
International Joint Conference on Natural Language Processing, pages 699–705,
Nagoya, Japan, 14-18 October 2013.

Parsing Dependency Paths to Identify Event-Argument Relations

Seung-Cheol Baek

CS Dept., KAIST

291 Daehak-ro, Yuseong-gu, Daejeon,

305-701, Republic of Korea

scbaek@nlp.kaist.ac.kr

Jong C. Park

CS Dept., KAIST

291 Daehak-ro, Yuseong-gu, Daejeon,

305-701, Republic of Korea

park@nlp.kaist.ac.kr

Abstract

Mentions of event-argument relations, in par-

ticular dependency paths between event-

referring words and argument-referring words,

can be decomposed into meaningful compo-

nents arranged in a regular way, such as those

indicating the type of relations and the others

allowing relations with distant arguments (e.g.,

coordinate conjunction). We argue that the

knowledge about arrangements of such com-

ponents may provide an opportunity for mak-

ing event extraction systems more robust to

training sets, since unseen patterns would be

derived by combining seen components. How-

ever, current state-of-the-art machine learning-

based approaches to event extraction tasks

take the notion of components at a shallow

level by using n-grams of paths. In this paper,

we propose two methods called pseudo-count

and Bayesian methods to semi-automatically

learn PCFGs by analyzing paths into compo-

nents from the BioNLP shared task training

corpus. Each lexical item in the learned

PCFGs appears in 2.6 distinct paths on aver-

age between event-referring words and argu-

ment-referring words, suggesting that they

contain recurring components. We also pro-

pose a grounded way of encoding multiple

parse trees for a single dependency path into

feature vectors in linear classification models.

We show that our approach can improve the

performance of identifying event-argument re-

lations in a statistically significant manner. 1

1 Introduction

Event extraction tasks can be viewed as identify-

ing event-argument relations between tokens by

mapping events onto tokens, to be called hence-

forth triggers, even though events may have oth-

1 All the datasets and codes used in this study are available

at http://www.biopathway.org/ijcnlp2013

er events as arguments in contrast to average re-

lation extraction tasks, leading to interdependen-

cies between events. On looking into mentions of

event-argument relations, in particular the short-

est dependency path between triggers and argu-

ments, one may find that they can be decom-

posed into intuitively meaningful components

arranged in a regular way, such as core compo-

nents indicating the type of relations and subor-

dinate components making it possible for events

to take arguments further away from triggers

(e.g., coordinate conjunction). We anticipate that

the knowledge about arrangements of compo-

nents provides an invaluable opportunity for

making event extraction systems more robust to

the choice of training sets, for example by as-

sembling seen components into unseen patterns.

Towards this goal, we propose in this paper a

way of automatically learning and exploiting in-

ternal structures of dependency paths for a robust

extraction of biological events from the biologi-

cal literature with the corpora provided by a se-

ries of BioNLP shared tasks (Kim et al., 2009

and Kim et al., 2011).

For example, the following sentence has anno-

tated positive regulation events, including the

induction of IP-10 by IFN, in the training corpus.

(1) IL-10 preincubation resulted in the inhibition

of gene expression for several IFN-induced

genes, such as IP-10, ISG54, and intercellu-

lar adhesion molecule-1. (PMID: 10029571)

From this sentence, we may formulate the pattern

“X-induced genes, such as Y” with slots X and Y

to detect the THEMEs of positive regulation

events based on the underlined expression. This

pattern can also be decomposed into a core com-

ponent “X-induced Y” and a subordinate compo-

nent “genes such as Y”. These two components

have different roles. That is, the core component

699

alone can be used to detect the THEMEs of posi-

tive regulation events (e.g., “IFN-induced IP-

10”), but the subordinate component alone can-

not. Core components may not appear together in

a pattern, but subordinate components may (e.g.,

there are two other involved subordinate compo-

nents “genes such as Y” and “[PROTEIN] and

Y”, where “[PROTEIN]” would be replaced with

any protein or gene name, in “IFN-induced genes,

such as IP-10, ISG54 and intercellular adhesion

molecule-1”). From this observation it is possible

to come up with an unseen pattern “X-induced Y

and Z”.

However, current state-of-the-art machine

learning-based approaches exploit the notion of

components of patterns only at a shallow level

using n-grams encoding partial structures of de-

pendency graphs (including unigrams used in

bag-of-words models), not to mention the notion

of regularity in arrangements of components (e.g.,

Björne et al., 2009; Miwa et al., 2010; Riedel et

al., 2011). Therefore, their approaches would be

biased towards dependency paths that contain a

number of components even overlapping with

one another, even though such paths may have

undesired meanings due to the arrangements of

components.

In this paper, we propose two methods (called

pseudo-count and Bayesian methods) to semi-

automatically learn three types of probabilistic

context-free grammars (PCFGs) that assume dif-

ferent internal structures of paths, with the help

of which dependency paths will be analyzed into

components. All the learned PCFGs contain lexi-

cal items covering an average of about 2.6 dis-

tinct paths between triggers and arguments in the

training corpus, suggesting that the methods suc-

cessfully identified recurring components. To

exploit multiple parse trees derived from a single

path, we also propose a linear classification

model whose output score approximates the dif-

ference between the log probabilities of the path

being derived from positive and negative rela-

tions. We find that the use of PCFGs learned by

our pseudo-count method improves the perfor-

mance of classifiers in a statistically significant

manner, compared to a baseline classifier with n-

grams encoding partial structures of paths.

2 Related Work

The literature on information extraction (IE) con-

tains a number of studies in which dependency

paths are found to play a significant role (Johans-

son and Nugues, 2008; Miwa et al., 2010b; Qiu

et al., 2011). Likewise, the biological event ex-

traction research, a branch of information extrac-

tion, stresses the importance of the role of de-

pendency paths in identifying event-argument

relations due to the resemblance of event-

argument relations to dependency relations

(Björne et al., 2008). For this reason, most of the

event extraction studies have to use dependency

path features, such as n-grams (n=1~4) of de-

pendencies and words, the length of dependency

paths and so on, in identifying event-argument

relations (Björne et al., 2009 and Miwa et al.,

2010b).

It is thus not surprising that while there are

many studies on dependency paths in the IE lit-

erature, most of them focus on identifying the

type of dependency graph representations that is

most suitable to their problem (cf. Johansson and

Nugues, 2008, Miwa et al., 2010a), with few ex-

ceptions including Kilicoglu and Berger (2009)

and Joshi and Penstein-Rosé (2009). In particular,

Kilicoglu and Bergler (2009) manually con-

structed a total of 27 dependency path patterns

by examining dependency paths between triggers

and arguments. Joshi and Penstein-Rosé (2009)

first generated sequences of triples of dependen-

cy relations and the baseform/POS of their to-

kens and then generalized the sequences by con-

cealing one of the elements of the triples. They

find that the use of such generalized sequences

improves the performance of the task of identify-

ing opinions from product reviews. However,

there are no studies on automatically learning

and using the internal structure of the dependen-

cy paths that express semantic relations between

tokens, as addressed in this paper, to the best of

our knowledge.

3 Problem Setting

Our proposal is tested on the event extraction

task as defined in the 2009 BioNLP shared task 1

(Kim et al., 2009), which was later renamed as

GENIA Event Task 1 and extended to cover full

papers in the 2011 Bio-NLP shared task (Kim et

al., 2011). Their task is to extract structured in-

formation on events from sentences in the bio-

logical literature, including their event type and

participants encoded with a controlled vocabu-

lary that has nine event types and two role types

(“THEME” and “CAUSE”). This task can be

considered to consist of two sub-tasks, one of

identifying triggers and another of identifying

event-argument relations. In this study, we focus

on the latter and use the gold-standard annota-

700

tions of triggers in the training and development

corpora (including full papers) to generate de-

pendency paths for training and testing.

In order to identify event-argument relations,

we use twelve binary classifiers for all the possi-

ble combinations of event and role types. One

may argue that multi-class classifiers are more

suitable for this setting than binary classifiers,

but there is no conclusive evidence for their ad-

vantage (cf. Baek and Park, 2012). Note also that

our present focus is on assessing the benefit from

the use of the knowledge about internal struc-

tures of dependency paths and not on assessing

the whole event extraction systems.

4 Method

4.1 Preparation of Training Sequences

The shortest dependency paths between triggers

and argument candidate words (e.g., “-induced”

and “IP-10” in (1)) over basic Stanford depend-

ency graphs2 (de Marneffe et al., 2006) are first

computed, from which the three types of se-

quences are extracted in turn: token sequences, or

a sequence of the surface forms of the visited

tokens (e.g., “induced gene as IP-10”), depend-

ency sequences, or a sequence of the visited de-

pendencies (or more precisely, their type and

direction; e.g., “-amod +prep +pobj”), and com-

bined sequences, or a sequence of the visited to-

kens and dependencies (e.g., “induced -amod

genes +prep as +pobj IP-10”).

Training sequences are derived from the ex-

tracted sequences by preprocessing them as fol-

lows. First, the last tokens of sequences, namely

arguments, are dropped, because of the observa-

tion that this makes it easy to convert the com-

ponents of patterns into sequences and their sub-

sequences in a systematic way. For example, the

two components “-induced Y” and “genes, such

as Y” of the pattern “-induced genes, such as Y”

can be converted into the sequences “-induced -

amod” and “genes +prep as +pobj”, which are

combined into a sequence corresponding to the

pattern, namely, “induced -amod genes +prep as

+pobj”. Second, protein names are replaced with

a special token “[PROTEIN]” to help learn gen-

eralized patterns, since there are a considerable

amount of different types of proteins. Third, the

first occurrence of each word in the training cor-

pus is replaced with a special token “[UN-

2 Since arguments and triggers may be hyphenated, we pre-

process dependency graphs, so that hyphenated words are

separated into their component words.

KNOWN]” to simulate encounters with un-

known words in the test corpus during learning.

Its downside is that all the tokens in the first

training sequence are replaced with “[UN-

KNOWN]”.

Note that it is a natural extension of our work

to additionally generate other types of sequences,

for example by replacing the surface forms of

tokens with their other attributes (e.g., POSs and

surface forms concatenated with POSs) in se-

quences mentioned above and by dropping func-

tional tokens (e.g., prepositions) within token

sequences, even though we do not consider them

here.

4.2 PCFG Induction

A PCFG consists of production rules (of the form

Ax), each indicating that a nonterminal symbol

A (a parent symbol) is replaced with a sequence x

of symbols (child symbols) with a predefined

probability. Our PCFGs have two types of pro-

duction rules, those that produce a sequence of

nonterminal symbols (non-lexical production

rules) and the others that produce a lexical item

(lexical production rules). In our PCFGs, non-

lexical production rules are crafted manually and

lexical production rules are learned. The proba-

bility of each rule is determined by maximum-

likelihood estimation (MLE), which divides the

total number of the occurrences of the rule in

training parse trees by the total number of the

occurrences of its parent symbol in training parse

trees.

We build two sets of non-lexical rules, one

generating positive sequences and another gener-

ating negative sequences, together with the fol-

lowing two non-lexical rules, where “S” stands

for the start symbol and “Positive” and “Nega-

tive” symbols are the ones to be expanded into

positive and negative sequences, respectively.

(2) SPositive

(3) SNegative

We come up with the following three types of

non-lexical rules for positive sequences, where

the underlined symbols are lexical symbols, or

the ones to be expanded into single lexical items,

and asterisks indicate that the marked symbols

may occur zero or more times in a row.

(4) Unigram Rules

PositiveComponent Component*

(5) Uni-directionally Growing Rules

PositiveCore Component*

701

(6) Bi-drectionally Growing Rules

PositiveComponent* Core Component*

These rules assume that sequences consist of

components that may appear independently of

one another (independence constraint), but also

that they cannot overlap with one another (non-

overlapping constraint). The second and third

types of rules assume that sequences should have

core components as indicated by the “Core”

symbols. The independence constraint may not

capture the nature of dependency paths, but

makes it cheaper to learn lexical rules. We leave

the question about the effect of the independence

constraint open for future research. The uni-

directionally growing rules are most consistent

with our observation that triggers and their de-

pendencies play a significant role in determining

the type of event-argument relations.

Since lexical items are allowed to span across

more than one element in positive sequences but

are not annotated on training sequences, we need

to make a guess at parse trees for each sequence

to count the occurrences of rules. To address this

problem, we propose two methods. One is called

a pseudo-count method that assigns all possible

parse trees for each training sequence an equal

probability (i.e., one divided by the number of all

possible parse trees) of the sequence being gen-

erated from them, and accumulates the assumed

probability (i.e., pseudo-count) of parse trees

containing each rule.

Another is called a Bayesian method that con-

verts our non-lexical rules into an adaptor gram-

mar, or a description of non-parametric Bayesian

models with Chinese Restaurant Processes (CRP)

and Pitman-Yor Processes (PYP) (Johnson et al.,

2007), by adding production rules, to be called

lexical item production rules, that replace lexical

symbols with a sequence of terminal symbols,

such as tokens and dependencies (e.g., “To-

kensToken Token*”), and by labeling lexical

symbols as an adaptor symbol, whose expansion

to terminal symbols is collected during learning.

One advantage of this method is to penalize

lengthy lexical items, and as a result, to facilitate

analyzing sequences into more than one lexical

item, since producing a lengthy lexical item re-

quires the use of many lexical item production

rules with a probability below one. In practice,

we use the adaptor grammar inference program

(Johnson et al., 2007), which samples analyses of

input sequences (i.e., sequences of dependency

types). We assume that all production rules in

our adaptor grammars have the same probability.

We ran two thousand iterations of sampling

analyses, but ignored samples during the first

half, as these may not be significantly different

from randomly assigned initial analyses. After-

wards, we counted the occurrences of lexical

items and rules. As a result, 1,000 samples are

taken for each sequence.

Since negative training sequences can convey

a variety of semantic types, it is unlikely that a

training corpus contains all possible negative

training sequences covering such semantic types,

suggesting the risk of over-fitting of learned

PCFGs to negative training sequences (cf. Li et

al., 2010). To avoid it, we use a simple grammar,

which is expected to be able to learn from a rela-

tively small amount of training instances, as

shown below, where “NComponent” symbols

produce single token and dependency types. In

contrast to the positive sequences, it is straight-

forward to construct parse trees for negative se-

quences and to count production rules, since all

negative sequences have only one possible parse

tree.

(7) NegativeNComponent NComponent*

Finally, we filter out infrequent and lengthy

lexical items, which may have the same form as

the sequences from which they are learned, to

prevent models from memorizing training se-

quences as they are (e.g., “induced -amod genes

+prep as +pobj”), that is, assigning a high weight

to them and to teach instead models ways of ana-

lyzing positive sequences into relatively small

lexical items (e.g., “induced –amod” and “genes

+prep as +pobj”). For each lexical symbol, we

remove the least probable lexical items whose

occurrences form a predefined percentage3 of the

occurrences of the lexical symbol. Note that it is

apparently a more reasonable option to learn

PCFGs and linear classification models on two

different disjoint subsets of randomly selected

sequences. We leave this option for future work.

4.3 Linear Classification Model

Using the CKY algorithm with beam search, we

generate the most probable k parse trees for three

types of sequences extracted from a dependency

path with the help of the learned PCFGs, each of

which explicitly has a favorite label. One way to

3 The predefined percentage is 1% if the ratio of the number

of distinct sequences to the number of sequences is below a

third, 5% if the ratio is between a third and two third, and 10%

otherwise.

702

combine their opinions is to let respective classi-

fiers S for the types of sequences vote for their

favorite label 𝑧𝑠(𝑥) (+1 or −1) of a path x and to

count their vote with a different weight propor-

tionate to their reported confidence 𝑤𝑠(𝑥) and

their credibility 𝑐𝑠, as follows:

𝑦 = ∑ 𝑐𝑠𝑧𝑠(𝑥)𝑤𝑠(𝑥)

𝑆

= ∑ 𝑐𝑠𝑦𝑠(𝑥)

𝑆

If the output score y is positive, our classifier

makes a final decision of labeling x as being pos-

itive. The term 𝑧𝑠(𝑥)𝑤𝑠(𝑥) can be regarded as

the output score 𝑦𝑠(𝑥) given by a classifier S.

We define 𝑦𝑠(𝑥) as follows, where the capital

letters stand for random variables:

ys(𝑥) = log (
P(𝑍 = +1, 𝑋 = 𝑥)

P(𝑍 = −1, 𝑋 = 𝑥)
)

The log probability log (P(𝑍, 𝑋)) is written in

terms of the probability P(𝑍, 𝑇)of our PCFGs

generating 𝑇𝑧 parse trees supporting a value z of

Z:

log (P(𝑧, 𝑥)) = log (𝑇𝑧 × P(𝑧, 𝑇𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

where P(𝑧, 𝑇𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ is the average of the probability

of parse trees generating x and supporting z. Us-

ing Jensen’s inequality, it is easy to show that its

lower bound 𝑙(𝑧, 𝑥) is:

log(P(𝑧, 𝑥)) ≥ 𝑙(𝑧, 𝑥) = logP(𝑧, 𝑇𝑥) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + log 𝑇𝑧

where the first term is the average of the log

probability of parse trees under consideration.

One thing to note is that the equality always

holds for P(𝑍 = −1, 𝑋 = 𝑥) , since our PCFGs

for negatively labeled sequences produce at most

one parse tree for each sequence. For this reason,

the lower bound 𝑦𝑠
𝑙𝑜𝑤(𝑥) of 𝑦𝑠(𝑥) is:

𝑦𝑠
𝑙𝑜𝑤(𝑥) = ∑ (∑

𝑧logP(𝑇 = 𝑡)

𝑇𝑧
𝑡→ 𝑥|𝑧

+ 𝑧log 𝑇𝑧)

𝑧

Instead of 𝑦𝑠(𝑥), we use 𝑦𝑠
𝑙𝑜𝑤(𝑥) at risk of the

deterioration of the performance of the resulting

model, since it is apparently easier to handle

than 𝑦𝑠(𝑥).

In the worst case, the difference between

log P(𝑍, 𝑋) and 𝑙(𝑧, 𝑥) can be:

|log(P(𝑧, 𝑥)) − 𝑙(𝑧, 𝑥)| ≤ log
P(𝑧, 𝑇𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

P𝑚𝑖𝑛(𝑧, 𝑇𝑥)

where the denominator is the least probability of

parse trees under consideration. It indicates that

with a wide beam width the estimated value of

 𝑦𝑠
𝑙𝑜𝑤(𝑥) may be significantly lower than the true

value of 𝑦𝑠(𝑥), while with a narrow beam width

the estimated value of 𝑦𝑠
𝑙𝑜𝑤(𝑥) is likely to be

similar to the estimated value of 𝑦𝑠(𝑥), which

may be significantly higher than its true value.

Thus the success of the use of 𝑦𝑠
𝑙𝑜𝑤(𝑥) is de-

pendent on the beam width.

Expanding the log probability logP(𝑇 = 𝑡) ,

𝑦𝑠
𝑙𝑜𝑤(𝑥) is rewritten:

∑ ∑ 𝑧log(𝑝𝑟) (∑
𝑐𝑜𝑢𝑛𝑡(𝑟 𝑖𝑛 𝑡)

𝑇𝑧
𝑡→ 𝑋|𝑧

) + (∑ 𝑧log 𝑇𝑧
𝑧

)

𝑧𝑟

where 𝑝𝑟 is the probability of rule r, which is

given by PCFGs, and 𝑐𝑜𝑢𝑛𝑡(𝑟 𝑖𝑛 𝑡) is the num-

ber of the occurrences of rule r in parse tree t.

Introducing coefficients 𝑤𝑟 , 𝑤1 and 𝑤0 into the

equation, 𝑦𝑠
𝑙𝑜𝑤(𝑥) can be generalized to a linear

model as shown below.

∑ 𝑤𝑟 (∑
𝑐𝑜𝑢𝑛𝑡(𝑟 𝑖𝑛 𝑡)

𝑇𝑧
𝑡→ 𝑋|𝑧

) + 𝑤1 (∑ 𝑧log 𝑇𝑧
𝑧

)

𝑟

+ 𝑤0

Being their linear combination of the linear mod-

els 𝑦𝑠
𝑙𝑜𝑤(𝑥), the output score y is also a linear

model. In this paper, we train our linear classifi-

ers using LIBLINEAR (Fan et al., 2008) 4.

Finally, we note that as in the re-ranking

parsers (e.g., Charniak and Johnson, 2005), it is

possible to use global features, or features not

allowed in the CKY algorithm, to calculate the

log probability logP(𝑇 = 𝑡). In this paper, we

leave the effect of the use of such global features

for future research.

5 Experiments

We generated labeled training dependency paths

for each event-argument relation type from the

BioNLP training corpus with the help of the

Charniak-Johnson parser (Charniak and Johnson,

2005) with a self-trained biomedical parsing

model (McClosky and Charniak, 2008). There

are 7,009 positive paths and 10,603 negative

paths. The ratio of the number of positive paths

4 Our linear classifiers are trained using the L2 regularized

logistic regression solver with cost constants that are chosen

among 0.01, 0.1, 1 and 100 with the help of five-fold cross

validation.

703

to the number of negative paths is 0.66. We

found that a majority of the relation types would

have a balanced set of training instances, except

for a few relation types with the imbalance be-

tween positive and negative instances. One way

of correcting the imbalance is to give more

weight to positive instances, but we leave out the

imbalance in this experiment.

We extracted three types of sequences from

them. We found that most distinct negative se-

quences appear once in the training corpus as

shown in Table 1, where the bracketed figures

are the ratios of the number of distinct sequences

to the number of sequences, justifying the use of

a simple grammar for negative sequences.

Sequence Positive Negative Total

Combined 3,703

(1.89)

9,781

(1.08)

13,484

(1.31)

Token 3,366

(2.08)

9,270

(1.14)

12,636

(1.39)

Dependency 1,816

(3.86)

7,419

(1.43)

9,235

(1.91)

Table 1. Distinct Training Sequences

We use the pseudo-count and Bayesian meth-

ods to learn grammars. The learned PCFGs con-

tain the mentioned example lexical items, “-

induced -amod”, “genes +prep as +pobj” and

“[PROTEIN] +conj”. They contain a number of

intuitively correct core and subordinate compo-

nents. The learned subordinate components in-

clude “genes +prep like +pobj”, “[PROTEIN]

+abbrev” and “[PROTEIN] +appos”.

With three different beam widths, we parse

sequences to generate feature vectors for our lin-

ear classification models and evaluate the result-

ing models in terms of accuracy, as shown below.

Grammar Beam Width

k=1 k=10 k=100

Pseudo-Count

Unigram 86.43% 85.97% 86.07%

Uni-direct 86.94% 87.05% 87.03%

Bi-direct 86.48% 86.43% 86.25%

Bayesian

Unigram 82.72% 83.39% 83.27%

Uni-direct 82.95% 83.70% 82.88%

Bi-direct 82.70% 83.45% 83.26%

Table 2. Accuracy of Our Classifiers

For each grammar, the best reported accuracy is

set in bold. With PCFGs learned by the pseudo-

count method, the use of multiple parse trees

does not affect or even decrease the performance

of classifiers. One possible explanation is that the

wider the beam is the more erroneous parse trees

are likely to affect the final decision of classifiers.

In contrast, the classifiers with PCFGs learned by

the Bayesian model would slightly benefit from

the use of multiple parse trees, even though their

performance also drops when using the widest

beam. To explain that we get only a slight benefit

from a wide beam width, we looked at feature

vectors, noticing that many positive training se-

quences have only a small number of possible

parse trees. We also observed that as expected,

classifiers with the uni-directionally growing

PCFGs outperform the other classifiers, with one

exception of classifiers with the widest beam and

the ones learned by the Bayesian method.

To compare with our classifiers, we imple-

ment linear baseline classifiers that use as fea-

tures all n-grams (n=1~4) of token, dependency

and combined sequences extracted from the

training instances. They first replace unknown

words in an input sequence with a special token

“[UNKNOWN]” and count the occurrence of n-

grams in the sequence. Like our classifiers, they

are also trained by LIBLINEAR (Fan et al.,

2008).

The accuracy of the baseline classifiers is

85.76%, which is lower than that of the pseudo-

count classifiers with any beam width in use, but

higher than that of the Bayesian classifiers with

any used beam width. The superiority of the

pseudo-count classifiers with any beam width

over the baseline classifiers is statistically signif-

icant at the 10% significance level in terms of

their accuracy (p-value=5.6~8.4%), according to

the one-sided paired Student’s t-test with the ac-

curacy of classifiers for each relation type.

6 Conclusion

In this paper we proposed a way of exploiting

internal structures of dependency paths for the

extraction of biological events from the biologi-

cal literature with the BioNLP shared task corpo-

ra. We proposed pseudo-count and Bayesian

methods to learn three types of PCFGs that as-

sume different internal structures of paths from

dependency paths. To use multiple parse trees for

a single path, we also developed a linear classifi-

cation model whose output score approximates

the difference between the log probabilities of

the path being derived from positive and nega-

tive relations. Finally, we have shown that our

approach can improve the performance of identi-

fying event-argument relation in a statistically

significant manner.

704

Acknowledgments

This work was supported by the National Re-

search Foundation (NRF) of Korea funded by the

Ministry of Education, Science and Technology

(MEST) (No. 20110029447). We are also grate-

ful to the anonymous reviewers who helped im-

prove the clarity of the paper. All remaining er-

rors are of course ours.

References

Baek, S. C. and Park, J. C. (2012, September) Use of

Clue Word Annotations as the Silver-standard in

Training Models for Biological Event Extraction.

In Proceedings of the SMBM 2012 (pp. 34-41).

Björne, J., Heimonen, J., Ginter, F., Airola, A.,

Pahikkala, T., & Salakoski, T. (2009, June). Ex-

tracting complex biological events with rich graph-

based feature sets. In Proceedings of the Workshop

on Current Trends in Biomedical Natural Lan-

guage Processing: Shared Task (pp. 10-18). Asso-

ciation for Computational Linguistics.

Björne, J., Pyysalo, S., Ginter, F., & Salakoski, T.

(2008, September). How complex are complex pro-

tein-protein interactions. In Proceedings of the

SMBM 2008 (pp. 125-128).

Charniak, E., & Johnson, M. (2005, June). Coarse-to-

fine n-best parsing and MaxEnt discriminative re-

ranking. In Proceedings of the ACL 2005 (pp. 173-

180). Association for Computational Linguistics.

de Marneffe, M. C., MacCartney, B., and Manning, C.

D. (2006, May). Generating typed dependency

parses from phrase structure parses. In Proceedings

of LREC (Vol. 6, pp. 449-454).

Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R.,

& Lin, C. J. (2008). LIBLINEAR: A library for

large linear classification. The Journal of Machine

Learning Research, 9, 1871-1874.

Johansson, R., and Nugues, P. (2008, August). The

effect of syntactic representation on semantic role

labeling. In Proceedings of the 22nd International

Conference on Computational Linguistics-Volume

1 (pp. 393-400). Association for Computational

Linguistics.

Johnson, M., Griffiths, T. L., & Goldwater, S. (2007).

Adaptor grammars: A framework for specifying

compositional nonparametric Bayesian mod-

els.Advances in neural information processing sys-

tems, 19, 641.

Joshi, M., and Penstein-Rosé, C. 2009. Generalizing

dependency features for opinion mining.

In Proceedings of the ACL-IJCNLP 2009 Confer-

ence (pp. 313-316). Association for Computational

Linguistics.

Kilicoglu, H. and Bergler, S. 2009. Syntactic Depend-

ency Based Heuristics for Biological Event Extrac-

tion. In Proceedings of the BioNLP Shared Task

2009 Workshop (pp. 119-127).

Kim, J. D., Ohta, T., Pyysalo, S., Kano, Y., and Tsujii,

J. I. (2009, June). Overview of BioNLP'09 shared

task on event extraction. In Proceedings of the

Workshop on Current Trends in Biomedical Natu-

ral Language Processing: Shared Task (pp. 1-9).

Kim, J. D., Wang, Y., Takagi, T., and Yonezawa, A.

(2011, June). Overview of GENIA event task in

BioNLP shared task 2011. In Proceedings of the

BioNLP Shared Task 2011 Workshop (pp. 7-15).

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., &

Steedman, M. (2010, October). Inducing probabil-

istic CCG grammars from logical form with high-

er-order unification. In Proceedings of the 2010

conference on empirical methods in natural lan-

guage processing (pp. 1223-1233). Association for

Computational Linguistics.

Li, X. L., Liu, B., & Ng, S. K. (2010, October). Nega-

tive training data can be harmful to text classifica-

tion. In Proceedings of the 2010 conference on em-

pirical methods in natural language processing (pp.

218-228). Association for Computational Linguis-

tics.

 McClosky, D., and Charniak, E. (2008). Self-training

for biomedical parsing. In Proceedings of the ACL

2008 (pp. 101-104). Association for Computational

Linguistics.

 Miwa, M., Pyysalo, S., Hara, T., and Tsujii, J. I.

(2010a). A comparative study of syntactic parsers

for event extraction. In Proceedings of the 2010

Workshop on Biomedical Natural Language Pro-

cessing (pp. 37-45). Association for Computational

Linguistics.

 Miwa, M., Sæ tre, R., Kim, J. D., & Tsujii, J. I.

(2010b). Event extraction with complex event clas-

sification using rich features. Journal of bioinfor-

matics and computational biology, 8(01), 131-146.

Qiu, G., Liu, B., Bu, J., and Chen, C. (2011). Opinion

word expansion and target extraction through dou-

ble propagation. Computational linguistics, 37(1),

9-27.

 Riedel, S., & McCallum, A. (2011, June). Robust

biomedical event extraction with dual decomposi-

tion and minimal domain adaptation.

In Proceedings of the BioNLP Shared Task 2011

Workshop (pp. 46-50). Association for Computa-

tional Linguistics.

705

