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A b s t r a c t  
The system described here is a large.vocabulary continuous-speech 
recognition (CSR) system wi th  results obtained using the  Wall 
Street Journal-based database [15]. The  recognizer uses a stack 
decoder-based search strategy[l ,  7, 14] with  a left-to-rlght stochas- 
tic language model. This  decoder has  been shown to function effec- 
tively on 20K and  64K-word recognition of continuous speech. It 
operates left-to-right and  can produce final textual  output  while 
continuing to accept addit ional input  speech. Thus  it need not  
wait for the end of the sentence and  can be  s t ructured so tha t  
i t  can accept an  unbounded length s t ream of input  speech. The 
recognizer also features recognition-time adapta t ion  to the user 's 
voice. This  system showed improvements of 42% for a 5K vocab- 
nlary and  35% for a 20K vocabulary compared to the  November 
92 evaluatien test  system. 

I. T h e  Bas ic  H M M  C S R  S y s t e m  
The basic system described here uses two (TM-2) or three (TM- 
3) obs~va t ion  streams: mel-cepstra~ t ime differential mebcepstra,  
and  second time-differential mel-cepstra. The  system uses Gaus- 
sian tied mixture  [4, 6] with  grand variance pdfs and  t rea ts  each 
observation s t ream as if i t  were statistically independent of all oth- 
ers. Cross-word sex-dependent tr iphone models are used to model 
phonetic coarticulation and  a coarse speaker grouping. These tri- 
phone models are smoothed with reduced context phone models 
[20] using Bayesian smoothing weights. Each phone model is a 
"linear" (no skip transit ions) three s ta te  HMM. The  phone mod- 
eis are t ra ined by  the  forward-backward algori thm using a boot-  
s trapping procedure which requires only the orthographic tran- 
scription. The  t ra iner  can also use sentence dependent background 
models to allow for variation in the t raining-data recording eenvl- 
rronment. Bo th  the t ra iner  and  the recognizer used the Dragon 
WSJ dictionary and  can use multiple pronunciatkms for any word. 
The  recognizer extrapolates (estimates) untrained phone models, 
splits long-duration states to enforce min imum durations,  contains 
an  adaptive background model, allows optional inte~rnediate si- 
lences between words, performs optional channel compensation, 
can use any left-to-right stochastic language model (LM), and can 
adapt  to  the speaker with  or without  supervision. The recognizer 
uses a Viterbi decoder with  a ML decision rule. The  recognition 
search is implemented using a stack decoder [1, 7, 14] with a two- 
pass fast match.  The  stack decoder includes a proposed CSI:t-NL 
interface[lq to access an  external  LM module. 

*This work was sponsored by the Advanced Research Projects 
Agency. The  views expressed are those of the  author  and do not  
reflect the official policy or posit ion of the U.S. Government.  

2. T h e  Stack D e c o d e r  
The  stack decoder is organized as described in reference [14]. The 
basic paradigm used by the stack decoder is: 

I .  Pop  the best  theory (part ial  sentence) from the  stack. 
2. Apply acoustic and  LM fast mntches[3, 5] to produce a short  

l ist  of candidate next  words. 
3. Apply acoustic and  LM detailed matches  to the candidate 

words. 
4. Insert  surviving new theories into the  stack. 

This paradigm requires t ha t  theories of different lengths be  com- 
pared. Therefore, the system mainta ins  a least-upper-bound or 
envelope of all previously computed theory ou tpu t  log-likelihoods 
(LLi).  (The acoustic log-likelihoods and  the  envelope are functions 
of time.) 

envelope(t) =max nni ( t )  

S t S ~  = m a x  (nLi (t) - enuelope(t)) 
t 

t-exiti =argmax ( LLi(  t) - envelope(t)) 
t 

Theories whose stack score, StSc,  is less t han  a threshold are 
pruned from the  stack. The  stack entries are sorted by an  ma- 
jor  sort on most  likely exit time, t_ezit, and a minor sort on StSc. 
Thus the shortest  theories are expanded first which has  the net  
effect of working on a one to two second active region of the input  
and  moving this active region left-to-right through the data.  

The  "extend each part ia l  theory with one word at  a t ime" ap- 
proach allows the  use of a particularly simple interface to the LM. 
All requests to  the  LM are of the form: "Give me the probabili ty of 
this one-word extension to this  theory." This  has been exploited in 
order to place the  LM in an  external  module connected via sockets 
(pipes) and  specified on  the on the command line[10]. Since the 
N-gram LMs currently in use are so trivial  to compute,  the LM 
fast ma tch  probabil i ty is currently jus t  the LM detailed match  
probabili ty 

This  stack decoder, since all information is entered into the 
search as soon as possible, need only pursue a "find the best  pa th  
and  output  it" strategy. I t  is also quite possible to output  a list of 
the several best  sentences with minor  modificatious[13, 14]. 

Given this  search strategy, i t  is very easy to produce output  
"on the fly" as the  decoder continues to operate on the incoming 
data .  Any t ime the first N words in all entries on the stack are the  
same they may be  output .  (This is the analog of the "confluent 
node" or "partial tracebac]d' algori thm [21] in a t ime synchronotm 
decoder.) No future da ta  will a l ter  this  part ial  output .  

Similarly, since the active zone moves left-to-right though the 
data,  the  stack decoder can easily be  adapted  to unbounded length 
input  since the various envelopes and  the like need only cover the 
active region. In practice this involves an  occasional stop and  
pass over the internal  da ta  shifting it  in  buffers, altering pointers, 
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and renormalizing it  to  prevent underflow, bu t  these are simply 
prob]elns of implementat ion,  not  theory or basic operation. 

3. The  Fast Match  
The aconstic fast  ma tch  (FM) uses a two pass strategy. Both  
passes search a left-dlphone tree generated from the recognition 
vocabulary. The  first pass takes all theories for which t .ezi t  i =rain 

J 
t .ez i t j  and combines the i r  log-likelihoods (take thei r  vector r ~ x -  
imum tbr  a Viterhi decoder) to  create the input  log-likelihood for 
the decoder. This  decode produces two outputs:  i t  sets prun- 
ing thresholds for the  second passes and  marks  all dlphone nodes 
for words whose FM outpu t  log-likelihood exceeds a FM output  
threshold envelope. 

The  second pass is applied for every theory which was included 
in the  above combination.  It  applies the  exact log-likelihood from 
the detailed ma tch  as input  to  the left-diphone tree using the prun- 
ing thresholds from the  first pass and  searching only the  marked all- 
phone nodes. The  word ou tpu t  log-llkelihoods are added to the LM 
log-probabilities to produce the net  word output  log-likelihoods. 
The cumulative ma x i m um  of these ne t  log-liks]Jhoods pins a (neg- 
ative) threshold now produces the  FM output  threshold envelope. 
Any word whose ou tpu t  log-likelihood exceeds this threshold en- 
velope is placed on the  candidate word list for the detailed match.  

Bo th  passes of the  fast m a t c h  use a beam pruned depth-first 
(DF) search of the  dlphone tree. (The beam pruning requires a 
cumulative envelope of the  the  state-wise log-likeUhoods.) The  
DF search is faster  t han  a t lme-synchronous (TS) search due to 
i ts  localized data .  At  any  one time, it only needs an  input  array 
(which was used very recently), and  ou tpu t  array (which will be  
used very soon), and  the  parameters  of one phone whereas the TS 
search mus t  touch every active s ta te  before moving to the next 
time. This  allows the  DF search to stay in cache (~1 MB on many 
current workstations) and  to page very efficiently. The  TS search, 
in  comparison, uses cache very inefficiently and  will virtually ha l t  
if  i t  begins to  page. (A stack search was also tested. Becanse the  
operational  u n i t - - t h e  d iphone-- i s  so small, i ts  overhead canceled 
any advantages. Its computat ional  locality is also not  as good as 
t ha t  of the  DF search.) 

A goal of recognition system design is to rn |n |m|ze  the o v e r ~  
n m  t ime without  loss of accuracy. In the  current  system, this 
m in imum occurs (so far) wi th  the relatively expensive fast ma tch  
described above. It  is the  largest t ime consumer in the recognizer. 
Using generous p r . n ; n g  thresholds t ha t  reduce the  number  of fast 
ma tch  proning errors to  below a few ten ths  of a percent,  this fast 
ma tch  allows only an  averalp of abou t  20 words of a 20K word 
vocabtdary to he  passed to the detailed match.  

4. The  Deta i l ed  Match  
The detailed m a t c h  (DM) is currently implemented as a beam- 
pruned depth-fas t  searched t r iphone tree. The  tree is precom- 
piled for the whole vocabulary" m|nu8 the silence phones, bu t  
only tr iphone nodes corresponding to the FM candidate words 
are searched. The  LM log-probabilities are integrated into the  
tr iphone tree to  apply the  information as soon as possible into  
the search. The  b e a m  pruning  again requires a state.wlse log- 
likelihood cumulative envelope. Because the  r ight  context is not  
available for cross-word triphones, the final phone is dropped from 
each word and  prepended to the next  word. 

The  silence phones, because they may have very long durat ion 
are "con t i rnmble ' - - tha t  is they run  for a l imited durat ion and  then 
are placed on  the  stack for la ter  continuation.  They are computed 
using very small  t ime synchronous decoders so tha t  their  s tate  can 
be  placed on  the  stack to allow the  continuation. This  allows a 

finite fixed-slze l ikelihood buffer in  each s tack entry and  reduces 
decoding delays. 

"Covered" theories are pruned from the  search[13]. One theory 
covers another  if  all entries in i ts ou tpu t  log-likelihood arras, are 
greater than  those of the second theory at  the corresponding times 
and  its LM probabilities will be the same for all possible extensions. 

A covered theory can never  have a higher likelihood than  its 
covering theory and  is therefore pruned from the search. (Thk  k 
analogous to a pa th  join in a TS decoder.) For any limited left- 
context-span LM, such as an  N-gram LM, this mecha- ;em prevents 
the exponential theory growth tha t  can otherwise occur in a tree 
search. 

5. C o m p o n e n t  Algor i thms  
This recognition system includes a variety of algoritluns which are 
used as components  support ing the major  par t s  described above. 

5 . 1  DF Search Path Termination 
It  is not  always possible to determine when to terminate  a search 
pa th  in a non-TS search because the  first pa th  to reach a point  in 
t ime will no t  be  able to compare i ts likelihood to the likelihood of 
any other  path .  Thus  a heavily pruned TS left-diphons tree no- 
g rammar  decoder is used to produce a rough est imate of the  state-  
wise envelope for all theories up  to the  current  time. This  envelope 
is used primarily to al ter  the beam-pruning  thresholds of the FM 
and DM such t ha t  the search pa ths  te rminate  a t  appropriate times. 
This  decoder requires only a very small  amount  of computat ion.  

5 . 2  Bayesian Smoothing 
In a number  of si tuations i t  is necessary to smooth  a sparse- 
da ta  est imate of a parameter  with  a more robust  bu t  less ap- 
propriate  est imate of the  parameter .  For instance, the  mixture  
weights for sparse.data  t r iphone pdfs might  be  smoothed with coro 
responding mixture  weights from the corresponding diphones and  
monophones[2~ or, in  an  adapt ive system, the  new est imate based 
upon  a small  amount  of new da ta  might  be  smoothed with the  old 
est imate based upon  the  pas t  da ta  a n d / o r  t ra ining data .  The  fol- 
lowing smoothing weight est imation algori thm applies to param- 
eters which are es t imated as a [weighted] average of the  t ra in i ,~  
data .  

A s tandard  Bayesian me thod  for comblnln~, new and  old esti- 
nmtes of the same parameter  is 

N. No 
z = N .  + No x .  + N ~ X o  

where x is the parameter  in question and  N is the  number  of counts 
tha t  went into each est imate and  the subscripts  n and  o denote new 
and  old. Similarly if one assumes the  variance v of each est imate 
is inversely proport ional  to N (i.e. v c< ~ ) ,  

1~o ~n 

vn + Vo vn + Vo 
The  above asstunes z .  and  ~o to he  est;nmtes of the same pa- 

rameter .  However, in the case of smoothing,  the  purpose is to use 
da ta  from a different bu t  related old parameter  to improve the es- 
t imate  of the  new parameter .  For the  above examples, z n might  • 
be an  estimate from a t r iphone and  z o from a diphone or mono- 
phone, or x .  might  he  an  est imate from the  current  speaker (i.e. 
be  speaker dependent)  and  x o from speaker-independent t ra ining 
data.  Thus  

E[~] = E[~.] # E[~o]. 
If one assumes tha t  the  expected values of z and  z o differ by  a 
zero mean Gaussian representing the  unknown bias, 

E[~] - E[~o] = G(0, ~ j )  
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then  a corrected e s t i n~ t e  for the  old variance is 

~/o= ~o+~d. 
If  we now subs t i tu te  the  new value for v o and  re tu rn  to the  init ial  
form of the estim~,t, or, 

N. No' 
= =  N ~ o ,  Zn'I" N .  + No, z° 

whexe 
,__ NoNd 

N ; - N o + N  d" 
Note t ha t  No ~ _~ Nd and  thus  the  smoothing equation discounts 
the value of the  old da ta  accord;nf  to N d which, for the above ex- 
amples of emoothmg, may  be  determined empirically. This  equa- 
t ion can he trivially extended to include multiple old estimates for 
emooth;r~, a t r lphone with the  left diphone, r ight  diphone, and  
monophone. In this  recognition system, symmetries and  linear in- 
terpolat ion across s ta tes  have been  used to reduce the  number  of 
Nd's for t r iphone smoothing from twelve to three.  This  smoothing 
scheme has also been  tested for spe.~er  adapta t ion  (results below) 
and  might  also be  used in language modeling. 

5.3 Channel Compensation 
Blind channel  compensat ion during b o t h  t ra ining and  recognition 
is performed by first sccAnnlng the  sentence and  averaging the mel- 
cepstra of the  speech frames. This average is then  subtracted from 
all frames (commonly known as meLcepstral  DC removal.) This 
does not  affect ei ther  of the differential observation streams. 

5.4 Speaker Adaptation 
One cannot  always anticipate the  identi ty of the user when train- 

ing a recognizer. The  "standard" SI approach is to pool a number  
of speakers to a t t empt  to provide a set of models which gives ade- 
quate  performance on a new user. This  approach, however, creates 
models which are ra ther  broad because they a t t empt  to cover any 
way in which any speaker will pronounce each word ra ther  than  
the way in which the  current speaker will pronounce the words. 
(This is consistent with  the fact tha t  SD models outperform SI 
models given the  same amount  of t raining datao) Speakers may 
also not  be  willing to prerece~d training or rapid enrollment da ta  
and  wait  for the system to process this  data.  

One solution for this  problem is recognition-time adaptat ion,  
in  which the recognizer adap ts  to the current user during normal 
operation. This  solution also has  the advantage tha t  the recognizer 
can track changes in the user 's  voice and  changes in the acoustic 
environment. The  paradigm used here is to initialize the system 
with some set of models such as SI models or SD models from 
another  speaker, recognize each ut terance with the current set of 
models, and  finally use the ut terance to adapt  the current models 
to create a new set of models to be  used to recognize the next  
utterance[9, 16]. If  the user supplies any inforraation to correct 
or verify the recognized output ,  the adapta t ion  can be supervised, 
otherwise the  adapta t ion  wKI be unsupervised. 

The adapta t ion  algori thm used here is a simple smoothed 
maximum-likelihood scheme: 

1. Star t  wi th  some set of acoustic models, M which have had  
their  DC removed as in channel compensation. 

2. Perform channel  compensat ion (mel-cepstral DC removal). 
3. Recognize the ut terance using the  current  model, M.  
4. Compute  the s ta te  sequence and  alignment using ei ther  the 

corrected text  (supervised) or the recognized text (unsuper- 
vised). 

5. Compute  new est imates of the  model parameters  M new using 
1 i terat ion of Viterbi training. 

6. Update  the  model by  smoothing the  new es thnates  of the 
parameters  wi th  old parAmetem: 

M = (1 -- ~ ) M  + XM.e~  

7. Go to 2. 

The  adapta t ion  ra te  parameter' ,  A, t rades  o~  tl~e adapta t ion  
speed and  the  l imit ing recognition performance. A need not  be  
c o n s t a n t - - b u t  was held constant  in  these experiments.  Only the  
Ganssian means of a T M  system wi th  a t ied variance were adapted  
in these experiments.  (Adapt ing o ther  parameters  wm be  explored 
a t  a la ter  date.)  

A number  of experhnents  using simplified phonetic models were 
performed to evaluate SI s tar ts ,  cross-sex SD starts ,  and  same-sex 
SD starts[16] using the  RM database[17]. The  adapta t ion helped in 
all cases, even for unsupervised adapta t ion  of the  cross-sex star ts  
which s ta r ted  with a word error ra te  of 94~.  A system which 
t rained SI mixture  weights wi th  SD Gauss lam and  then fixed the 
weights while t ra ining a set of SI Gaussiaus was also tested in the 
hope that ,  once adapted,  i t  wonld look more like an  SD system 
than  a system s ta r ted  with normal  SI models. I ts  unadapted per- 
formance was somewhat  worse t han  the  normal  SI system, but  
after adaptat ion,  i ts  performance was be t te r  than  the  normal SI 
system. 

The  results for our  bes t  SI-109 trained system (TM-3, cross- 
word tr iphone models) were: 

word error rate (s~t  78-100) i 
System static sup adap t  unsup adapt  
Best SLI09 5.7% 2.9~ 3.1% 
SD (control). 1.9% L L 

s td  dev=.3- .5% 

As can be  seen from these results, the  adapta t ion ,dmost halved 
the error rates for b o t h  supervised and  unsupervised adaptat ion.  
In no case did any system diverge. A Bayesian adapta t ion  scheme 
based upon the above algori thm was also tested, bu t  was no be t te r  
than  the simple ML algorithm. Unfortunately, the  improvement 
was much less when tested upon the WSJ da tabase  (see below). 

5 . 5  P d f  c a c h e  
Tied mixture pelfs are relatively expensive to compute and a pdf  
cache is necessary to m~nlmize the computat ional load.  Each c~,~he 
location is a function of the s ta te  s and  the t ime t. The  cache must  
also be  able to grow efficiently upon  demand  and  discard outdated 
entries efficiently. Algorithms such as hash  tables do not  grow 
efficiently and have terrible memory cache and  paging hehavier.  
Instead, the pdf  cache is stored as a dynamically allocated three 
dimensional array: 

prig[tiT]is]it%T] 
where % is the  modulo operator.  Only the first level pointer  array 
( i t /T])  is static, b o t h  the is] pointer  arrays and the actual  storage 
locations it%T] are allocated dynamically. Outdat ing is simple: 
remove all pointer  arrays and  storage locations for tiT < t ' /T 
(integer ari thmetic),  allocatic~l occurs whenever a null pointer  is 
traversed, and  access is jus t  two pointers  to a one dimensional 
array. It  is also a very good ma tch  to a depth-first search since 
such a search accesses the s tates  of a phone sequentially in time 
for a number  of t ime steps which gives very good memory cache 
and  paging performance. This  caching algori thm is used in b o t h  
the t ra iner  and  the recognizer. 

5.6 I n i t i a l i z a t i o n  o f  t h e  G a u s s i a n s  
Previously, the  Gaussiaus were initialized as a single mixture by 
a binary spli t t ing EM procedure. However, i t  was discovered that  
these sets of Gaussians tended to be  degenerate (i.e. a number  
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of the  Gauaslans were identical to at  least one other  Gaussian). 
Chemgixlg the  initialization procedure to a top-1 EM (in effect a 
K-mes.ns t ha t  also t ra ins  the mixture weights) removed the degen- 
eracy. This  did not  al ter  the  recognition accuracy, but  significantly 
reduced the  mixture  summat ion  computat ion since these sums are 
observation pruned (only compute the  summat ion  terms for the 
Gausslmrs within a threshold of the best  Gausslan).  

5.7 'I~rainer Quantization Error Reduction 
The SI-284 t ra ining condit ion of WSJ1 uses 30M frames of train- 
ing da ta  and, in the  Bmlm-Welch t raining procedure, significant 
fractions, of these frames are snmrned into ~Ilgle numbers.  The  
number  of mixture  weights (167M, see below) for the largest set 
of models was so large t ha t  only two byte  integer log-probs could 
be allocated to each accumulator .  (Quantizat ion in the estima- 
t ion of the  mixture  weights flattens the distribution.) Multi-layer 
sums were used to reduce the  quantizat ion error without  unduly 
increasing the the  dataspace requirements.  

Since there were only a relatively few Gauasians in this sys- 
tem (771), qnAnt~zatlen in es t imat ing them was reduced by  the 
use of double-precisien accumulators and  a change of variable to 
additionally reduce the  error in  es t imat ing the  variance: 

If one subst i tu tes  z~ for z i  where z~ -- ~vi - ~ where ~ is an  esti- 
mate  of ~ will reduce the  second t e rm and  thus the quantizat lon 
error. 2 from the  previous i terat ion can be  used as ~ in the current 
i teration. 

5.8 Data-Driven  Al lophonic  Tree Cluster- 
ing 
Previous techniques for allophonlc tree clustering have generally 
used a single phonet ic  rule (simple question) to make the best bi- 
nary split (according to an  information theoretic metric) in the 
da ta  at  each node and  some of these techniques al ternate between 
spli t t ing and  combining several nodes to minimize the da ta  reduc- 
t ion by forming "compound questions" a t  the nodes[2]. Another  
approach is to ask the  "most .compound question" from the s tar t .  

In this  approach, if one is searching for the best  split based upon 
the, for instance, r ight  phonetic context and  there are N right  pho- 
netic contexts in  the tr iphones assigned to the current node, then 
there are 2 ( N - l )  possible splits. (N can  easily be greater than  
one hundred in some of the nodes near  the root  of the tree.) Such 
a search problem can be  solved by simulated annealing, genetic 
search, or multiple quenches from random starts .  All three were 
tr ied and  mult iple quenches from random star ts  appeared to give 
the highest probabil i ty of obtaining the op t imum split for a given 
amount  of CPU time. Finally, the  pd f  weights at  each node are 
smoothed with those of i ts  parent  using the Bayesian smoothing 
d e s c r i e d  above. This  smoo th ln f  is carried out  from the root down 
toward each leaf so tha t ,  in effect, each node is smoothed by all 
of the data .  The  software for this  technique has  been developed 
and  debugged on the RM database,  bu t  we have not  yet had  suffi- 
cient t ime to test  this  a lgori thm on a large vocabulary task. (This 
a lgori thm is not  currently in use.) 

5.9 Parallel  Path  Search of  a Network 
In a simple single pass fast match ,  the fast ma tch  network (pho- 
netic tree in  this  system) mus t  be  searched once per  theory. This  
is very expensive because the  same network must  be searched over 
the  same input  da ta  many  times. One method  for reducing this 
computa t ion is searching the network once with a technique which 

computes many  inputs  in  paral/el. This  search technique repre- 
seats  the da ta  as two da ta  structures: a "max structure" which 
contains maximum (for a Viterbl search) with  a pointer  to a "delta 
structure" which contains a l ink count  and  a list of individual 
deltas such tha t  the sum of the max imum and the  deltas gives the 
individual Iog-probabilitles. A pass over the input  da ta  will cre- 
ate  one max structtwe per  input  t ime step and  fewer del ta  struc- 
tures since del ta  s tructures can be  shared by any number  of max 
structures. Many operations (60-80~  in these experiments) of the  
network decode will share the same delta s t ructure  and  thus the 
log-probabillties corresponding to all of the inputs  can be com- 
puted  with just  operations on the max  structures.  When pa ths  
represented by max structures with different del ta  s tructures join, 
then  operations of linking, upllnkln~, a n d / o r  creat ion must  be per- 
formed on the del ta  structm-es. The  link count  is used to garbage 
collect unlinked del ta  structures. This  algori thm was used for a 
while in the fast match,  bu t  has been replaced by the two pass 
algori thm described above which is faster  and  uses less space. 

5 .10  G a u s s i a n  V a r i a n c e  B o u n d  A d d i t i o n  
A wen-known problem in ML est imation of Gauasian-dependent 
variances in Gauasian mixtures is variance values tha t  go to zero. 
Two common methods  for preventing this  singldarity are lower 
bounding or using a grand variance. Simple addit ion of a constant  
to each variance has  been found to be a superior al ternative to 
lower bounding: i t  is equally trivial  to apply and  has yielded supe- 
rior recognition performance on several recognition tasks. For in- 
stance, for several tasks using single observation s t ream Gaussian- 
dependent  variances: 

System Var l im [ Var add 

SI-84 CSR l 16.~% (.5%) 15.e% (.4%) 
29.0~ ( 1 . 4 ~ ) [  [ Spkr ID[19] [ 26.0% (1.4%) 

In bo th  tasks, the  performance was improved by over two s tandard  
deviations by the  use of variance addition.  While not  needed to 
insure non-singnlarity, variance addit ion was also found to improve 
recognRion in a grand variance system: 

I Error Bate  ~std dev) 
System none [ Vat  lira I Vat  add 

[ SL84 CSR ] 25.2% ( .5~)  [ 20.5~ ( .5~)  [ 17.5~ ( .5~)  [ 

In spite of the  robustness of the  est imate of the  grand variance, 
the performance is improved significantly by  variance limiting and  
even more by the  variance addition. 

Clearly the variance addit ion is doing something more than  just  
preventing singular variances. One possible viewpoint is tha t  vari- 
ance addit ion is a soft l imiting function. A simple bound throws 
away all information about  the  original variance while the addit ion 
retains some of the  original information. Another  possible view is 
tha t  the variance addit ion is providing signal-to-noise (S/N)  rat io 
compensation.  Each component  of the observation vector contains 
bo th  useful signal and  noise. Variance addi t ion might  act  like a 
Wiener filter in adjust ing the gain on each component  appropri- 
ately: 

1 ~-~  Vi ( x i  - p i ) 2  1 ( z i  -- . i )  2 
- -  = - ~ E  2 , . - , .  ~ + lira Vi Vi + lira 

i i 

where the  second term on the left is the  normal suram~tion te rm 
in the  exponent of a diagonal covariance Gaussian and  the  first 
te rm on the left is analogous to a Wiener filter if  llm represents 
the noise power. (In the above systems one would expect the 
measurement  and quant izat ien noise power to be  the  same in all 
observation components.) This  technique was discovered too late 
to be  included in any of the following recognition results. 
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6. Recognition Results 
The above system has been tested using the WSJ1 database. The 
primary training condition used here is the "SL284" condition: 
37K sentences from 284 speakcrs--a total of about 82 hours. The 
prlmAry test condition in these tests is 5K word non-verbalized 
punctuation (NVP) dosed vocabulary with a perplexity 62 trigram 
back-off LM[8, 11] using the WSJ0 SI development test data. 

The initial tests probed the LM weight using a non-croes-word, 
non-sex-dependent TM-2 system: 

I Pdf I x'wdl sx [ LM wt I Wd err 
TM-21 4 11.31% 
TM-2 5 I0.47~ 
TM-2 6 10.44% 
p=62 5K NVP word ' t r igram LM, std dev,,,.37'~ 

Based upon this result, the LM weight was chosen to be five. (The 
LM weight is applied to the LM log-probabilities before combining 
with the acoustic log-liic~lihoods.) 

Next, three different factors in the acoustic modeling--two 
(TM-2) vs. three (TM-3) observation streams, cross-word tri- 
phones (x-wd), and speaker-sex-dependent triphones (sx) were ex- 
amined to see what their effect would he on this task: 

I .... I Pdf I x -wdl  s x  I Wd err I chz from 1 
1. TM-2 - - 10.47% 

SX 

x-wd 

x-wd 
SX 

pdf  

8.* TM-3 x-wd sx 7.87 0 - 

A from 1 J 

.78% 

.04% 

p=62 5K NVP word trigram LM, LM wt=5, 
std dev ~.35%, *--Nov 93 eva[ test system 

In the first set of comparisons, (1 vs. 2-4), only one feature (cob 
urn,  chg from 1) is added from the simplest system (1) and the 
change in the error rate is shown in the last column. Similarly, 
in the last set of comparisons (5-7 vs. 8), only one feature is 
added to create the most complex system (81 . At both ends of 
the spectrum, cross-word modeling gives the most improvement, 
sex-dependent triphones an intermediate amount, and the third 
obser~t ion stream the least improvement. Overall, the best sys- 
teem (81 yields a 26% improvement over the simplest system (11 
and 42% improvement over the November 92 evaluation test sys- 
tern (SI-84 trained, cross-word semlphone acoustic models: 13.5% 
word error rate[16]). This best system was chosen for the Novem- 
ber 1993 evaluation tests. 

The two extreme systems from the above table have also been 
tested on the 20K word WJS0 recognition task: 

I I Pdf I x-wd I sx I LM wt I Wd err I 

I " I 1  ° 8.* TM-3 x-wd sx 5 14.23% 
p--160 20K NVP word trigram LM, std dev~.45% 

*--Nov 93 eva[ test system 

This (system 8) is an improvement of 35% over the corresponding 
November 92 system (21.8~ word error rate[16]). 

To explore the relative performance gains due to the additional 
training data  in SI-284 over SL84 and the algorithmic improve- 
ments, system 8 was also trained on SI-84 and tested: 

I System I Tra in ing]  Wd err {Sin dev) I Reduction I 

8. SI-84 9.9% (.4%) 27¢~ 
8.* SI-284 7.9% (.3%) 42% 

p----62 5K NVP word trigram LM, *--Nov 93 eval test systean 

Similarly for 20K word recognition: 

System ~ "mnmg Wde~ std dev Reduction 

SL84 22% 
sl-2s4 L....~:L~..~:L~.L..._ 35% 

p----160 20K NVP word trigram LM, *---Nov 93 eval test system 

In both cases, about two-thirds of the improvement is due to the 
algorithmic improvements and about one-thlrd is due to the in- 
creased training data (about 16 to 82 hours). 

System 7 (TM-2, x-wd, sx) was selected for testing the adap- 
tation algorithm using the WSJ1 $4 adaptation development test 
set. (System 8 was used for the adaptation evaluation test.) Each 
speaker uttered about one hundred sentences which are scored in 
groups of twenty five to show the adaptation: 

[ Sentences 
[Sys t em [ 1-25 I 26-so [51 -75  [ 76--100:k I 

i Static 7.3% 9.0% 9.6% 8.6% 
Sup adapt 8.0% 8.9% 8.0% 8.1% 
Unsup adapt 7.3% 8.6% 8.1% 7.5% 

I ,.Sup adapt/static ] 110% I 99% ] S3% 94% I 
Unsup adapt/stat ic  100% 96% 84% 87% 

p--62 5K NVP word trigram LM, LM wt=5, std dee ,,~.7% 

The adaptation improves the error rates, although far less than 
the halving of the error rate observed for the RM task. 

7 .  D i s c u s s i o n  A n d  C o n c l u s i o n s  

Some of the performance improvement over the November 92 sys- 
tem has come at a significant size penalty: 

[,,,System I Phones I States I Mix Wts I Size I FNov92 [ 17Ksemi I 26K 1 13M I 26MB [ 
INov 93 18) 73K tri 220K 170M 340 MB 

(The weights are stored as two byte log-integers.) Since the trainer 
requires two copies (mixture weights plus reestimation accumula- 
tors) this totals 680MB. The total size of the trainer is about 
830MB and the recognizer about 500MB. These are significantly 
larger than the RAM on any of our machines, but both the trainer 
and the recognizer have been optimized under that assumption re- 
suiting in only moderate speed loss due to paging. However, these 
systems are still larger than is desirable. 

Quantization error in the trainer is very subtle. The Baum- 
Welch training algorithm is sufllelently stable that it will only be 
found if one specifically looks for it. The primary effect in the sys- 
tems described above is a "flattening' of the pdfs through an ef- 
fective upper-bounding of the mixture weight accumulation sums. 

The stack-decoder has been shown to be an effective decoder 
for large vocabulary CSR both here and elsewhere[I]. Because it 
efficiently combines all information into a single unified search and 
it makes a zonal left-to-right pass though the input data, it can 
produce the recognized output continuously as more data is input 
as well as handle unbounded length input. Most of the compu- 
tation in the above CSR is consumed by the acoustic fast match. 
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(The stack itself is a very efficient mechanism for limiting the num- 
ber of I;heories which must be expanded.) Thus the largest future 
speed-ups will probably result from faster fast matches. Signifi- 
cant si~ed-ups have already resulted from a mixture of strategies, 
such as pdf  caching and covered theory eelJmlnation, and imple- 
mentati~ms which use the machine architectures efficiently without 
compromising portability. 

The Bayesian smoothing fills in a long-standlng gap in the 
smoothed triphone scheme[2~ The smoothing weights must be 
computed by deleted interpolation[l] which requires at least sev- 
eral instances of the trlphone being smoothed or estimated by some 
non-data-driven method. The non-data-drlven methods have gen- 
erally been ad-hoc[12, 20]. This gives theoretical support for a 
functional form based upon the amounts of data  available to train 
each object and the objects similarity. This smoothing approach 
has also been tested in acoustic adaptati~m and could likely be 
used in language modeling. 

The data-driven allophonlc tree clustering is tmique in that it 
uses only acoustic similarity and not phonetic features in its clus- 
tering process. This allows more complex decision rules than do 
phonetic features and might yield better  dusters than phonetic 
feature-based clusterings. (One would expect it to "derive" many 
phonetic rules in its operation.) As yet, it has not been adequately 
tested. 

By exploiting a time-space trade-off, the parallel search tech- 
nique is able to speed up computation of multiple inputs to a 
probabilistic network. While this technique is not currently in use 
in this CSIt  system, it might be useful elsewhere. 

Finally, variance addition should be useful as a simple technique 
to reduce the error rate in many Gaussian mixture (or multiple 
Gaussian) based systems. Many standard techniques for dealing 
with varying S /N in the observation components perform a lin- 
ear transform on the observation vector and then dxop some of 
the resulting components. This all-or-nothing dropping of compo- 
nents throws away some signal with the noise. In contrast, vari- 
ance addition at tempts  to weight each term according to its value. 
This technique appears to be related to the technique of "diagonal 
lo~'lin~" (addln~. a constant to the diagonal of a matrix) that is 
sometimes used to inca~ease the stability and/or  noise immunity of 
a covariance matrix prior to inversion[18]. 

From a mechanical point of view, variance addition appears 
to be inhibiting noise induced splitting of the Gaussians. Unsu- 
pervised clustering methods such as EM attempt to find a set 
of Gaussiaus which best describes the distribution of the train- 
ing data  whether the distribution is due to signal or noise. If an 
infinite number of Gaussiaus and an infinite amount of training 
data  were available, there would be no problem since the mixture 
weights would compensate for any noise induced splitting. How- 
ever, in real systems both are finite and the noise induced splitting 
consumes Gaussians to better  model the noise at the expense of 
modeling the signal. Thus, by reducing this splitting, the available 
Gauasiaus are better  able to model the signal while using larger 
variances to model the noise. 

The above-described CSR system is well suited to handle the 
large vocabulary CSR problem. Many problems still need work--  
speed, size, accuracy, and robustness, to name a few--but  we will 
conthue to chip away at them. 
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