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Abstract

The Surface Realization Shared Task involves
mapping Universal Dependency graphs to raw
text, i.e. restoring word order and inflection
from a graph of typed, directed dependen-
cies between lemmas. Interpreted Regular
Tree Grammars (IRTGs) encode the corre-
spondence between generations in multiple al-
gebras, and have previously been used for se-
mantic parsing from raw text. Our system
induces an IRTG for simultaneously building
pairs of surface forms and UD graphs in the
SR’19 training data, then prunes this grammar
for each UD graph in the test data for efficient
parsing and generation of the surface ordering
of lemmas. For the inflection step we use a
standard sequence-to-sequence model with a
biLSTM encoder and an LSTM decoder with
attention. Both components of our system are
available on GitHub under an MIT license.

1 Introduction

The ‘shallow’ (T1) track of the Surface Realiza-
tion task (Mille et al., 2019) involves mapping
Universal Dependencies (UD) graphs (De Marn-
effe et al., 2014) to surface forms, i.e. restoring
word order and inflection based on the typed
grammatical dependencies among a set of lem-
mas. We used a hybrid method that restores word
order by IRTG rules, see Section 2, induced from
the training data, see Section 3, and performs
inflection using a standard sequence-to-sequence
model with a biLSTM encoder and an LSTM
decoder with attention, see Section 4. This
architecture fits well with the recent trend toward
eXplainable AI (Gunning, 2017), and is not as

data-hungry as end-to-end neural systems. Only
8 of the 12 teams participated on the non-English
portion of the track, with BME-UW ranked sec-
ond in automated, and generally in the top three
in human evaluation. The IRTG based system
is available under https://github.com/
adaamko/surface_realization, the
inflection system was trained using the framework
under https://github.com/juditacs/
deep-morphology

2 Rule format: IRTGs and s-graphs

Several common tasks in natural language pro-
cessing involve graph transformations, in particu-
lar those that handle syntactic trees, dependency
structures such as UD, or semantic graphs such
as AMR (Banarescu et al., 2013) and 4lang (Ko-
rnai et al., 2015). Interpreted Regular Tree Gram-
mars (IRTGs) (Koller, 2015) encode the corre-
spondence between sets of such structures and
have in recent years been used to perform syntactic
parsing (Koller and Kuhlmann, 2012), generation
(Koller and Engonopoulos, 2017), and semantic
parsing (Groschwitz et al., 2015, 2018). In previ-
ous work (Ács et al., 2019) we encoded transfor-
mations between raw text, phrase structure (PS)
trees, UD and 4lang semantic graphs to build a
single IRTG that allows for mapping between any
pair of such structures.

IRTGs are Regular Tree Grammars in which
each rule is mapped to operations in an arbitrary
number of algebras. Hence, derivations of an
IRTG correspond to synchronous generation of
objects in each of these algebras, and an IRTG

https://github.com/adaamko/surface_realization
https://github.com/adaamko/surface_realization
https://github.com/juditacs/deep-morphology
https://github.com/juditacs/deep-morphology
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parser such as alto (Gontrum et al., 2017) can
be used to map from one set of objects to all oth-
ers. For the word order restoration task our sys-
tem constructs an IRTG operating on strings and
UD graphs, simultaneously constructing sentences
from words and UD graphs from nodes. Opera-
tions of the simple string algebra (S, ·) are mapped
to those of an S-graph algebra (Courcelle, 1993),
a formalism also used by (Groschwitz et al., 2015)
to perform semantic parsing via IRTGs. Here we
give only an informal overview of s-graph alge-
bras, see (Koller and Kuhlmann, 2011; Courcelle
and Engelfriet, 2012) for a more formal expla-
nation. S-graphs are graphs whose vertices may
be labeled by one of a countable set of sources.
The central operation of an s-graph algebra is the
binary merge, which unifies pairs of s-graphs
in a way that vertices with matching sources are
merged, i.e. when two s-graphs G1 and G2 are
merged, the resulting s-graph G′ will contain all
nodes of G1 and G2, and when a pair of nodes
(v1, v2) ∈ E(G1) × E(G2) have the same source
name, they will be mapped to a single node v′

in G′ that has all adjacent edges of v1 and v2.
Sources can also be renamed or forgotten using
the operations rena↔b and fga, where a and b are
sources from the set A. Next we shall provide a
small example with string and s-graph interpreta-
tions.

The Algebraic Language Toolkit, or alto1

(Gontrum et al., 2017), is an open-source parser
for IRTGs that implements a variety of algebras
to use as intepretations of IRTGs, including the
string algebra and s-graph algebra. An alto
grammar file must declare all interpretation alge-
bras and for each RTG rule provide mappings to
operations in each of these algebras. Figure 1
shows a minimal example of an IRTG with two
interpretations. The abstract RTG rule nsubj,
so named after the corresponding UD relation,
has two abstract arguments, designated VERB and
NOUN. The string interpretation establishes that
the surface form of the second argument (NOUN)
is to precede the first argument (VERB). The ud
interpretation adds a directed nsubj edge be-
tween the subgraphs corresponding to each ar-
gument, by a series of rename, merge, and
forget operations. Angle brackets after nodes
indicate source names. In our s-graph grammars,
every subgraph at every point of the derivation

1https://github.com/coli-saar/alto

interpretation string:
de.up.ling.irtg.algebra.StringAlgebra

interpretation ud:
de.up.ling.irtg.algebra.GraphAlgebra

VERB -> _nsubj(VERB, NOUN)
[string] *(?2, ?1)
[ud] f_dep1(merge(

merge(?1, "(r<root> :nsubj d1<dep1>)
↪→ "),

r_dep1(?2)))

PROPN -> John
[string] John
[ud] "(John<root> / John)"

VERB -> sleeps
[string] sleeps
[ud] "(sleeps<root> / sleeps)"

Figure 1: Toy IRTG grammar

has exactly one node labeled with the <root>
source, indicating the head of the phrase, which
could be connected to a ROOT node to create a
well-formed UD-graph. The intepretation in our
example contains a graph literal, describing the

graph r<root>
nsubj−−−→ d1<dep1>. This graph

is first merged with the graph corresponding to
the first argument, then the result is merged with
the graph obtained by renaming the root source of
the second argument’s graph to dep. r dep and
f dep are Alto’s shorthands for renaming the
root source to dep and forgetting the dep source.
Terminal rules create string and UD literals. This
toy grammar is therefore a representation of the
parallel derivations of the sentence John sleeps

and the UD graph sleeps
nsubj−−−→ John. The next

section will describe our method for building such
grammars automatically from UD datasets and us-
ing them for the word order restoration step of the
Surface Realization task.

3 Rule induction

As seen already in the example IRTG in the previ-
ous section, we represent the correspondence be-
tween strings and UD graphs as synchronized gen-
erations in two algebras. Since our goal is to learn
rules of such a grammar using UD datasets con-
taining sentences and corresponding UD graphs,
we need a method to assign derivations to UD
graphs in the s-graph algebra, i.e. a series of steps
that build the UD graph from its nodes, through
subgraphs. We choose to represent the construc-

https://github.com/coli-saar/alto
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John loves Mary ’s cat

ROOT

NSUBJ

DOBJ

POSS

CASE

Figure 2: Sample UD analysis

S! -> start_VERB(VERB)
PROPN -> rule_1(PROPN,PART)
NOUN -> rule_2(NOUN,PROPN)
VERB -> rule_3(VERB,PROPN,NOUN)

Figure 3: sample RTG rules (interpretations omitted)

tion of UD graphs as follows: for each node in the
graph we establish one generation step, which is
responsible for attaching all its dependents to it.
The UD graph depicted in Figure 2 would hence
correspond to the RTG rules in Figure 3 (interpre-
tations are omitted for better readability). Note
that we create rules that operate at the part-of-
speech level, lemmas can then be inserted by ter-
minal rules generated separately for each sentence.

The simplest approach to constructing a
(weighted) IRTG would be to simply include all
rules “observed” in the training data, along with a
probablity calculated from the relative frequency
of a given configuration among all occurences of
a head of a particular POS-tag. In practice we
prune this grammar to include only those rules
that are applicable to a given sentence and that are
compatible with the value of the lin feature (see
below), and parse each UD graph using a much
smaller grammar. We may also add new rules to
the pruned grammar to ensure a successful pars-
ing process (that may or may not yield the correct
results).

After generating a static list of IRTG rules from
the training data, we dynamically generate a re-
duced IRTG grammar for each sentence. In a pre-
processing step we read all UD graphs that are to
be parsed, and for each node and its set of de-
pendents we check if there’s a rule in our gram-
mar covering this subgraph. If there’s more than
one matching rule, we check if the lin feature
is present in the input, which allows us to iden-
tify the single matching rule. If we identify a
unique rule matching the subgraph, we add one
to its frequency to increase the rule’s probability.
In other words, sufficiently specific patterns of the

test data are used as additional training data. If no
rules matching a subgraph are present in our static
grammar, we add binary rules for each dependent,
some of which rules may already be present in the
grammar, in which case we increase their frequen-
cies. This ensures that the grammar will cover the
new subgraph but will prefer to build it from sub-
graphs we have already seen in the training data. If
the lin feature is not present in the input, we add
two rules per dependent, corresponding to each
possible word order.

When parsing individual UD graphs, we prune
the grammar by deleting all rules that generate
POS tags that are not present in the graph (or gen-
erate more instances of a POS tag than the tag’s
total frequency in the graph). We further delete
all rules that contradict any lin features present
in the input (only the +/− sign of feature val-
ues is considered). This step must be skipped if
it would mean deleting both of a pair of rules,
e.g. because a word has punctuation both before
and after it. We can then use this pruned gram-
mar to obtain the most probable parse of the UD-
graph and the corresponding string interpretation.
The average parsing time of alto is around 2
seconds per sentence. In a few cases, sentence
length would slow down parsing considerably; for
all graphs that would take more than one minute to
parse (less than 1.5% of the data) we fall back to a
grammar that uses binary rules only, i.e. connects
all edges of the graph one-by-one.

We illustrate the kind of decisions the parser
must make through a simple example. Consider
the sentence in Figure 4. Our system correctly pre-
dicted the word order based on the UD graph, the
top parse involves attaching all dependencies of
the predicate enjoy using the two rules in Figure 5
(s-graph interpretations are omitted for readabil-
ity). The second most probable derivation applies
the three rules in Figure 6 and would yield the in-
correct surface realization I enjoyed really reading
it.

PRP RB VBD VBG PRP .
I really enjoyed reading it .

ROOT

ADVMOD

NSUBJ

XCOMP OBJ

PUNCT

Figure 4: Example from the UD dataset
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VBD -> rule_22276(VBD,PRP,RB,VBG,PERIOD) [8.14e-06]
[string] *(*(*(?2,?3),*(?1,?4)),?5)

VBG -> rule_615(VBG,PRP) [4.88e-05]
[string] *(?1,?2)

Figure 5: Most likely parse of the graph in Fig. 4

VBD -> rule_2004(VBD,PRP,VBG,PERIOD) [1.62e-05]
[string] *(*(?2,?1),*(?3,?4))

VBD -> rule_2698(VBD,RB) [1.22e-05]
[string] *(?1,?2)

VBG -> rule_615(VBG,PRP) [4.88e-05]
[string] *(?1,?2)

Figure 6: Second most likely parse

These parses illustrate a more general phe-
nomenon: since the probabilities of individual
rules are roughly similar, the system prefers
derivations with fewer rules, which attach more
nodes at the same time. Counterexamples with
radically different rule probabilities are in prin-
ciple possible, but on average the system prefers
specific (more detailed) rules over generic (less
detailed) ones, which makes the Elsewhere Prin-
ciple (Kiparsky, 1973) an emergent, rather than an
externally enforced, property of the grammar as a
whole.

4 Reinflection

In order to map sequences of lemmas to surface
forms, we train a standard seq2seq (Sutskever
et al., 2014) system with a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) encoder and
an LSTM decoder with Luong’s attention (Luong
et al., 2015). We include all CoNLL-U fields in the
input, namely the lemma, the UPOS, the XPOS
and the list of morphological tags. We also exper-
imented with adding the position of the token in
the sentence (original_id=N) during training
time. For inference, we use the order generated by
the IRTG component. This improves the perfor-
mance in most, but not all languages (see Table 1).
Figure 7 shows an English example of our input
and output format.

We split the sentences from the train data into
80% train and 20% development sets for the
inflection module. A full-scale hyperparame-
ter search being prohibitively expensive, we only
tried a few hyperparameter combinations and use
the ones performing best on the dev set for the fi-
nal submission. Table 1 lists the best configuration

Input: <L> f a m i l y </L> <P> UPOS=
↪→ NOUN XPOS=NNS </P> <T> Number=
↪→ Plur original_id=2 </T>

Output: f a m i l i e s

Figure 7: Example input and output of the inflection
component.

and the word accuracy on the dev set by language.
We use the Adam optimizer (lr = 0.001, β1 =
0.9, β2 = 0.999) with early stopping based on
dev accuracy and loss. Dropout is set to 0.4. In-
cluding the position of a token in the sentence
(use position) is also a hyperparameter.

5 Evaluation

5.1 The Surface Realization Task

We participate in the ‘shallow’ track of the 2019
Surface Realization Shared Task (SR’19). The
task involves mapping UD graphs of lemmas to
surface forms in 11 languages. Training data for
the task was created from the Universal Depen-
dencies treebanks (Nivre et al., 2018) using meth-
ods described in (Mille et al., 2018) and contains
UD treebanks with word forms replaced by lem-
mas word order information removed via scram-
bling. Two additional features have been added
to the dataset, the lin feature encoding the rel-
ative order of a word and its governor and the
originalId for reconstructing word order (in
the training data only).

5.2 Results

The primary method of evaluation at SR’19 is hu-
man evaluation of two aspects of each output sen-
tence: readability and semantic similarity to the
original sentence. The detailed results are pre-
sented in (Mille et al., 2019). On 4 of the 5 datasets
involved in the human evaluation scheme, our sys-
tem was outperformed significantly by only two
other systems in terms of readability. In terms of
semantic similarity we are outperformed by only
1 or 2 systems on three of the five datasets. Auto-
matic evaluation was performed using three met-
rics, described also in (Mille et al., 2019). Ta-
ble 2 presents macro-average values for the top
four teams, those that submitted outputs for all
datasets. Our system ranks second among these
four teams on two out of three metrics. On indi-
vidual datasets, our system mostly performs below
or around the average of all systems, with the ex-
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use position batch size hidden size layers embedding size dev acc

ar True 128 512 2 100 93.68
en True 128 512 2 100 96.09
es True 128 512 2 100 98.70
fr True 128 512 2 100 94.59
hi True 128 512 2 100 98.26
id True 256 128 1 100 93.77
ja False 32 1024 2 100 91.61
ko True 128 512 2 100 98.43
pt True 128 512 2 100 91.43
ru True 128 512 2 100 97.46
zh False 32 128 1 100 98.81

Table 1: Highest performing configurations for each language. Dev acc refers to a randomly selected subsection
of the train data as the dev sets did not have gold standard inflection.

BLEU NIST DIST

IMS 79.97 12.79 81.62
BME-UW 50.04 11.39 56.11

LORIA 47.67 10.32 65.78
Tilburg 45.18 10.05 56.11

Table 2: Macro-average of the top four systems across
all datasets

ception of one Russian and two Korean datasets
where we are outperformed by only one system
(IMS).

6 Conclusions, further work

The weighting scheme described in Section 3 is
in many ways similar to the way psycholinguists
think about grammatical rules. Those rules that
are based on fewer examples are used more rarely.
In the limiting case, singleton examples are rarely
abstracted into rules, they are memorized as is,
and the key mechanism for such examples to
override the general rules, e.g. that mice over-
rides *mouses, is the same Elsewhere Principle
(Giegerich, 2001) that we see as a derived, emer-
gent property of the system.

Perhaps one modification that would bring the
system even closer to psychological reality would
be to use morphological features when restoring
the id-s. While this remains future work, we con-
sider it a strong point in favor of XAI that such
questions can be raised: explainability makes it
possible to leverage decades of psycholinguistic
work, currently almost entirely ignored in the deep

neural net paradigm which, in its laboratory pure
form, pays no attention to biological or psycholog-
ical evidence.
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