projects/touchgraph/

2. Filter documents for some kind of metadata
(such as the date or authors of a publication)

3. Hide/unhide entire document communities.

To illustrate the importance of nodes within the
document graph, PageRank values are determined
for each vertex. Since the similarity graph created
is designed to be sparse – influenced by the pa-
rameter of maximal neighbours n – these calcula-
tions can be efficiently calculated with sparse ma-
trix multiplication during the initialization phase
of the programme.

Our application supports two kinds of partition-
ing of the document set to be visualized. If the
user has a reliable partitioning of the document set
in advance, it can be employed directly during the
visualization, otherwise an automatic community
detection is to be performed.

3.2.3 Modularity-driven community
detection

The community detection employed here maxi-
mizes Newman’s modularity (2004) in order to ob-
tain a partitioning of the documents. Intuitively,
what modularity measures for a given partitioning
of a graph is the difference between the fraction
of intra-community edges and the expected frac-
tion of intra-community edges in the graph with
the same number of vertices and edges but with its
edges rewired randomly.

As our intention was to be able to deal with
possibly massive data collections, it was a key as-
pect to keep computation requirements relatively
low. Blondel et al. (2008) introduced a method
which greedily approximates that partitioning of a
graph which has the highest modularity. The pro-
posed iterative method works in a bottom-up man-
ner, starting from the state when all the vertices of
the graph form a separate community. In the fol-
lowing steps vertices are moved into a community
in such a way that their replacement should yield
a best increase locally in the modularity.

3.3 Multi-Document Keyphrase Extraction
System

Keyphrases are not only useful in automatically
determining thematically related subgroups in
document sets, but can be also applied to charac-
terize those subgroups found in some corpus. For
this reason our application assigns representative
phrases to each community determined according
to Section 3.2.3.

19

The keyphrases of a cluster are those top-ranked
keyphrases of the individual documents compris-
ing the cluster which had the highest information
gain metric, i.e. using the numbers of occurrences
of a cluster-level keyphrase candidate inside and
outside the particular cluster.

Then, for a subset of the document collection,
the top-3 highest ranked candidates based on their
information gain – which had at least a high rela-
tive frequency within the documents in the partic-
ular cluster as the relative frequency of the phrase
outside the cluster – were treated as the keyphrases
of the given cluster.

4 Conclusions

Since it is crucial in information-rich environ-
ments to be able to navigate quickly and effec-
tively within document sets, we created a frame-
work which alleviates it by implementing a visu-
alization tool. Based on the keyphrases that can
be automatically determined for individual docu-
ments of a document collection, useful and com-
putationally efficient visualization can be built.

The fact that the visualization module only
waits for a plain text input makes it possible to
easily visualize datasets other than the one com-
prising of ACL workshop papers. Even though we
favored keyphrase-based calculation of document
similarities, the simple structure of the input file
makes it also possible to perform visualizations
based on other (e.g. bibliographic) criteria as well.

Besides providing a visualization tool for doc-
ument sets it is also made easy to obtain more
information from it via the automatic detection
of document subgroups and the multi-document
keyphrases assigned to each of them which makes
the identification of topics possible.

Acknowledgments

This work was in part supported by the Eu-
ropean Union and the European Social Fund
through the project FuturICT.hu (TÁMOP-
4.2.2.C-11/1/KONV-2012-0013) and ”Hungar-
ian National Excellence Program“ (TÁMOP
4.2.4.A/2-11-1-2012-0001).

References
Gábor Berend and Richárd Farkas. 2010. Sztergak:

Feature engineering for keyphrase extraction. In
Proceedings of the 5th International Workshop on
Semantic Evaluation, SemEval ’10, pages 186–189,

Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Gábor Berend and Richárd Farkas. 2013. Ex-
tracción de palabras clave de documentos individ-
uales para extracción de palabras clave de documen-
tos múltiples. Computación y Sistemas, 17(2).

Gábor Berend. 2011. Opinion expression mining by
exploiting keyphrase extraction. In Proceedings of
5th International Joint Conference on Natural Lan-
guage Processing, pages 1162–1170, Chiang Mai,
Thailand, November. Asian Federation of Natural
Language Processing.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022, March.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Journal
of Statistical Mechanics: Theory and Experiment,
2008(10):P10008+, July.

Jacob Eisenstein, Duen Horng Chau, Aniket Kittur, and
Eric Xing. 2012. Topicviz: interactive topic ex-
ploration in document collections. In CHI ’12 Ex-
tended Abstracts on Human Factors in Computing
Systems, CHI EA ’12, pages 2177–2182, New York,
NY, USA. ACM.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. Semeval-2010 task 5: Au-
tomatic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop
on Semantic Evaluation, SemEval ’10, pages 21–26,
Morristown, NJ, USA. ACL.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

M. E. J. Newman and M. Girvan. 2004. Finding and
evaluating community structure in networks. Physi-
cal Review E, 69(2):026113+, February.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
Proceedings of the 10th international conference on
Asian digital libraries: looking back 10 years and
forging new frontiers, ICADL’07, pages 317–326,
Berlin, Heidelberg. Springer-Verlag.

Vahed Qazvinian, Dragomir R. Radev, S. M. Moham-
mad, Bonnie J. Dorr, David M. Zajic, M. Whidby,
and T. Moon. 2013. Generating extractive sum-
maries of scientific paradigms. J. Artif. Intell. Res.
(JAIR), 46:165–201.

Ulrich Schäfer, Jonathon, and Stephan Oepen. 2012.
Towards an acl anthology corpus with logical doc-
ument structure. an overview of the acl 2012 con-
tributed task. In Proceedings of the ACL-2012 Spe-
cial Workshop on Rediscovering 50 Years of Discov-
eries, pages 88–97, Jeju Island, Korea, July. Associ-
ation for Computational Linguistics.

20

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 21–24,
Nagoya, Japan, 14-18 October 2013.

Making Headlines in Hindi: Automatic English to Hindi
News Headline Translation

Aditya Joshi1,2 Kashyap Popat2 Shubham Gautam2 Pushpak Bhattacharyya2

1IITB-Monash Research Academy, IIT Bombay
2Dept. of Computer Science and Engineering, IIT Bombay

{adityaj,kashyap,shubhamg,pb}@cse.iitb.ac.in

Abstract

News headlines exhibit stylistic
peculiarities. The goal of our translation
engine ‘Making Headlines in Hindi’
is to achieve automatic translation of
English news headlines to Hindi while
retaining the Hindi news headline styles.
There are two central modules of our
engine: the modified translation unit
based on Moses and a co-occurrence-
based post-processing unit. The modified
translation unit provides two machine
translation (MT) models: phrase-based
and factor-based (both using in-domain
data). In addition, a co-occurrence-based
post-processing option may be turned
on by a user. Our evaluation shows
that this engine handles some linguistic
phenomena observed in Hindi news
headlines.

1 Introduction

‘Making Headlines in Hindi’ is a web-based
translation engine for English to Hindi news
headline translation. Hindi1 is a widely
spoken Indian language and has several news
publications. The aim of our translation engine
is to translate English news headlines to Hindi
preserving the content as well as Hindi news
headline structure to the extent possible. The
engine is based on Moses2 and has two central
parts: modified translation unit and a co-
occurrence based post-processing unit. The
modified translation unit consists of phrase-
based MT (Koehn et al., 2003)) and factor-
based MT (Koehn et al., 2007). The automatic
post-processing module performs co-occurrence-
based replacement for correct sense translation

1https://en.wikipedia.org/wiki/Hindi
2http://www.statmt.org/moses/

of words by replacing translation of a word
with the most frequently co-occurring translation
candidate. This paper is organized as follows.
Section 2 presents challenges of translating
news headlines. Section 3 describes the UI
layout. Section 4 discusses technical details
of the modified translation unit while section 5
describes the post-processing module that uses co-
occurrence-based replacement of words. Finally,
Section 6 presents an evaluation of the engine
while section 7 concludes our work.

2 Challenges of News Headline
Translation

Hindi news headlines have stylistic features that
pose challenges to translation as follows:

1. S-V-O order: Hindi news headlines often
follow the S-V-O order as opposed to S-
O-V as commonly seen in Hindi sentences.
A common news headline is ‘ab EthAw
j�l m�\ Eb-k� V bnAe\g� cOVAlA (ab tihaaD
jel mein biskooT banayenge chauTala;
Now Chautala will make biscuits in Tihar
jail)’ where the verb ‘bnAe\g� (banayenge;
will make)’ preceeds the object ‘cOVAlA
(chauTala; Chautala)’.

2. Numbers for people: Use of numbers to
indicate a group of people, like in the case of
English news headlines, is also common in
Hindi news headlines. For example, the word
‘Five’ in ‘Five held for molesting woman’
stands for five people.

3. Preferred choice of words: Words that are
commonly used in news headlines are often
different from accurate translations. For
example, ‘RBI’ (abbreviation for ‘Reserve
Bank of India’) is common in English news
headlines - however, instead of using its
transliterated form, news headlines tend to

21

translate it to ‘Er)v b{\k (rizarv bank;
Reserve Bank)’ in Hindi news headlines.

4. Missing verbs: Often, verbs are also dropped
as in the case of ‘mhAk� \B m�\ a)b -g)b
s\to kF BFw (mahakumbh mein ajab-gajab
santon kii bheeD; Herds of fascinating saints
in Mahakumbh (fair))’ where a form of the
word ‘be’ has been dropped.

Figure 1: Making Headlines in Hindi: Snapshot of
Output

3 UI Layout

The interface of the engine is divided into two
vertical blocks for clarity: one for input and
another for output. The input to the translation
engine consists of:

(a) Text area for English news headline(s),

(b) Option to select Phrase-based v/s Factor-based
model,

(c) Checkboxes for co-occurrence based
replacement, transliteration for OOVs
and displaying alignment table for the output:
Each of these options can be turned on/off.

While one out of the two options in (b) must
be selected, check-boxes in (c) are optional. Each
of the components stated above are described in
Section 4.

The output consists of:

(a) The best five translations obtained in Hindi

(b) A color-coded alignment table in case the
option to display the alignment table : This
helps to understand how each word got
translated and then reordered.

(c) Time taken for translation

Figure 1 shows a snapshot of the UI. Moses-
Baseline indicates the naive translation engine
while Moses-MLM-Dict is the modified phrase
model.

4 Modified Translation Unit

We implemented two translation models: phrase-
based and factor-based. The training corpus
consisted of parallel corpus obtained from (a)
Gyan-nidhi3 consisting of 2,27,123 sentences
and (b) Mahashabdkosh4 consisting of 46,825
judicial sentences. To transliterate out-of-
vocabulary words, we modified transliteration
engine provided by Chinnakotla et al. (2010). The
original transliteration was trained for Hindi to
English transliteration. For the purpose of our
engine, we re-trained this model for English to
Hindi transliteration. This section describes each
of these components.

4.1 Phrase-based Model

The Phrase-based MT model was trained using
Moses by (Koehn et al., 2007). In order to improve
the quality of translation, we modify different
components of the model in two ways. To preserve
sentence order, we use a modified language
model - a language model trained using in-domain
data consisting of 20,220 news headlines from
BBC Hindi website5 and 2,02,335 news headlines
from Dainik Bhaskar6 archives of 2010 and 2011.
The fact that this modified language model is a
better fit to the target data is highlighted by the
perplexity value obtained using SRILM toolkit
by (Stolcke, 2002). For bi-grams, the perplexity
of the Dainik Bhaskar corpus with a test news
headline corpus was 434.06 while the perplexity
of corpus consisting of tourism documents was
1205.58. Similar trend was observed in case of
tri-grams. To enrich the translation mapping table
available, we added a bilingual dictionary to the
parallel corpus used for training the translation

3http://www.cdacnoida.in/snlp/digital library/gyan nidhi.asp
4http://www.e-mahashabdkosh.cdac.in/
5http://www.bbc.co.uk/hindi/
6http://www.bhaskar.com/

22

model. This bilingual dictionary was downloaded
from CFILT, IIT Bombay7. This dictionary
contains a total of 1,28,240 mappings and includes
words as well as phrases. The fact that this
dictionary enriches translations is observed in the
case of a news headline containing the word
‘catch-22’. This word does not occur in the
parallel news headlines. However, it gets correctly
translated to ‘jEVl (jaTil)’ according to the entry
in the dictionary.

4.2 Factor-based Model
Our Factor-based MT model uses a set of factors
along with words for translation. The factors used
on source and target side are as follows.
1) On the source side, we use POS, lemma,
tense and number. The POS tags are obtained
from Stanford POS tagger8 while the lemma are
obtained from MIT Wordnet stemmer9. Tense and
number are derived from POS tags.
2) On the target side, we use CFILT hybrid POS
tagger10 to obtain POS tags.
The factors are combined using options available
in Moses. The lemma, tense and number on the
source side generate the translated word on the
target side. On the target side, words generate POS
features. By generating best possible translations
using a POS-based target language model, we
hope to obtain translations in a POS order best
suited to the news headline domain.

5 Post-processing: Co-occurrence-based
Replacement

The engine provides an optional co-occurrence
based replacement strategy to post-process the
output. A manual evaluation showed that 14
out of 50 headlines were incorrect because of
incorrect sense of one or more words. To
overcome this problem, we implemented a post-
processing strategy that automatically edits output
obtained from the MT model using co-occurrence
statistics as found in the in-domain news headline
corpus. To elaborate how this works, consider
the English news headline ‘crpf jawan held on
molestation charge’. The translation obtained was
‘sFaArpFe' jvAn pr aAyoEjt u(pFwn
cAj (crpf jawaan par aayojit utpiDan chaarj;

7http://www.cfilt.iitb.ac.in
8http://www-nlp.stanford.edu/software/tagger.shtml
9http://projects.csail.mit.edu/jwi/api/edu/mit/jwi/

morph/WordnetStemmer.html
10http://www.cfilt.iitb.ac.in/Tools.html

molestation charge organized on crpf jawan)’.
The word ‘held’ gets translated to ‘aAyoEjt
(aayojit; organized/conducted)’ as opposed to
‘Egr�tAr (giraftar; arrested)’. The language
model relies on n-grams and hence, does not
take into account the correct sense of words in
cases where the words do not occur together. For
this purpose, we implemented a post-processing
strategy that considers co-occurrence statistics of
a target word with all other words in the sentence
to find the best sense translation. In case of
the above example, using the co-occurrences in a
news headline corpus, we select the sense of ‘held’
in Hindi which occurs most frequently with other
words and replace the word with this translation.
We do not consider co-occurrence statistics for
function words. We understand that the above
strategy does not work in the case of inflected
forms of words in Hindi.

6 Evaluation

We evaluated the engine using a test set of
787 headlines downloaded from the website of a
popular English daily, The Hindu11 and manually
translated into Hindi by native speakers. A
BLEU score of 13.40 is obtained for phrase-based
MT and 5.73 for factor-based MT. In order to
understand how the engine performs for different
kinds of linguistic phenomena, we also performed
a qualititative evaluation of the output. The
following are examples of output from our engine.
They handle different linguistic phenomena as
follows:

1. Ambiguity:
Input: Industrialist remembered

Output: u�ogpEt ko yAd EkyA

(udyogpati ko yaad kiyaa;

Industrialist remembered)
The input sentence in domains other than
news headlines is ambiguous as it could mean
that either an industrialist was remembered
or an industrialist remembered something. In
case of news headline, however, the former
holds true. This is correctly reflected in the
Hindi translation.

2. S-V-O order:
Input: Now Jaganmohan will make biscuits in jail

Output: ab jgmohn kr�\g� Eb-k� V j�l m�\

(ab jaganmohan karenge biskoot jel mein;

Now Jaganmohan will do biscuits in jail)

11www.thehindu.com

23

The verb ‘will do’ gets placed correctly in
the target sentence thus preserving the verb
order. However, the translation ‘karenge (will
do)’ is incorrect and must be ‘banaange (will
make)’.

3. Numbers for people:
Input: Five killed in bomb blast

Output: pA\c bm Ev-PoV m�\ mAr� gy�

(paanch bum visfot mein maare gaye;

Five killed in bomb blast)
The output sentence is a perfect translation
and correctly translates ‘five’ as ‘paanch’.
However, the news headline order is not
retained in this case.

4. Missing verbs:
Input: Veteran journalist dead

Output: Ed`gj p/kAr m� t

(diggaj patrakaar mrut;

Veteran journalist dead)
The output sentence is a perfect translation
although a form of ‘be’ is absent in the source
sentence.

5. Translation of idioms:
Input: Croatia and Serbia bury the hatchet

Output: �oEVyA aOr sEbyA)gwA �tm krnA

(kroatia aur serbia jhagDa khatam karna;

Croatia and Serbia do-end-quarrel)
The idiom ‘bury the hatchet’ gets correctly
translated to ‘)gwA �tm krnA; jhagDa
khatam karna; to end a quarrel’ as a
complete entity. This is a direct mapping
from the bilingual dictionary and does not
have the correct inflection.

6. Sense correction due to co-occurrence
based replacement:

Input: No hike in AMU tuition fees

Moses-MLM-Dict: amu a@yApn 'Fs m�\ koI v� E�

nhF\

(amu adhyaapan fees mein koi pad-yaatra;

hike (trek) in AMU tuition fees)

Moses-CoOcc: amu Ef"Z "�/ m�\ koI v� E� nhF\

(amu shikshan fees mein koi vriddhi;

hike (increase) in AMU tuition fees)
We observe that our post-processing unit
improves the output in some cases. The
original output translates ‘hike’ as ‘pdyA/A
(pad-yaatra ; hike)’. The co-occurrence-
based replacement unit identifies and corrects
the sense to ‘v� E� (vriddhi; increase)’. We

understand that the ‘no’ gets missed out in
the translation.

7 Conclusion & Future Work

We presented ‘Making headlines in Hindi’, a
translation engine that aims to translate English
news headlines to Hindi while preserving news
headline styles in the target language. Our
engine includes a phrase-based model and a
factor-based model. The phrase-based model uses
an in-domain language model and a bilingual
dictionary. The factor-based model uses factors
like POS, lemma, tense and number. In addition,
we also described our post-processing strategy
that performs co-occurrence-based replacement of
words to obtain correct sense of target language
words. An evaluation of the output of our
translation engine shows that it performs well
for many linguistic styles used in Hindi news
headlines.

The co-occurrence-based strategy is naive. As
a future work, co-occurrence-based strategy can
be improved to incorporate inflections of words.
Also, other approaches to improve translation
quality may be considered.

References
Manoj Kumar Chinnakotla, Om P. Damani and Avijit

Satoskar. 2010. Transliteration for Resource-Scarce
Languages. Proc. ACM Trans. Asian Lang. Inf.
Process.,

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation
Proc. of ACL 2007, demonstration session, Prague,
Czech Republic

Philipp Koehn and Hieu Hoang. 2007. Factored
Translation Models. Proc. of EMNLP-CoNLL 2007,
Prague, Czech Republic

Philipp Koehn and Franz Josef Och and Daniel Marcu,.
2003. Statistical phrase-based translation Proc. of
NAACL 2003, Edmonton, Canada

A. Stolcke. 2002. SRILM - An extensible language
modeling toolkit. Proc. International Conference on
Spoken Language Processing, vol. 2

24

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 25–28,
Nagoya, Japan, 14-18 October 2013.

MaltDiver: A Transition-Based Parser Visualizer

Miguel Ballesteros Roberto Carlini
Natural Language Processing Group

Pompeu Fabra University
Barcelona, Spain

{miguel.ballesteros, roberto.carlini}@upf.edu

Abstract

Transition-based dependency parsers
are widely used in the Natural Lan-
guage Processing community but they
are normally treated as black boxes, as-
suming that they provide the depen-
dency parsing of a set of examples. We
present MaltDiver, a tool developed to
visualize the transitions performed by
the transition-based parsers included
in MaltParser and to show how the
parsers interact with the sentences and
the data structures within. During the
demo session, we will run MaltDiver on
several sentences and we will explain
the potentialities of such a system.1

1 Introduction

Natural language processing researchers ap-
ply transition-based parsers frequently, these
parsers are implemented in MaltParser (Nivre
and Hall, 2005; Nivre et al., 2007b). Most
of the application developers make use of the
parsers without knowing how these parsers ac-
tually work, treating them as black boxes.

In order to have a system that could help
to understand how a transition-based parser
works, we present MaltDiver. MaltDiver is
a tool developed to visualize the transitions
performed by the transition-based parsers in-
cluded in MaltParser and to show how they
traverse the transition-system. We believe
that there are mainly two different target re-
searchers, that belong to different knowledge
levels: (i) expert users who are willing to see
how the parser behaves with a new set of fea-
tures or with a different parsing constraint,

1The system is available for download at http:
//taln.upf.edu/pages/MaltDiver/. It includes ex-
amples and a complete readme file that explains how
to use the tool.

and (ii) non-expert users who are willing to
understand how the parsers work with the sen-
tences that they are interested to parse, help-
ing them to find out errors during the parsing
process or inconsistencies in the annotation.

In the rest of the paper, we explain how a
transition-based parser works (Section 2), we
describe how we have implemented MaltDiver
(Section 3), we present related work (Section
4), we show some ideas for further work (Sec-
tion 5) and we conclude (Section 6).

2 Transition-based parsing -
MaltParser

A transition-based parser learns parsing mod-
els that are trained to predict the next state
of a state machine. To this end, it uses fea-
tures that are annotated in the input sentence
and dependency structure features that are
dynamically generated. A typical transition-
based parser state, see Figure 1, consists in
two data structures (a stack and a buffer), and
the partially built dependency structure. The
parser starts in an initial state and produces
transitions in order to reach new states by us-
ing the predictions of the trained model. This
kind of parsing is very efficient, normally lin-
ear, O(n), in the sentence length and it pro-
vides the possibility of using features based
on the partially built dependency structure.
However, in a transition-based parsing strat-
egy, in which there is a lack of backtracking, it
is difficult to avoid an error propagation when
it occurs (McDonald and Nivre, 2007). This
may serve also as an evidence about why we
are interested in the existence of a system as
the one that we are presenting in this paper.

MaltParser (Nivre and Hall, 2005; Nivre
et al., 2007b) is a transition-based depen-
dency parser generator that provides high re-
sults. In the CoNLL Shared Tasks in 2006

25

Nivre’s transition system:

Initial configuration → Terminal configuration:

Transitions:

Shift: 〈Σ, i|B, H, D〉 ⇒ 〈Σ|i, B, H, D〉

Reduce: 〈Σ|i, B, H, D〉 ⇒ 〈Σ, B, H, D〉

Left-Arc (r): 〈Σ|i, j|B, H, D〉 ⇒ 〈Σ, j|B, H[i → j], D[i →r]}〉

if h(i) 6= 0.

Right-Arc (r): 〈Σ|i, j|B, H, D〉 ⇒ 〈Σ|i|j, B, H[j → i], D[j →r]}〉

if h(j) = 0.

Figure 1: Transition System for arc-eager al-
gorithm.

and 2007 (Buchholz and Marsi, 2006; Nivre
et al., 2007a), it was one of the best parsers.
MaltParser contains four different families of
transition-based parsers, the current version of
MaltDiver only handles arc-eager parsing al-
gorithm. These parsers mainly differ in the
attachment of right-dependents, being the arc-
eager greedier when right attachments have to
be generated (Ballesteros and Nivre, 2013).

Figure 1 shows the parsing transitions for
Nivre arc-eager with reduce transition: (i)
Shift, (ii) Reduce, (iii) Left-Arc and (iv)
Right-Arc. Nivre’s arc-eager parsing algo-
rithm makes use of two data structures in or-
der to handle the input words: a buffer, which
keeps the words that have to be read, and a
stack, containing words that have already been
processed but they are still available to pro-
ducing a dependency arc. The Shift transi-
tion removes the first word in the buffer, and
puts it on the top of the stack. The Reduce
transition removes the word that is on the top
of the stack because there are no more arcs
that have this word as a dependent or as a
head. The Left-Arc and Right-Arc tran-
sitions create either and arc from right to left
or left to right, and stores the new arc in the
dependency structure H and list D of depen-
dency labels for each word.

3 MaltDiver

MaltDiver is a system implemented in Java
that dives into the transition-based system
with the intention of showing the states that
the parser performs for a given sentence. At
this writing, our MaltDiver implementation
only allows the visualization of the arc-eager

parsing algorithm (Nivre, 2003) – but it would
not be difficult to include new transition sys-
tems (Nivre, 2008) as we also mention in Sec-
tion 5.

MaltDiver processes the outcome of the di-
agnostic feature of MaltParser,2 which prints
the transition sequence for each sentence of the
test corpus. It basically shows the list of tran-
sitions and the dependency label selected (if
available). Besides that, MaltDiver also makes
use of the dependency tree produced in order
to ensure the reliability of the transition se-
quences inferred in the MaltDiver processes.

We included an extra option in MaltDiver
which is the one that corresponds with the
allow root option in MaltParser.3 This option
decides whether there is a dummy root node
included in the first parsing state on the stack.
As in MaltParser, the allow root option is set
to true in default settings.

Therefore, MaltDiver takes the following in-
puts: (i) input sentence, (ii) a sequence of
transitions provided by the MaltParser diag-
nostic feature and (iii) a dependency tree pro-
duced by MaltParser for the input sentence.
After that, it processes the list of transitions
from left to right and it reconstructs the parser
configurations off line.

MaltDiver includes a console version of the
system, that prints the parsing states and the
dependency structure that is being produced
in each state in a pretty-print way. In order to
ensure the usefulness of the system, MaltDiver
produces a pdf file for each state of the parsing
process by using the TikZ-dependency tool,4

which provides a LATEX interface that we use
for the production of the different states and
partially built dependency structures. There-
fore, the pdf file allows to go backward and
forward and save the current state in a sep-
arate pdf file. Besides the pdf file, the user
could also access the LATEX format file. Fig-
ure 2 shows an intermediate state of the pdf
file generated within MaltDiver transitions by
processing a sentence written in Spanish. The
structure to the left of the picture is the stack,

2This can be achieved by using the following setting
in MaltParser: -di true -dif filename.log

3See www.maltparser.org/userguide.html
4TikZ-dependency tool is available for download-

ing through https://sourceforge.net/projects/
tikz-dependency/

26

Figure 2: A print-screen of the system for the following sentence written in Spanish: Este, a sus
cuarenta años de edad, sufre una terrible e imparable degeneración nerviosa. The structure to
the left of the picture is the stack, and the one to the right is the buffer.

and the one to the right is the buffer.

4 Related Work

The importance of visualization systems has
been evidenced during the last years in the
NLP community. In the parsing and genera-
tion area we can find systems, such as MaltE-
val (Nilsson and Nivre, 2008), the Mate Tools
(Bohnet et al., 2000), XLDD (Culy et al.,
2011) or more recently, TreeExplorer (Thiele
et al., 2013), which are, among other things,
systems that visualize parse trees for evalu-
ation and to provide the option of exploring
dependency structures.

We also consider relevant and motivated in
a similar way the work developed by Christo-
pher Collins et al. about visualization of lin-
guistic data in the Computer Graphics area
(Collins et al., 2009a; Collins et al., 2009b),
in which they present interactive visualization
systems for NLP in discourse analysis, doc-
ument content and even machine translation
parse trees.

5 Future Work

A tool like MaltDiver provides several future
directions and applications in different scenar-
ios. The first idea would be to include other
parsers in the system, such as the ones in-
cluded in MaltParser that are not treated with
MaltDiver. Some of them would be very easy
to include, because they share with Nivre’s
parsers the transition system. However, there
are some parsers that are a challenge, be-
cause we would have to include additional data
structures in the visualization.

We could also provide an implementation of
the pseudo-projective transformation of Nivre
and Nilsson (2005) in the system process. We
believe that the implementation of this step
is rather straightforward, because we would
only have to trace the projective parsing pro-
cess –as we have already done– resulting in the
pseudo-projective tree before post-processing.
By comparing this to the final tree output by
the system, we can then infer which arcs were
moved due to pseudo-projective parsing. In
fact, this is something that an user could do
manually in the current version of MaltDiver.

A great idea would be to integrate Malt-
Diver with MaltOptimizer (Ballesteros and
Nivre, 2012) in order to understand how the
parser changes its behavior by updating the
features selected.

6 Conclusions

We have presented MaltDiver, a tool that may
serve as support for people interested in pars-
ing research. This kind of tool would allow to
understand the parsing processing by prepar-
ing resources about transition-based parsing
in short time; researchers with deep knowl-
edge about transition-based parsing could find
it useful in order to understand the outcomes
that the parsers may produce for a given sen-
tence. For instance, a possible MaltDiver
use could be an automatic comparison be-
tween different parsing behaviors for exper-
iments about parsing root positions (Balles-
teros and Nivre, 2013) or parsing directions
modifications (Attardi and Dell’Orletta, 2009)
and (Hall et al., 2007).

27

Acknowledgments

Thanks to Joakim Nivre, Johan Hall and Leo
Wanner for their kind support and useful com-
ments.

References

Giuseppe Attardi and Felice Dell’Orletta. 2009.
Reverse revision and linear tree combination
for dependency parsing. In Proceedings of Hu-
man Language Technologies: The 2009 Annual
Conference of the North American Chapter of
the Association for Computational Linguistics
(NAACL HLT), pages 261–264.

Miguel Ballesteros and Joakim Nivre. 2012. Mal-
tOptimizer: A System for MaltParser Optimiza-
tion. In Proceedings of the Eighth International
Conference on Language Resources and Evalua-
tion (LREC).

Miguel Ballesteros and Joakim Nivre. 2013. Going
to the roots of dependency parsing. Computa-
tional Linguistics, 39(1):5–13.

Bernd Bohnet, Andreas Langjahr, and Leo Wan-
ner. 2000. A development environment for an
mtt-based sentence generator. In Proceedings of
the First International Natural Language Gen-
eration Conference.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency pars-
ing. In Proceedings of the 10th Conference
on Computational Natural Language Learning
(CoNLL), pages 149–164.

Christopher Collins, M. Sheelagh T. Carpendale,
and Gerald Penn. 2009a. Docuburst: Visualiz-
ing document content using language structure.
Comput. Graph. Forum, 28(3):1039–1046.

Christopher Collins, Gerald Penn, and M. Shee-
lagh T. Carpendale. 2009b. Bubble sets: Re-
vealing set relations with isocontours over exist-
ing visualizations. IEEE Trans. Vis. Comput.
Graph., 15(6):1009–1016.

Chris Culy, Verena Lyding, and Henrik Dittmann.
2011. xldd: Extended linguistic dependency dia-
grams. In Proceedings of the 2011 15th Interna-
tional Conference on Information Visualisation,
IV ’11, pages 164–169, Washington, DC, USA.
IEEE Computer Society.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen
Eryiğit, Beáta Megyesi, Mattias Nilsson, and
Markus Saers. 2007. Single malt or blended?
A study in multilingual parser optimization.
In Proceedings of the CoNLL Shared Task of
EMNLP-CoNLL 2007, pages 933–939.

Ryan McDonald and Joakim Nivre. 2007. Char-
acterizing the errors of data-driven dependency
parsing models. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL), pages
122–131.

Jens Nilsson and Joakim Nivre. 2008. Malteval:
an evaluation and visualization tool for depen-
dency parsing. In Proceedings of the Sixth Inter-
national Conference on Language Resources and
Evaluation (LREC’08), Marrakech, Morocco,
may. European Language Resources Association
(ELRA).

Joakim Nivre and Johan Hall. 2005. MaltParser:
A language-independent system for data-driven
dependency parsing. In Proceedings of the 4th
Workshop on Treebanks and Linguistic Theories
(TLT), pages 137–148.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proceedings
of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL), pages 99–
106.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan
McDonald, Jens Nilsson, Sebastian Riedel, and
Deniz Yuret. 2007a. The CoNLL 2007 shared
task on dependency parsing. In Proceedings
of the CoNLL Shared Task of EMNLP-CoNLL
2007, pages 915–932.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülşen Eryiǧit, Sandra Kübler, Sve-
toslav Marinov, and Erwin Marsi. 2007b.
Maltparser: A language-independent system for
data-driven dependency parsing. Natural Lan-
guage Engineering, 13:95–135.

Joakim Nivre. 2003. An efficient algorithm for
projective dependency parsing. In Proceedings
of the 8th International Workshop on Parsing
Technologies (IWPT), pages 149–160.

Joakim Nivre. 2008. Algorithms for determinis-
tic incremental dependency parsing. Computa-
tional Linguistics, 34:513–553.

Gregor Thiele, Markus Gärtner, Wolfgang Seeker,
Anders Björkelund, and Jonas Kuhn. 2013.
Treeexplorer – an extensible graphical search
tool for dependency treebanks. In Proceedings
of the Demonstrations of the 51st Annual Meet-
ing of the Association for Computational Lin-
guistics (ACL 2013).

28

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 29–32,
Nagoya, Japan, 14-18 October 2013.

NICT Disaster Information Analysis System
Kiyonori Ohtake Jun Goto Stijn De Saeger∗ Kentaro Torisawa

Universal Communication Research Institute, NICT / Kyoto, Japan.
{kiyonori.ohtake, goto-j, stijn, torisawa} (at) nict.go.jp

Junta Mizuno
Resilient ICT Research Center,

NICT / Miyagi, Japan.
junta-m (at) nict.go.jp

Kentaro Inui
Graduate School of Information Sciences,

Tohoku University / Miyagi, Japan.
inui (at) ecei.tohoku.ac.jp

Abstract

Immediately after the 2011 Great East
Japan Earthquake, the Internet was
flooded by a huge amount of informa-
tion concerning the damage and problems
caused by the earthquake, the tsunami, and
the nuclear disaster. Many reports about
aid efforts and advice to victims were also
transmitted into cyberspace. However,
since most people were overwhelmed
by the massive amounts of information,
they could not make proper decisions, and
much confusion was caused. Furthermore,
false rumors spread on the Internet and
fanned such confusion. We demonstrate
NICT’s prototype disaster information
analysis system, which was designed to
properly organize such a large amount
of disaster-related information on social
media during future large-scale disasters
to help people understand the situation
and make correct decisions. We are going
to deploy it using a large-scale computer
cluster in fiscal year 2014.

1 Introduction

It is widely recognized that Twitter and other so-
cial media played a significant role during the af-
termath of the 2011 Great East Japan Earthquake
by providing a huge amount of information con-
cerning damages, problems, and aid efforts. But
since this information exploded without any sys-
tem to organize and disseminate it, most of the
posted information was not effectively utilized for
helping people (Varga et al., 2013).

We demonstrate NICT’s prototype disaster in-
formation analysis system that organizes a large

*Current address: Nuance Communications, Inc.,
Germany. stijn.desaeger (at) nuance.com

amount of disaster-related information and sup-
ports victims and rescue workers during future
large-scale disasters. Its core is a question-
answering (QA) system that lists answers to such
disaster-related questions as “What is in short sup-
ply in Tokyo?” from the 50 million tweets trans-
mitted within a month after the Great East Japan
Earthquake. We designed our QA system to pro-
vide a wide range of answers including unpre-
dictable ones, unlike the single answers given by
IBM’s Watson (Ferrucci et al., 2010). With our
system, we can actually find much unpredictable
information that is useful in aid efforts, includ-
ing such diverse topics as allergy friendly food
for children, psychotropic medicine, dialyzers, and
women’s underwear, all of which were scarce in
the earthquake and tsunami areas. One lesson
from the Great East Japan Earthquake was that a
large-scale disaster can destroy a wide range of
infrastructure in society, disrupt daily lives, and
cause many unpredictable situations. We expect
that QA systems, which can automatically process
huge bodies of text to extract a wide range of an-
swers to a wide range of questions, will be indis-
pensable for dealing with such unpredictable situ-
ations.

Also, our system can map answers to Google
Maps and help local governments and NPOs rec-
ognize the big picture of the damage caused by
disasters as well as the gaps in aid efforts. An-
other of its functionalities helps people recognize
false rumors spread on social media like Twitter.
One well-known false rumor just after the earth-
quake was that Povidone-iodine provides protec-
tion from radioactivity. Using the methodologies
of the STATEMENT MAP (Mizuno et al., 2012),
our system would have identified that this rumor
had been refuted by tweets just after it started to
spread. If many people had found such tweets, the
spread of such rumors might have been stopped or
mitigated.

29

In this demonstration, we use as an information
source the more than 50 million disaster-related
tweets that were posted from March 9, 2011 to
April 4, 2011. We show that our system provides
valuable answers that are hard to predict and antic-
ipate. We also demonstrate how its results support
the decision-making processes of local govern-
ments or humanitarian organizations during large-
scale disaster situations and how to deal with the
credibility issues of tweets.

2 Overview of NICT’s disaster
information analysis system

Our system consists of the following components:
a QA module, a web-based interface, a large-
scale pattern entailment database1 obtained from
the web, and an indexing module for Twitter data.

The QA module is an extension of a pattern-
based relation extraction method (De Saeger et al.,
2009). Basically, it converts such input questions
as “What causes deflation?”, into lexico-syntactic
pattern “X causes Y” and automatically computes
its entailing patterns with the database, such as “X
triggers Y” and “Y is a cause of X”. X and Y are
variables that correspond to the topic and interrog-
ative pronoun of the question. These patterns are
then matched against the index constructed from
Twitter data after one of the variables is filled with
the corresponding noun in the original question (Y
= “deflation” in the above example). The nouns
matching the unfilled variable (X) are provided as
answers. This is the basic algorithm, which was
extended in several aspects to deal with a wide
range of questions.

Figure 1 shows the system’s interface on web
browsers that accept any simple natural language
question. The system provides two modes for dis-
playing the answers. One is the semantic map
mode that categorizes the answers in semantic
clusters with different colors to help users quickly
survey all the answers for interesting and surpris-
ing answers (Figure 2). The other is Google Maps
mode, which locates answers on Google Maps
(Figure 3).

The system, which we demonstrate at IJCNLP
2013, runs on a single server. We are now devel-
oping a system that can work on large-scale com-
puter clusters that can work with on-line indexing
in real-time and simultaneously respond in real-

1This database includes more than six billion pattern
pairs.

Figure 1: System’s interface.

time to many questions.
In our evaluation we obtained an average of

1,900 answers per question with 76% recall and
56% precision. We used 300 useful and impor-
tant questions for disaster situations and 22,000
answers, which were manually collected using a
full text search engine, and checked the top 1,000
results of each search.

Our system’s target domain is not limited to dis-
asters. We can apply it general events. At IJCNLP
2013, NICT also demonstrates WISDOM2013
(Tanaka et al., 2013), which shares the same QA
module and targets a very large-scale web archive
without limitation of the target domain.

3 Outline of demonstration

The following four steps outline our demonstra-
tion:

1. Our system accepts such questions as “What
is in short supply in Tokyo?” We can choose
a user interface for the system’s response
when we input a question.

2. Our system returns in the selected interface
the results that were discovered from the 50
million tweets.

3. Our system can show a pop-up window that
indicates the original tweets if we want to see
the original texts from which the answer was
extracted.

4. We can use the STATEMENT MAP devel-
oped by Tohoku University to confirm the
credibility of the original tweets.

Since our system uses Japanese tweets and its
results are in Japanese, we provide English trans-
lations.

Below, we describe the details of our system’s
results, and a method to check a given answer’s
credibility to a user’s question. We also describe a
smartphone version of the QA interface, which is
also shown during our demonstration.

30

Figure 3: System’s result on Google Maps for the
question:Where are the power outages in Miyage
prefecture?

3.1 System results in selected interface

After a question is input, the system returns an-
swers in the selected interface mode. The results
of question “What shortages are there in Miyagi
prefecture?” in the semantic map mode are shown
in Figure 2. Many unpredictable answers are
given.

During a large-scale disaster, we must grasp the
locations of events that answer such questions as
“Where are the power outages in Tokyo?” To
understand the geological relations of events, our
system locates the results on Google Maps. An ex-
ample of our system’s results in the Google Maps
mode is shown in Figure 3. We didn’t employ geo-
tags in the tweets, because less than 1%2 of them
were geotagged. Instead, we prepared a huge lo-
cation dictionary that contains location names and
their addresses. The system uses this dictionary
to detect location names and processes them for
the Google Gecoding API3. By locating the results
on a map, we can easily create a bird’s-eye view
for the focus area that enables us to send relief to
heavily damaged areas.

We also integrated into our scheme an infor-
mation extraction system that was designed to ex-
tract problem reports and aid messages related to
a disaster from tweets (Varga et al., 2013). If a

2http://semiocast.com/publications/
2010 03 31 only thirty percent of tweets
are from the us

3https://developers.google.com/maps/
documentation/geocoding/

Figure 4: STATEMENT MAP results for state-
ment: “Povidone-iodine protects us from radioac-
tivity.”

question like “What problems have been reported
in Fukushima prefecture?” is given, the prob-
lem reports, aid messages, and tweet pairs, which
are problem-aid tweet matches, are provided by
the information extraction system. These answers
consist of the reports of the problems related to
disasters along with aid messages, i.e., tweets de-
scribing efforts to solve problems. Such informa-
tion is particularly useful for grasping the big pic-
ture of the damage and corresponding rescue ef-
forts.

3.2 Checking credibility issues

Due to the unreliable nature of information ob-
tained by social media, someone may want to ver-
ify an answer’s credibility. For example, the re-
sults for the question, “What is effective against
radiation?” include such unreliable ones as gar-
gling, soft seaweed, beer, and soybeans. Our sys-
tem provides a support method that evaluates the
credibility of information sources by presenting a
comprehensive survey of opinions on a topic.

Figure 4 shows the results4 produced with a
STATEMENT MAP of the query: “Povidone-
iodine protects us from radioactivity.” Both opin-
ions affirming and contradicting this statement are
arranged to highlight their contrast. If a statement
is a false rumor, many contradicting tweets will
probably be presented.

3.3 Smartphone applications

An application that provides almost all of the func-
tions of our system is available for iPhones. Figure
5 shows some screenshots of the iPhone applica-
tion.

4The tweets are blacked out due to copyright issues.

31

Figure 2: Example of system’s answer in semantic map mode

Figure 5: Screenshots of iPhone application

4 Conclusion

This paper briefly introduced NICT’s prototype
disaster information analysis system, and our
demonstration of it at IJCNLP 2013. We will make
the system available to the public in fiscal year
2014. Future work will introduce such new func-
tionalities as Why-Question Answering (Oh et al.,
2013).

References
Stijn De Saeger, Kentaro Torisawa, Jun’ichi Kazama, Kow

Kuroda, and Masaki Murata. 2009. Large scale relation
acquisition using class dependent patterns. In Proceed-
ings of the IEEE International Conference on Data Min-
ing (ICDM’09), pages 764–769.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James
Fan, David Gondek, Aditya A. Kalyanpur, Adam Lally,
J. William Murdock, Eric Nyberg, John Prager, Nico
Schlaefer, and Chris Welty. 2010. Building Watson: An
overview of the deepQA project. AI Magazine, 31(3):59–
79.

Junta Mizuno, Eric Nichols, Yotaro Watanabe, and Kentaro
Inui. 2012. Organizing information on the web through
agreement-conflict relation classification. In Proceedings
of the 8th Asia Information Retrieval Societies Conference
(AIRS2012), pages 126–137.

Jong-Hoon Oh, Kentaro Torisawa, Chikara Hashimoto, Mo-
toki Sano, Stijn De Saeger, and Kiyonori Ohtake. 2013.
Why-question answering using intra- and inter-sentential
causal relations. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1733–1743.

Masahiro Tanaka, Stijn De Saeger, Kiyonori Ohtake, Chikara
Hashimoto, Makoto Hijiya, Hideaki Fujii, and Kentaro
Torisawa. 2013. WISDOM2013: A large-scale web in-
formation analysis system. In Proceedings of the IJCNLP
2013 System Demonstrations.

István Varga, Motoki Sano, Kentaro Torisawa, Chikara
Hashimoto, Kiyonori Ohtake, Takao Kawai, Jong-Hoon
Oh, and Stijn De Saeger. 2013. Aid is out there: Look-
ing for help from tweets during a large scale disaster. In
Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pages 1619–1629.

32

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 33–36,
Nagoya, Japan, 14-18 October 2013.

SINNET: Social Interaction Network Extractor from Text
Apoorv Agarwal

Computer Science, Columbia University
New York, NY, USA

apoorv@cs.columbia.edu

Anup Kotalwar
Microsoft, Inc.

Redmond, WA, USA
ankotalw@microsoft.com

Jiehan Zheng
Peddie School

Hightstown, NJ, USA
jzheng-14@peddie.org

Owen Rambow
CCLS, Columbia University

New York, NY, USA
rambow@ccls.columbia.edu

Abstract

In this paper we present a demo of our sys-
tem: Social Interaction Network Extractor
from Text (SINNET). SINNET is able to
extract a social network from unstructured
text. Nodes in the network are people and
links are social events.

1 Introduction

Language is the primary tool that people use for
establishing, maintaining and expressing social re-
lations. This makes language the real carrier of so-
cial networks. In this paper, we present a demo of
our system that automatically extracts a social net-
work from raw texts such as literary texts, emails,
blog comments and news articles.1 We take a “so-
cial network” to be a network consisting of indi-
vidual human beings and groups of human beings
who are connected to each other through various
relationships by the virtue of participating in so-
cial events. We define social events to be events
that occur between people where at least one per-
son is aware of the other and of the event taking
place. For example, in the sentence John talks to
Mary, entities John and Mary are aware of each
other and of the talking event. In the sentence John
thinks Mary is great, only John is aware of Mary
and the event is the thinking event.

There has been recent work on extracting social
networks from literary text (Elson et al., 2010; He
et al., 2013). However, both these works focus on
extracting only conversational links between peo-
ple, signaled in text by quotation marks. They
do not extract social event links from other parts

1A web demo is available at
http://nlp.ldeo.columbia.edu/sinnet/

of text such as reported speech and other non-
dialogue text. Our system overcomes this limita-
tion.

The rest of the paper is structured as follows:
In section 2, we briefly describe the research that
has gone into building the system. In section ??,
we present the technical details of SINNET and
describe our web demo.

2 Research

The SINNET system is the result of several years
of research (Agarwal et al., 2010; Agarwal and
Rambow, 2010; Agarwal et al., 2012; Agarwal
et al., 2013). In Agarwal et al. (2010), we intro-
duced the notion of social events. A social event
is a happening between two people, at least one of
whom is cognizant of the other and of the event
taking place. At a broad level, there are two types
of social events: interaction (INR) and observa-
tion (OBS). INR is a bi-directional event in which
both parties are mutually aware of each other. Ex-
amples of INR are a meeting or a dinner. OBS is
a one-directional event in which only one party is
aware of the other. Examples of OBS are thinking
about someone, or missing someone.

In Agarwal and Rambow (2010), we presented
a preliminary system that uses tree kernels and
Support Vector Machines (SVMs) to extract so-
cial events from news articles. In Agarwal et al.
(2012), we presented a case study on a manu-
ally extracted network from Alice in Wonderland,
showing that analyzing networks based on these
social events gives us insight into the roles of char-
acters in the story. Also, static network analysis
has limitations which become apparent from our
analysis. We propose the use of dynamic network
analysis to overcome these limitations. In Agar-
wal et al. (2013), we introduce two baselines for

33

Alice

Rabbit

Alice saw the Rabbit run by her

(a)

Alice asked the Mouse, “do you
know the way out of this pool?”

Alice

Rabbit

Mouse

(b)

Figure 1: Two figures exemplifying the meaning of social events and social network.

Figure 2: Social network of the entire Alice in Wonderland.

the social event extraction task and show that our
system trained on a news corpus using tree ker-
nels and support vector machines beats the base-
line systems by a statistically significant margin.
We also show that while the performance of our
system on detecting social events in Alice in Won-
derland achieves an F-measure of 61%, the un-
weighted network built using these detected social
events is not statistically distinguishable from the
un-weighted gold network according to popularly
used network measures.

Figure 1 shows two figures exemplifying the
meaning of social events and social networks. In
the first figure, there are three entity mentions:
Alice, Rabbit and her (co-referential with Alice).
There is an OBS event between Alice and Rabbit
triggered by the word in bold – saw. The direc-
tion of the event is from the observer to the one

being observed. In the second figure there are two
entity mentions: Alice and Mouse. There is a bi-
directional interaction link between the Alice and
Mouse triggered by the word asked.

Figure 2 shows the network extracted from an
abridged version of Alice in Wonderland (Agar-
wal et al., 2012). Figure 3 shows the output of
running the Hubs and Authority algorithm (Klein-
berg, 1998) on the network. In information re-
trieval, an authority is a webpage that many hubs
point to and a hub is a webpage that points to
many authorities. In our network, webpages are
synonymous to characters. Figure 3a shows the
hubs in decreasing order of hub weights. Figure 3b
shows the authorities in decreasing order of au-
thority weights. We see that the main character
of the story, Alice, is the main authority but not
the main hub. This network may be used for other

34

(a) Hubs in order of decreasing hub weight: Mouse, White Rab-
bit, Alice

(b) Authorities in order of decreasing authority weights: Alice,
Majesty (King), Mouse, White Rabbit

Figure 3: Hub and authority weights of characters. Larger the node, higher its weight.

(a) Network at the end of Chapter 1 (b) Network at the end of Chapter 3

Figure 4: Dynamic network plots of Alice in Wonderland

types of social network analyses such as finding
communities.

In Agarwal et al. (2012), we argued that a static
network does not bring out the true nature of a net-
work. For example, even though the centrality of
the Mouse in a static network is high, a dynamic
network analysis shows that the mouse is central
only in one chapter of the novel (Chapter 3 – The
drying ceremony). Figure 4 shows the the network
at the end of chapter 1 and chapter 3.

3 System details and Web demo

SINNET is fully implemented in Java. Follow-
ing is a list of external off-the-shelf tools used by
our current pipeline: Jet sentence splitter, Jet NER
(Grishman et al., 2005), Stanford parser (Klein
and Manning, 2003), SVM-Light-TK (Moschitti,
2006),

Input to SINNET may be provided in two for-
mats: as raw text or text with entity annotations.

Figure 5: Image of our web demo

If the text is input as raw text without any entity
annotations, SINNET first runs an off-the-shelf
named entity recognizer and co-reference resolu-
tion (NER) tool. Currently, we run Jet (Grish-

35

man et al., 2005), but an interface makes it easy to
plug-in any other NER tool. Once the text is anno-
tated with entity mentions, for each sentence, for
each entity mention pair per sentence, we create
test examples in the format that our models accept.
We use tree kernels with Support Vector Machines
(SVM) for our models. Details of our system may
be found in Agarwal and Rambow (2010). Any
sentence splitter may be plugged in. Currently, we
are using Jet’s sentence splitter. Finally, the ex-
amples are fed to the models for prediction. The
output is stored as a list of entities and their re-
lations in a standard graph format. Currently, the
output formats include graph modeling language
(gml) and Pajek’s .net format (Batagelj and Mrvar,
1998).

In many situations, the input text may already
have entity mentions annotated and co-referenced.
In these situations, SINNET will accept these gold
entity mention annotations instead of running the
NER tool. The rest of the processing remains the
same as above.

Figure 5 shows an image of our web demo.2

The demo has a text box for entering text. We have
various models that use features from three lev-
els of natural language abstractions: lexical, syn-
tactic and semantic. Users of the web demo are
given the option of selecting the type of model
used for making predictions. We have seven mod-
els in place: lexical, syntactic, semantic and all
combinations of these three types. Once the user
inputs a text and selects the type of model, we
display the extracted network and make the file
with the extracted network (which is in a stan-
dard graph format such as .gml/.net) available for
download. Our web demo has two other tabs: one
listing the publications relevant to SINNET and
the other mentioning technical details and capa-
bilities of our web demo.

Acknowledgments

This paper is based upon work supported in part
by the DARPA DEFT Program. The views ex-
pressed are those of the authors and do not reflect
the official policy or position of the Department of
Defense or the U.S. Government. Kotalwar partic-
ipated in the work described in this paper while at
Columbia University.

2Available at http://nlp.ldeo.columbia.edu/sinnet/

References
Apoorv Agarwal and Owen Rambow. 2010. Auto-

matic detection and classification of social events.
In Proceedings of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1024–1034, Cambridge, MA, October. Association
for Computational Linguistics.

Apoorv Agarwal, Owen C. Rambow, and Rebecca J.
Passonneau. 2010. Annotation scheme for social
network extraction from text. In Proceedings of the
Fourth Linguistic Annotation Workshop.

Apoorv Agarwal, Augusto Corvalan, Jacob Jensen, and
Owen Rambow. 2012. Social network analysis of
alice in wonderland. In Proceedings of the NAACL-
HLT 2012 Workshop on Computational Linguis-
tics for Literature, pages 88–96, Montréal, Canada,
June. Association for Computational Linguistics.

Apoorv Agarwal, Anup Kotalwar, and Owen Rambow.
2013. Automatic extraction of social networks from
literary text: A case study on alice in wonderland. In
the Proceedings of the 6th International Joint Con-
ference on Natural Language Processing (IJCNLP
2013).

Vladimir Batagelj and Andrej Mrvar. 1998. Pajek-
program for large network analysis. Connections,
21(2):47–57.

David K. Elson, Nicholas Dames, and Kathleen R.
McKeown. 2010. Extracting social networks from
literary fiction. Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 138–147.

Ralph Grishman, David Westbrook, and Adam Meyers
Proc. 2005. NYU’s english ace 2005 system de-
scription. In ACE Evaluation Workshop.

Hua He, Denilson Barbosa, and Grzegorz Kondrak.
2013. Identification of speakers in novels. The
51st Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2013).

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. Proceedings of the 41st
Meeting of the Association for Computational Lin-
guistics, pages 423–430.

Jon Kleinberg. 1998. Authoritative sources in a hyper-
linked environment. In Proc 9th ACMSIAM Sympo-
sium on Discrete Algorithms, pages 668–677.

Alessandro Moschitti. 2006. Making tree kernels prac-
tical for natural language learning. In Proceedings
of European chapter of Association for Computa-
tional Linguistics.

36

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 37–40,
Nagoya, Japan, 14-18 October 2013.

SmartNews: Towards content-sensitive ranking of comments

Marina Litvak
Sami Shamoon College of Engineering

Beer Sheva, Israel
marinal@sce.ac.il

Leon Matz
Sami Shamoon College of Engineering

Beer Sheva, Israel
leonm@sce.ac.il

Abstract

Various news sites exist today where in-
ternet users can read the most recent news
and people’s opinions about. However,
usually these sites do not organize com-
ments well and do not filter irrelevant con-
tent. Due to this limitation, readers who
wonder about people’s opinion regarding
some specific topic, have to manually fol-
low relevant comments, reading and fil-
tering a lot of irrelevant text. In this
work1, we introduce a publicly available
software implementing our approach, pre-
viously introduced in (Litvak and Matz,
2013), for retrieving and ranking the rel-
evant comments for a given paragraph
of news article and vice versa. We
use Topic-Sensitive PageRank for ranking
comments/paragraphs relevant for a user-
specified paragraph/comment.

1 Introduction

Almost all modern news sites allow people to
share their opinions by commenting a read arti-
cle. However, usually comments are not organized
well and appear under one long thread in chrono-
logical order. Some commenting systems include
a rating component, but it is usually based on ex-
plicit feedback of users and does not relate to any
specific content. In such conditions, the only way
a reader can follow people’s opinion about some
specific aspect mentioned in the article is to scan
manually a huge amount of comments.

Ranking comments on the web is a one of the
central directions of IR in recent years (Dalal et al.,
2012; Hsu et al., 2009). However, none of the
works focused on the topic-sensitive ranking of
comments. Since in many web domains like news

1This work was partially funded by the U.S. Department
of Navy, Office of Naval Research.

different comments may refer to different aspects
of the same article, resolving this problem is very
important for structuring and better retrieval of
user-contributed content.

In this paper we introduce an application for
ranking comments in news websites relative to a
given content2. The application provides ranked
comments to the user-specified paragraph of a
news item and, vice versa, ranked paragraphs
that are relevant to a given comment. Our ap-
proach, that was previously introduced in (Litvak
and Matz, 2013), is unsupervised and does not re-
quire training on an annotated data. It reduces the
problem of topic-sensitive ranking of comments to
the calculating of eigenvector centrality by adapt-
ing Topic Sensitive PageRank algorithm. The in-
troduced application is implemented as a Chrome
Extension to Yahoo! News site and is publicly
available at author’s homepage3.

2 SmartNews

2.1 Problem Setting

We are given a set of comments C1, ...,Cm refer-
ring to an article describing some event and speak-
ing on several related subjects. An article consists
of a set of paragraphs P1, ...,Pn speaking on differ-
ent related subjects. Our goal is, given paragraph
Pi, to find a subset Ci1 , ...,Cir of comments such
that4 (1) These are the most relevant to Pi com-
ments that refer to topics described in Pi itself or
comments about it; (2) The comments are ordered
by the “relevancy” rank; (3) There are at most M
comments.
Our method is based on eigenvector centrality

2Here and further we refer to a paragraph as an indepen-
dent text unit describing one of the article’s aspects

3http://www.cs.bgu.ac.il/˜litvakm/research/
4Here and further, we focus on comments ranking prob-

lem, while, generally, our method can be applied to the in-
verse problem – ranking paragraphs given a comment. Our
plugin implements both directions.

37

principle (PageRank, as its variant), that already
has been successfully applied for ranking and ex-
tracting (Mihalcea and Tarau, 2004; Erkan and
Radev, 2004) text units. Our approach consists of
two main stages: (1) graph constructing and (2)
computing the eigenvector centrality. Since this
paper is focused on the application and not ap-
proach, the next two subsections briefly summa-
rize both stages. The details can be found in (Lit-
vak and Matz, 2013).

2.2 Graph Representation Model
In order to represent our textual data as a graph,
we relay on the known factors influencing PageR-
ank described in (Sobek, 2003). They are also
enumerated and discussed in details in (Litvak and
Matz, 2013). We organize comments as nodes in
a graph (denoted by a comments graph), linked
by edges weighted with text similarity score calcu-
lated between nodes. Formally speaking, we build
a graph G(E,V), where Ni ∈ V stands for a com-
ment Ci, and ek ∈ E between two nodes Ci and C j

stands for similarity relationship between texts of
the two comments.5 Each edge ek is labeled by
a weight wk equal to the similarity score (we use
cosine similarity (Salton et al., 1975)) between the
linked text units. Edges with a weight lower then
a pre-defined threshold are removed. By weighing
links we diminish the influence of links between
thematically unrelated text units and, conversely,
increase the influence of links between strongly
related ones. An example of resulted comments
graph is demonstrated in Figure 1(a).

We treat a paragraph as a query that must to in-
fluent the resulted ranks of comments. We add
an additonal node (denoted by a query node)
for the paragraph with respect to which the com-
ments should be ranked. The query node is also
linked to the comments nodes by similarity rela-
tions, with weighted edges directed from a query
node to comment nodes. Adding weighed inbound
links from the query node to thematically related
comment nodes must increase their PageRank rel-
ative to other nodes. Here and further, we call
the resulted graph extended graph. This stage is
demonstrated in Figure 1(b).

The situation, where extended graph has groups
of strongly connected nodes, mostly thematically
irrelevant to a query node, is created when we

5For the inverse problem, we represent a document as a
graph of paragraphs (aka paragraphs graph) linked by a
similarity relationship (Salton et al., 1997).

have comments “talking” to each other and de-
viate from the main (query) topic. It is enough
that only one node from a group will be linked to
a query node for “grabbing” a query’s rank to a
group and, at each iteration, enlarging the PageR-
ank of strongly connected nodes. In order to avoid
(1) PageRank increasing in unrelated nodes linked
with related ones in a closed system and (2) “leak-
age” of PageRank in a query node, we add out-
bound links from comment nodes to a query node.
For uniform impact on all comment nodes, we
give all edges the same weights of 1. Comment
nodes that are strongly related to a query, will
gain their PageRank back in each iteration due
to a high weight assigned to inbound links from
a query node, while irrelevant nodes will “loose”
their PageRank irretrievably. The described up-
date applied to a graph from Figure 1(b) will result
in a new structure depicted in Figure 1(c).

In order to obtain similarity scores between
nodes standing for text units, we calculate cosine
similarity between vectors representing related
texts, according to the Vector Space Model (Salton
et al., 1975). Formally speaking, each text unit–
paragraph or comment–is represented by a real
vector V of size n, where V [i] stands for tf-
idf (Salton et al., 1975) of term i and n is a vo-
cabulary size. Since we treat each text unit as a
document, we adapt tf-idf to tf-ipf (term frequency
inverse paragraph frequency) and tf-icf (term fre-
quency inverse comment frequency) when applied
on a paragraph or comment, respectively. The de-
tails and exact formulas can be retrieved from (Lit-
vak and Matz, 2013).

2.3 Computing the eigenvector centrality

For ranking and retrieving comments, we compute
their eigenvector centrality by applying PageRank
algorithm (Brin and Page, 1998) to an extended
graph.

In order to influence node’s rank by a query
node for topic-sensitive retrieval, we relay on the
known factors influenting PageRank score which
are enumerated and described in (Litvak and Matz,
2013).

First, we give a high starting value to a query
node before the iterative computation of PageR-
ank begins. Adding outbound links from comment
nodes to a query node (described in 2.2) helps to
keep high PageRank in the query node through
successive iterations. The final graph structure

38

C8

C1

C7

C6

C5

C3

C4

C2

(a) Comments graph

C8

C1

C7

C6

C5

C3

C4

C2

P1

(b) Extended graph

C8

C1

C7

C6

C5

C3

C4

C2

P1

(c) Final graph

C8

C1

C7

C6

C5

C3

C4

C2

P1
[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[10]

(d) Final graph with starting values

Figure 1: Graph representation: four steps.

including initial starting values is shown in Fig-
ure 1(d).

Second, in order to implement a theme-based
retrieval, we adapt the idea of Topic Sensitive
PageRank6, where the thematically relevant com-
ments get higher damping factor d. The final for-
mula for ranking comments looks as follows.

PR(a) = E(a)d +(1−d) ∑
x∈ad j(a)

PR(x)w(a,x)
∑y∈ad j(x) w(y,x)

,

where E(a) = w(a,q)
∑i∈V w(i,q) , q is a query node, w(x,y)

is a similarity score between nodes x and y.
We treat a PageRank score as a final rank of

items. In a greedy manner, we extract and present
at most M most ranked comments ordered by their
rank to the end user. In our settings, M = 5.

3 Implementation Details

We implemented the introduced approach as a
Chrome Extension (plugin) for the Yahoo! News7

6Topic-Sensitive PageRank is a very intuitive choice in
our setting, since we retrieve comments with respect to a
given paragraph representing a topic an actual user is inter-
ested in.

7http://news.yahoo.com/

website. The plugin contains two sides: (1) client
responsible for a data collecting and the results
representation, and (2) server calculating ranks in
a background.

Client performs the following: (1) collects the
necessary textual and meta data and transfers it to
the server, (2) visualizes the output (ranked com-
ments and paragraphs, etc.) to the end user. The
initial filtering of textual data is performed be-
fore transferring it to the server. The comments
containing no words (considering synonyms) in
common with the article are discarded. We used
the following technologies for client’s implemen-
tation: Javascript and jQuery Folder for scanning
the article and collecting the relevant data, and
JSON object as a data structure.

Server performs the following: (1) gets the tex-
tual data, (2) applies standard preprocessing in-
cluding: HTML parsing, paragraph and sentence
splitting, tokenization, stopwords removal, stem-
ming, and synonyms resolving8 for handling texts
expressing the same issues with different vocab-

8with Synonym Map http://lucene.apache.org/
core/old_versioned_docs/versions/2_9_1/api/all/
org/apache/lucene/index/memory/SynonymMap.html

39

ulary, (3) builds VSM representation, then (4)
builds graph representation, (5) calculates ranks of
comments given a specified paragraph as a query
or vice versa, (6) converts the processed data into
Json object, and (7) transfers it to the client. We
used the following technologies for server’s imple-
mentation: Java EE, Tomcat server, Spring Envi-
ronment.

In order to apply a Topic-Sensitive PageRank
for a specific paragraph9 we identify the actual
paragraph a user is interested in by sending the po-
sition of the user’s mouse to the server.

Figure 2 demonstrates the infrastructure of the
plugin including interconnection between client
(front end) and server (back end) sides.

Plugin

Back end

Plugin

Front end

Browser Yahoo! News

request

response

JSON:

article

comments

JSON:

scores

Figure 2: Application infrastructure.

The computational complexity of our approach
depends on graph construction time, that is
quadratic in number of comments/paragraphs in a
given article. In practice, it takes about two sec-
onds to perform precomputation–graph construc-
tion and ranks calculation on all article-related
data–when user opens an article page, and then the
results for any user-specified paragraph/comment
are provided immediately.

4 Conclusions

The examples of article texts and the most ranked
comments, per paragraph, can be seen in http:
//goo.gl/7idNw. It can be seen that the com-
ments are very related to the paragraphs content
and, moreover, they relates the subject of a para-
graph as well as a discussion and opinions it
arises, beyond the text overlapping. Such perfor-

9The original idea of a Topic-Sensitive PageRank was to
calculate PageRank for several topics simultaneously, but we
don’t need to do that until a user is interested in all paragraphs
of a given article.

mance is provided by a recursive nature of PageR-
ank, where the relationships between comments
are iteratively elaborated. Unlike this approach,
ranking comments by a (text) similarity to a given
paragraph would not retrieve related comments
with a different vocabulary.

The plugin implementing our approach is pub-
licly available from http://goo.gl/To4Rd.10 In
future, we intend to evaluate our system by com-
paring it to the other state-of-the-art ranking tech-
niques.

Acknowledgments

Authors thank project students: M. Magaziner, A.
Shpilgerman and S. Pinsky for implementing the
introduced approach, and I. Vinokur for a techni-
cal support of the software. Especial thanks to Dr.
Amin Mantrach from Yahoo! Labs, Barcelona, for
very constructive and helpful comments.

REFERENCES
Brin, S. and Page, L. (1998). The anatomy of a large-scale

hypertextual web search engine. Computer networks
and ISDN systems, 30(1-7):107–117.

Dalal, O., Sengemedu, S. H., and Sanyal, S. (2012). Multi-
objective ranking of comments on web. In Proceed-
ings of the 21st international conference on World Wide
Web, pages 419–428.

Erkan, G. and Radev, D. R. (2004). Lexrank: Graph-based
lexical centrality as salience in text summarization.
Journal of Artificial Intelligence Research, 22:457–
479.

Hsu, C.-F., Khabiri, E., and Caverlee, J. (2009). Ranking
comments on the social web. In Proceedings of the
2009 International Conference on Computational Sci-
ence and Engineering - Volume 04, pages 90–97.

Litvak, M. and Matz, L. (2013). Smartnews: Bringing order
into comments chaos. In Proceedings of the Interna-
tional Conference on Knowledge Discovery and Infor-
mation Retrieval, KDIR ’13.

Mihalcea, R. and Tarau, P. (2004). Textrank – bringing order
into texts. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Salton, G., Singhal, A., Mitra, M., and Buckley, C. (1997).
Automatic text structuring and summarization. Infor-
mation Processing and Management, 33(2):193–207.

Salton, G., Yang, C., and Wong, A. (1975). A vector-space
model for information retrieval. Communications of the
ACM, 18.

Sobek, M. (2003). A Survey of Google’s PageRank. http:
//pr.efactory.de/.

10Unzip the archive, press ”Load unpacked extension” in
”Developer mode” of chrome ”Extensions” tool, and choose
the unzipped plugin folder.

40

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 41–44,
Nagoya, Japan, 14-18 October 2013.

Tmuse: Lexical Network Exploration

Yannick Chudy†, Yann Desalle?

Benoı̂t Gaillard?, Bruno Gaume?, Pierre Magistry‡, Emmanuel Navarro†
? : CLLE-ERSS, University of Toulouse,

† : IRIT, University of Toulouse,
‡ : INRIA, University of Paris 7

Abstract

We demonstrate an online application to
explore lexical networks. Tmuse displays
a 3D interactive graph of similar words,
whose layout is based on the proxemy be-
tween vertices of synonymy and transla-
tion networks. Semantic themes of words
related to a query are outlined, and pro-
jected across languages. The application
is useful as, for example, a writing assis-
tance. It is available, online, for Mandarin
Chinese, English and French, as well as
the corresponding language pairs, and can
easily be fitted to new resources.

1 Introduction

Although Natural Language Processing appli-
cations can not fully replace human abilities to
write, read and understand texts, they have proven
to be a great assistance for many linguistic tasks.
For example, if state of the art Machine Trans-
lation (MT) productions can not be considered
as accomplished texts, a great variety of Com-
puter Assisted Translation (CAT) software (Tra-
dos, OmegaT) help translators work faster, more
accurately and consistently. Many writing and
reading situations require the extensive use of dic-
tionaries to find or confirm the exact meaning of
words to be used in a specific context with specific
connotations.

The issue is multiplied when writers manipu-
late a language for which they are not native. On-
line dictionaries and thesauri provide the neces-
sary assistance (Linguee, Wordreference, Word-
Net, Merriam-Webster...), but they can be diffi-
cult to make sense of, because, although they pro-
vide definitions, subsenses, usage and lists of syn-
onyms, the relations between these informations
(semantic similarity of the various synonyms, sub-
senses) are not directly presented to the user.

Tmuse displays the relations between words
that have a meaning similar to that of a query,
as shown in Fig. 1. Rather than mere lists, as
most dictionaries do, or flat networks of rela-
tions 1, Tmuse displays emergent clusters, as se-
mantic fields, and lays out the closest words ac-
cording to their relative semantic similarity, in
a 3D, visually ergonomic presentation. As ex-
plained in Navarro et al. (2011), displaying re-
sults as a few clusters rather than as long lists
is ergonomic, because users find zones of inter-
est at a glance. Beyond the monolingual usage,
Tmuse can also help in the cross-lingual case, for
instance when the source language is not the user’s
native language. Tmuse displays the various se-
mantic fields associated with a query word in the
source language. Since semantic fields associated
with words are not necessarily similar across lan-
guages, users might not be familiar with this lo-
cal semantic structure. Each source semantic field
is translated into the target language (user’s native
language in this example) by a set of target words
that are semantically consistent with the source se-
mantic field. This process is called Proxlation, as
it uses both translation and proxemy in the target
language. So, users can grasp, through a set of na-
tive language words, the actual meaning of each
displayed semantic field, even if it does not con-
stitute a semantic unit of their native language.

The Tmuse exploration tool is based on syn-
onymy graphs and translation bigraphs. The proto-
type is available online 2 for general English, Man-
darin and French, as well as the corresponding lan-
guage pairs. It can readily be extended to more lan-
guages or more specific terminologies, provided
the necessary resources.

1. For example : homepages.inf.ed.ac.uk/
adubey/software/wnbrowser/index.html

2. www.naviprox.net/tmuse

41

FIGURE 1 – Example of Tmuse translated Semantic Fields

2 Demonstrated system components

This section overviews the chain of semantic
processing components that constitute the back-
bone of Tmuse, and details resource modelling
and theoretical principles underlying each step.
Tmuse processes query words to provide a topo-
logical description of their semantic landscape. On
the basis of a synonymy resource, it first finds a
number of proxemes, i.e. a set of words that are se-
mantically close to the query. This set of proxemes
is then represented as a graph, in 3D. The graph’s
layout respects the semantic proximity of its ver-
tices, and communities of specifically close words
are highlighted. In the bilingual case, proxemy-
based sets of translations of these communities are
presented in relation with the graph clusters.

2.1 Resource modelling

Synonymy Resources are modelled as graphs
G = (V,E), where V is the set of vertices. It
corresponds to the resource’s lemmas, which are
unique. Indeed, the several subsenses of a form
are not represented by several vertices, but with
the various synonymy connections of the single
vertex. A pair of vertices (a, b) defines an edge
((a, b) ∈ E) if and only if a is declared synony-
mous with b in the resource. The resulting graph is
then made reflexive and symmetric.

Wordnet and thesaurus type resources are
modelled like the synonymy resources, but edges
are drawn within synsets : two lemmas are linked
if they belong to at least one common synset. In-
stead of synsets, the leaves of the thesaurus tree of

classes are used.

Translation Resources Translation resources
are modelled as bigraphs B = ((V1, V2), E),
where V1 ∪ V2 = V is the set of vertices of the
graph, V1 representing the source language lem-
mas, V2 the target language lemmas (V1∩V2 = ∅).
E ⊂ V1 × V2 is the set of edges, which only link
lemmas of V1 to lemmas of V2 if V2 is declared
translation of V1 in the resource.

2.2 Word query processing pipeline

2.2.1 Subgraph extraction by random walk
Tmuse uses the Prox algorithm to fetch the N

closest words, in the synonymy network, of the
query : the proxemes.

The Prox algorithm : In a graph G = (V,E),
the Proxemy of a word to the query is the probabil-
ity of reaching it by a short random walk of t time
steps (Gaume, 2004). Such a random walk can be
defined by a Markov chain on V with a |V | × |V |
transition matrix [G] (Bollobas, 2002) :

[G] = (gu,v)u,v∈V ,

with

gu,v =

1

|Nu
G|

if {u, v} ∈ E,

0 else.

|Nu
G| is the degree of vertex u in G. Let P t

G(u v)
be the probability of a walker starting on vertex u
to reach a vertex v after t steps :

P t
G(u v) = ([G]t)u,v

42

The starting point of a random walk can be gener-
alised to a probability distribution P0. In that case :

P t
G(P0 v) = (P0.[G]t)v

We call proxemes of an initial probability distri-
bution P0, the vertices of the graph associated with
their proxemy. The best proxemes are the ones
with the highest proxemy. As shown in Gaume and
Mathieu (2007), the “PageRank” approach, biased
with a damping factor to the starting point (some-
times called “personalised PageRank”), results in
dynamics similar to such short random walks. Its
computational cost is however much higher, as it
necessitates the knowledge of the whole graph,
whereas short random walks only require knowl-
edge of immediate neighbours, at each time-step.

Subgraph Tmuse fetches the N best proxemes
of the query. The subgraph induced by this set in
the synonymy graph is displayed. In other words
the displayed subgraph is made of these proxemes
and all the synonymy links they have between
themselves.

2.2.2 Graph clustering
State of the art community detection algorithms

(Lancichinetti and Fortunato, 2009) are used to
partition the extracted subgraph into several se-
mantic zones, materialized on the interface by sev-
eral colours. We use for instance the Infomap clus-
tering algorithm (Rosvall and Bergstrom, 2008).

2.2.3 Layout
The extracted subgraph, with colour-coded

clusters, is displayed in an interactive 3D rep-
resentation. Vertices are labeled with their lem-
mas. Their relative positions respect their seman-
tic proximity, thanks to the following algorithm
(Gaume, 2008) :

Each vertex u0 of the subgraph is associated
with a proxemy vector Pu0 of |V | dimensions :
the v coordinate of Pu0 is the proxemy between
u0 and the v vertex of the graph : P t

G(u0 v).
This models a set of N location in an
|V |-dimensional space. Two semantically similar
words will have similar proxemy vectors and will
therefore lie close to each other.

Principal Components Analysis projects this
N×|V |- dimensional data set onto N×3- dimen-
sional data set, that optimally represents its struc-
ture.

Clusters computed by the clustering component
2.2.2 are materialised in the layout by different

vertex colours. Vertex labels are listed, cluster by
cluster, alongside the 3D representation.

2.2.4 Bilingual exploration by Proxlation
Like in the monolingual case, the 3D represen-

tation describes the semantic topology around the
query, with source language words as vertex la-
bels, and the corresponding clusters.

However, the side lists are labelled with the K
best translations of the source language clusters,
called proxlations, and chosen in two steps.

First, Tmuse lists all the translations of all the
vertices of the source cluster. Each (target lan-
guage) translation is weighted according to the
number of words of the cluster it translates. This
constitutes P0, a probability distribution vector
from which a random walk is launched, on the tar-
get language synonymy graph.

The K best proxemes of P0 are selected as the
proxlations of the source language cluster, and ap-
pear in the list of the corresponding colour. Select-
ing proxlations instead of direct translations en-
ables Tmuse to filter out words whose meaning is
not consistent with the cluster’s semantic theme.

3 System functionalities

3.1 Basic usage

The typical use case of Tmuse is similar to an
information retrieval scenario : the user queries
a word, and the application replies with relevant
lexical semantic information. As described in 2,
the application displays a 3D interactive subgraph
and lists of related words. Users can make the
subgraph turn, zoom on zones of interest, focus
on one “semantic field”, highlight the actual syn-
onymy links of any word. They can also explore
specific meanings by double clicking on words,
which launches a new query with this new word.
What the interface displays depends on several pa-
rameters (number of proxemes, synonymy only,
clustering algorithm and layout) that the interested
or more advanced user can set.

3.2 Bilingual exploration

In a bilingual mode, users query a word in the
source language, and the application displays both
the semantic landscape of the query in the source

3. www.atilf.fr
4. www.gutenberg.org/ebooks/10681
5. dict.revised.moe.edu.tw/
6. cc-cedict.org/wiki/

43

Name Language Type Reference
Dicosyn French synonyms ATILF & IBM 3

Wiktionary French - English translations Sajous et al. (2010)
Princetown Wordnet English wordnet Fellbaum (1998)

Roget English thesaurus Gutenberg Projet 4

Cilin Mandarin thesaurus Mei et al. (1984)
Chinese Wordnet Mandarin wordnet Huang and Hsieh (2010)
MOE dictionary Mandarin synonyms R.O.C Ministry of Education 5

CEDict Mandarin - English translation dictionary under C.C licence 6

Authors data Mandarin - French translation own data, to be released soon

TABLE 1 – Resources for Tmuse exploration

language and the proxlations into the target lan-
guage of each semantic field. Semantic fields are
represented by coloured clusters of the extracted
source subgraph, their proxlations are displayed in
the side lists, with matching colours. Upon click-
ing on a target word, a new query is launched with
the clicked word, on the reverse language pair.

3.3 Resource variations

Users can change the resource of the mono-
lingual application, and also, independently, the
source, target and translation resources of the
bilingual application. Resources are detailed in Ta-
ble 1. Results sometimes greatly vary with re-
source variation. See Gaillard et al. (2011) for an
analysis of the similarity of the semantic structure
of lexical graphs. Beyond words, Tmuse could be
applied to phrases. The computational cost would-
n’t be much higher, but one would not only need
a phrase translation dictionary, but also phrase
synonymy dictionaries. Building such resources
could be done by statistical corpus analysis, which
would require significant experimental work.

References
Bela Bollobas. 2002. Modern Graph Theory.

Springer-Verlag New York Inc.

Christiane Fellbaum, editor. 1998. WordNet : An Elec-
tronic Lexical Database. MIT Press.

Benoit Gaillard, Bruno Gaume, and Emmanuel
Navarro. 2011. Invariant and variability of syn-
onymy networks : Self mediated agreement by con-
fluence. In Proc. of the The 49th ACL-HLT Annual
Meeting : 6th TextGraphs workshop, Portland, Ore-
gon.

Bruno Gaume and Fabien Mathieu. 2007. PageRank
Induced Topology for Real-World Networks. Com-
plex Systems, to appear :(on line).

Bruno Gaume. 2004. Balades Aléatoires dans les Pe-
tits Mondes Lexicaux. I3 : Information Interaction
Intelligence, 4(2).

Bruno Gaume. 2008. Mapping the form of mean-
ing in small worlds. Journal of Intelligent Systems,
23(7) :848–862.

Chu-Ren Huang and Shu-Kai Hsieh. 2010. Infras-
tructure for cross-lingual knowledge representation
- towards multilingualism in linguistic studies. Tai-
wan NSC-granted Research Project (NSC 96-2411-
H-003-061-MY3).

A. Lancichinetti and S. Fortunato. 2009. Commu-
nity detection algorithms : A comparative analysis.
Phys. Rev. E, 80(5) :056117.

Jia-Ju Mei, Yi ming Zheng, Yun-Qi Gao, and Hung-
Xian Yin. 1984. TongYiCi CiLin. Commercial
Press, Shanghai.

Emmanuel Navarro, Yannick Chudy, Bruno Gaume,
Guillaume Cabanac, and Karen Pinel-Sauvagnat.
2011. Kodex ou comment organiser les résultats
d’une recherche d’information par détection de com-
munautés sur un graphe biparti ? In CORIA’11, Avi-
gnon, pages 25–40. ARIA, mars.

M. Rosvall and C. T. Bergstrom. 2008. Maps of ran-
dom walks on complex networks reveal community
structure. Proceedings of the National Academy of
Sciences, 105(4) :1118–1123.

Franck Sajous, Emmanuel Navarro, Bruno Gaume,
Laurent Prévot, and Yannick Chudy. 2010. Semi-
automatic endogenous enrichment of collaboratively
constructed lexical resources : Piggybacking onto
wiktionary. In Hrafn Loftsson, Eirı́kur Rögn-
valdsson, and Sigrún Helgadóttir, editors, Advances
in NLP, volume 6233 of LNCS, pages 332–344.
Springer Berlin / Heidelberg.

Appendix : Technical details
Tmuse is available online 7. It runs on a server,

hosted in Toulouse, with 4Gb RAM and 3.4 Ghz
CPU. The client browser only runs the 3D dis-
play. The main memory costs stem from the size
and number of the graphs involved. The loaded 27
graphs use 700Mb of memory. As walks lengthen,
the number of probabilities to compute and store
exponentially increases, so we set a limit to t =
10. Clustering algorithms are well-optimised, and
applied to only small subgraphs.

7. www.naviprox.net/tmuse

44

The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 45–48,
Nagoya, Japan, 14-18 October 2013.

WISDOM2013: A Large-scale Web Information Analysis System

Masahiro Tanaka Stijn De Saeger* Kiyonori Ohtake Chikara Hashimoto
Makoto Hijiya Hideaki Fujii Kentaro Torisawa

National Institute of Information and Communications Technology (NICT)
3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 219-0289, Japan

{mtnk, stijn, kiyonori.ohtake, ch, hijiya, h-fujii, torisawa }@nict.go.jp

Abstract

We demonstrate our large-scale web in-
formation analysis system called WIS-
DOM2013, which consists of several deep
semantic analysis systems such as a fac-
toid QA, a non-factoid QA and a senti-
ment analyzer, and a software platform
on which its semantic analysis systems
can be applied to a billion-page-scale web
archive. The software platform has an ex-
tendable architecture, and we are planning
to enhance WISDOM2013 in the future
by adding more semantic analysis systems
and inference mechanisms.

1 Introduction

The range of questions is unlimited that humans
can pose, and web texts are a valuable informa-
tion source for finding a comprehensive list of an-
swers, which may include “unknown unknowns”
in the infamous words of D. H. Rumsfeld: things
that “we don’t know we don’t know” (Torisawa et
al., 2010). However, current commercial search
engines are not an effective tool for finding such
answers. For instance, even though deforesta-
tion is a serious and widely discussed problem,
no exhaustive list of answers exists to the ques-
tion: “What are the consequences if deforesta-
tion continues?” We may encounter serious un-
known or unexpected consequences in the future.
Many documents on the web describe its possi-
ble consequences, but only a small portion can be
discovered using commercial search engines, be-
cause they just provide a huge number of docu-
ments that users have to read. Our ultimate goal
is to solve such problems by developing deep se-
mantic analysis technologies, which can provide a
list of the possible consequences of deforestation,

* Current address: Nuance Communications, Inc., Ger-
many.stijn.desaeger (at) nuance.com

for instance, and a software platform on which se-
mantic analysis technologies can be applied to a
billion-page-scale web archive.

We introduce WISDOM2013, our large-scale
web information analysis system that consists
of deep semantic analysis systems, including a
factoid QA and a non-factoid QA, such as a
what-happens-if QA, which answers “What hap-
pens if deforestation continues?” and senti-
ment/information sender analysis. We also intro-
duce the underlying architecture of the software
platform, which is designed to process/store two
billion web documents and works as a common
software platform for various semantic analyses.

NICT previously proposed an information anal-
ysis system called WISDOM1(Akamine et al.,
2009), which is a predecessor of WISDOM2013.
But the source of its analyses were limited to 100
million web pages, and it did not provide QA ser-
vices. In addition, the depth and the scale of its
semantic analysis was quite restricted because it
performs the semantic analysis online after receiv-
ing user requests. In contrast, most semantic pro-
cessing that runs on WISDOM2013 is done of-
fline. WISDOM2013 immediately analyzes each
web document after it is crawled and can store
the basic analysis results for billions of documents
owing to its software platform. Therefore, we can
drastically improve the breadth and depth of se-
mantic analyses.

2 Script Outline

In this section, we introduce the major features
that we will demonstrate. They exploit the com-
mon fundamental analysis results, which are pro-
duced by the underlying architecture for large-
scale analysis as shown in Section 3.

1http://wisdom-nict.jp/

45

Input query

(e.g. What are businesses doing

with nanotechnology?)

Source

sentences

Answers

(gene therapy, drug delivery, etc.)

Figure 1: WISDOM2013 interface: factoid QA.

2.1 Factoid QA

Figure 1 shows WISDOM2013’s web browser in-
terface. WISDOM2013 takes a question in natu-
ral language and returns answers. For example,
given question“What are businesses doing with
nanotechnology?”(ナノテクノロジーによるビ
ジネスは何ですか), WISDOM2013 returns hun-
dreds of answers, such asgene therapy(遺伝子治
療), drug delivery(ドラッグデリバリー), andar-
tificial joints (人工関節) and displays them in clus-
ters of semantically related terms. Users can click
on each answer to see the original sentence and
document from which the answer was extracted.

The system extracts such patterns as “X are
businesses doing with Y” in questions and auto-
matically paraphrases the extracted patterns into
many synonymous patterns (De Saeger et al.,
2009). Those patterns are matched against the web
texts using specially designed indexes.

Note that we aim to provide a wide range of
answers to user questions, unlike such traditional
factoid QAs as IBM’s Watson for the Jeopardy!
game show (Ferrucci et al., 2010), and suggest
unexpected information to users, in other words,
“unknown unknowns” (Torisawa et al., 2010).
We expect that such unknown unknowns broaden
thought and trigger proper decision makings in
users.

This technology is an extension of the one used
in our voice-activated open domain question an-
swering system (Varga et al., 2011). When it is
given a question, “What part of Japan was previ-
ously hit by tsunamis?”, it found that the Sendai
plain, which was devastated by a huge tsunami in
the Great East Japan Earthquake in 2011, was also
hit 1,000 years ago by a huge tsunami; tsunamis
of similar scale are expected to hit again in the

future. The system found this answerfrom web
pages posted beforethe Great East Japan Earth-
quake. For a large number of victims of the
2011 tsunami, this is an example of an “unknown
unknown” (or at least relatively unknown facts),
and if it had been more widely circulated, lives
might have been saved. WISDOM2013 will give
chances for many users in the future to discover
suchunknown unknowns.

2.2 What-happens-if QA

When an input question follows the “What hap-
pens if X” pattern, WISDOM2013 invokes a spe-
cial type of QA system, which we callWhat-
happens-ifQA, and gives the result as a directed
graph (Fig. 2). The graph represents the causal
chains initiated by the event described in the ques-
tion. If the given question is“What happens if
deforestation continues?” (森林破壊が続くと
どうなる？), then WISDOM2013 gives a graph
that includes the causal chains initiated by the
event, “deforestation continues”. For instance, the
graph contains the following causal chain: “de-
forestation continues”→ “global warming pro-
gresses”→ “sea temperature rises”→ “Vibrio
parahaemolyticus swells.”2.

Deforesta on

con nues

Global warming

progresses
Sea temperature

rises

Vibrio

parahaemoly cus

swells

Figure 2:What-happens-ifQA

Of course, it is debatable whether such causal
chains orfuture scenarioswill actually happen,
and many scenarios are unlikely to become true.
Our aim is to provide users thebig pictureof the
future concerns of a given question, which is un-
likely to be covered by journalism or mass media.
We expect that careful examination of such future
scenarios will lead to better decision making and
preparation for potential and unforeseen risks.

Note that the causalities among nodes are ac-
quired by our previous method (Hashimoto et al.,

2An article inNature Climate Changereported that Vibrio
infections are caused by global warming in the Baltic Sea
(Craig Baker-Austin et al., Nature Climate Change, Vol. 3,
pp, 73–77 (2013))

46

2012) from a large body of web texts. Each
single causal relation between two nodes is ex-
tracted from a single web page, but a chain of
causalities is obtained by combining those ex-
tracted causal relations and represents the infor-
mation scattered over many web pages. In this
sense,what-happens-ifQA involves an certain in-
ference process and enables users to explore possi-
ble social scenarios by chaining/combining state-
ments from different documents. In other words,
this feature creates awareness of hypothetical fu-
ture scenarios that are not actually written in any
document.

2.3 Sender/Sentiment Analysis

WISDOM2013 can also show the results of sen-
timent analysis for a given topic or answers for
factoid QAs. The amount of positive/negative in-
formation based on sentiment analysis is shown
in charts to elucidate trends for users (Fig. 3).
The results are classified based on the types of
senders of the information source page. These
functionalities were inherited from WISDOM,
WISDOM2013’ s predecessor (Akamine et al.,
2009). For instance, we can check the reputa-
tion of treatments for atopic diseases by apply-
ing sentiment analysis to the answers to“What
works for atopy?” (アトピーに効くのは何です
か) and use the results as clues for determining the
treatment’ s reliability or uncovering side-effects.
In our demonstration, we show that companies
post the most positive opinions concerning nutri-
tional supplements that are supposedly effective
against atopy. Users might infer that the compa-
nies are exaggerating the drug’s positive qualities
even though much positive information is avail-
able about them. In extreme cases, users may
question the effectiveness of such supplements or
associate side-effects with them.

3 Software Platform

In this section, we describe the architecture of the
underlying software platform, which consists of
two stages of data processing. Fig. 4 shows the
first stage for fundamental analyses and archiving.
The fundamental analysis results are designed to
be shared by a wide variety of application-oriented
analyses in the second stage.

After the crawler collects web documents, fun-
damental analyses are applied to them, which in-
clude document structure analysis, dependency

Classes of senders referring to some

nutri!on supplements (answers to

“What works for atopy?”) Number of

posi!ve/nega!ve

sentences referring to

answers

Most posi!ve opinions are wri"en by

companies, not by customers

Figure 3: Sender/sentiment analysis

Structure

Analysis

Sen ment

Analysis

Sender

Analysis

Crawler

Te
x
t a

n
a

ly
sis m

a
n

a
g

e
r

Storage

KVS Data Server

Distribu on

Proxy

A
rch

iv
in

g

Archive

Manager
Archive Access

Crawl

data

In
v
o

ke

Register metadata

URL, Crawled date Save metadata

KVSKVSKVSKVSKVS Master Server

Save

(Distribute to

80 nodes)

User To the cluster for applica on-oriented analyses

Request for

Retrieval

Data transfer

Retrieve

Dependency

Analysis

(Distribute to

80 nodes)

Request for

Retrieval

Figure 4: Fundamental analyses and archiving.

analysis, sender analysis, and sentiment analysis.
The analyses need to process more than ten mil-
lion documents daily collected by the crawler. To
manage such metadata as URL, the crawled date,
and the processing status of each document, we
adopted a distributed key-value store (KVS).

In the second stage, more application-oriented
analyses are performed based on the fundamental
analysis results. For factoid QAs, the preproces-
sor extracts patterns of phrases that indicate rela-
tionships between terms and indexes them. The
preprocessor for the what-happens-if QA extracts
causal relations and indexes them. Both QAs
rely on structure analysis and dependency analy-
sis, both of which are produced in the first stage.
Sender/Sentiment are also indexed for the interac-
tive analysis described in Section 2.3. A full text

47

Factoid QA

Service (Worker)

Factoid

QA Index
What-happens-if

QA Index

Preprocessing for

Factoid QA (Extract

pa!erns, etc …)

Preprocessing for

What-happens-if QA

(Extract causal

rela"on, etc …)

Update Manager

Load

Buffer (analysis results commonly used for some

applica"on-specific analyses)

Factoid QA Service

(Server)

Web Front End

InvokeInvoke

Computa�on nodes

Update

Invoke

(in parallel)

Invoke Invoke

O
th

e
r In

d
e

xe
rs, In

d
ice

s,

S
e

rv
ice

s (F
u

ll Te
xt S

e
a

rch
,

S
e

n
"

m
e

n
t, S

e
n

d
e

r, e
tc.)

Invoke

Other Service

(Server)

What-happens-if

Service

Load

Update

Factoid QA Service

(Server)

Invoke

(in parallel)

Invoke

(in parallel)

Figure 5: Application-oriented analyses.

search also becomes available based on indexing
in this stage. Fig. 5 shows an overview of the
process. The update manager transfers the funda-
mental analysis results to the distributed compu-
tation nodes. Due to computational load and data
size that exceeds the storage amount of a single
node, preprocessing including indexing for some
analyses runs on 40 nodes in parallel. The indices
for the analyses are used byaccess services, which
provide APIs to access the indices. The distributed
services are calledworkerservices. Aserverser-
vice receives a request from the GUI, sends it to
all workerservices in parallel, and aggregates their
results. Theserverservice also eliminates dupli-
cated results and ranks them. The extensible soft-
ware platform allows us to add new preprocessors,
indices, and services.

4 Conclusion

In this paper, we introduced the major features
of WISDOM2013 and described its software plat-
form. We are planning to extend it in the fu-
ture by adding more semantic analysis systems,
such as Why QA (Oh et al., 2013) and infer-
ence mechanisms (Tsuchida et al., 2011). We also
plan to introduce WISDOM2013 as infrastructure
for a counter disaster information analysis system
(Ohtake et al., 2013), which we are developing to
organize information extracted from tweets after
disasters (Varga et al., 2013). WISDOM2013’s
software and service are scheduled to be made
public in 2014.

References

Susumu Akamine, Daisuke Kawahara, Yoshikiyo
Kato, Tetsuji Nakagawa, Kentaro Inui, Sadao Kuro-
hashi, and Yutaka Kidawara. 2009. WISDOM:
A web information credibility analysis system.
In ACL/AFNLP 2009 (Software Demonstrations),
pages 1–4.

Stijn De Saeger, Kentaro Torisawa, Jun’ichi Kazama,
Kow Kuroda, and Masaki Murata. 2009. Large
scale relation acquisition using class dependent pat-
terns. InICDM’09, pages 764–769.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya A. Kalyanpur,
Adam Lally, J. William Murdock, Eric Nyberg, John
Prager, Nico Schlaefer, and Chris Welty. 2010.
Building watson: An overview of the DeepQA
project.AI Magazine, 31(3):59–79.

Chikara Hashimoto, Kentaro Torisawa, Stijn De
Saeger, Jong-Hoon Oh, and Jun’ichi Kazama. 2012.
Excitatory or inhibitory: A new semantic orientation
extracts contradiction and causality from the web. In
EMNLP-CoNLL 2012, pages 619–630.

Jong-Hoon Oh, Kentaro Torisawa, Chikara Hashimoto,
Motoki Sano, Stijn De Saeger, and Kiyonori Ohtake.
2013. Why-question answering using intra- and
inter-sentential causal relations. InACL 2013, pages
1733–1743.

Kiyonori Ohtake, Jun Goto, Stijn De Saeger, Kentaro
Torisawa, Junta Mizuno, and Kentaro Inui. 2013.
Nict disaster information analysis system. InIJC-
NLP 2013 (Demonstration Track).

Kentaro Torisawa, Stijn de Saeger, Jun’ichi Kazama,
Asuka Sumida, Daisuke Noguchi, Yasunari Kak-
izawa, Masaki Murata, Kow Kuroda, and Ichiro Ya-
mada. 2010. Organizing the web’s information ex-
plosion to discover unknown unknowns.New Gen-
eration Computing (Special Issue on Information
Explosion), 28(3):217–236.

Masaaki Tsuchida, Kentaro Torisawa, Stijn De
Saeger, Jong Hoon Oh, Jun’ichi Kazama, Chikara
Hashimoto, and Hayato Ohwada. 2011. Toward
finding semantic relations not written in a single sen-
tence: An inference method using auto-discovered
rules. InIJCNLP 2011, pages 902–910.

István Varga, Kiyonori Ohtake, Kentaro Torisawa,
Stijn De Saeger, Teruhisa Misu, Shigeki Matsuda,
and Jun’ichi Kazama. 2011. Similarity based lan-
guage model construction for voice activated open-
domain question answering. InIJCNLP 2011, pages
536–544.

István Varga, Motoki Sano, Kentaro Torisawa, Chikara
Hashimoto, Kiyonori Ohtake, Takao Kawai, Jong-
Hoon Oh, and Stijn De Saeger. 2013. Aid is out
there: Looking for help from tweets during a large
scale disaster. InACL 2013, pages 1619–1629.

48

Author Index

Agarwal, Apoorv, 33
Ahmad, Rashid, 9
Al-Badrashiny, Mohammad, 13
Altantawy, Mohamed, 13
Araki, Jun, 5
Azab, Mahmoud, 5

Ballesteros, Miguel, 25
Berend, Gabor, 17
Bhattacharyya, Pushpak, 21

Carlini, Roberto, 25
Chaudhary, Banshi, 9
Chudy, Yannick, 41

De Saeger, Stijn, 29, 45
Desalle, Yann, 41
Diab, Mona, 13

Farkas, Richárd, 17
Fujii, Hideaki, 45

Gaillard, Benoit, 41
Gaume, Bruno, 41
Gautam, Shubham, 21
Goto, Jun, 29

Habash, Nizar, 1, 13
Hashimoto, Chikara, 45
Hijiya, Makoto, 45

Inui, Kentaro, 29

Joshi, Aditya, 21

Kotalwar, Anup, 33
Kumar, Pawan, 9

Litvak, Marina, 37

M. Roth, Ryan, 13
Magistry, Pierre, 41
Matz, Leon, 37
Mitamura, Teruko, 5
Mizuno, Junta, 29
Mohit, Behrang, 1

Navarro, Emmanuel, 41

Obeid, Ossama, 1
Oflazer, Kemal, 1, 5
Ohtake, Kiyonori, 29, 45

Pasha, Arfath, 13
Pooleery, Manoj, 13
Popat, Kashyap, 21

Rambow, Owen, 13, 33

Salama, Ahmed, 5
Shima, Hideki, 5
Sinha, Mukul, 9

Tanaka, Masahiro, 45
Tomeh, Nadi, 1
Torisawa, Kentaro, 29, 45

Zaghouani, Wajdi, 1
Zheng, Jiehan, 33

49

	BookCover
	IJCNLP2013-Demos-2013.pdf
	Program
	A Web-based Annotation Framework For Large-Scale Text Correction
	An English Reading Tool as a NLP Showcase
	Dashboard: A Tool for Integration, Validation, and Visualization of Distributed NLP Systems on Heterogeneous Platforms
	DIRA: Dialectal Arabic Information Retrieval Assistant
	Keyphrase-Driven Document Visualization Tool
	Making Headlines in Hindi: Automatic English to Hindi News Headline Translation
	MaltDiver: A Transition-Based Parser Visualizer
	NICT Disaster Information Analysis System
	SINNET: Social Interaction Network Extractor from Text
	SmartNews: Towards content-sensitive ranking of comments
	Tmuse: Lexical Network Exploration
	WISDOM2013: A Large-scale Web Information Analysis System

