Enhancing BERT for Lexical Normalization

Benjamin Muller

Benoit Sagot

Djamé Seddah

Inria
firstname.lastname@inria.fr

Abstract

Language model-based pre-trained representa-
tions have become ubiquitous in natural lan-
guage processing. They have been shown to
significantly improve the performance of neu-
ral models on a great variety of tasks. How-
ever, it remains unclear how useful those gen-
eral models can be in handling non-canonical
text. In this article, focusing on User Gener-
ated Content (UGC) in a resource-scarce sce-
nario, we study the ability of BERT (Devlin
et al., 2018) to perform lexical normalisation.
Our contribution is simple: by framing lexical
normalisation as a token prediction task, by en-
hancing its architecture and by carefully fine-
tuning it, we show that BERT can be a compet-
itive lexical normalisation model without the
need of any UGC resources aside from 3,000
training sentences. To the best of our knowl-
edge, it is the first work done in adapting and
analysing the ability of this model to handle
noisy UGC data.

1 Introduction

Pre-trained contextual language models
(e.g. ELMo, Peters et al.,, 2018; BERT, De-
vlin et al., 2018) have improved the performance
of a large number of state-of-the-art models on
many Natural Language Processing (NLP) tasks.
In this article, we focus on BERT (Bidirectional
Encoder Representations from Transformers), the
contextual language modelling architecture that
recently had the greatest impact.

A major specificity of BERT is that it is trained
to jointly predict randomly masked tokens as well
as the consecutiveness of two sentences. Moreover,
it takes as input WordPieces tokens which consists
in frequent sub-word units (Schuster and Nakajima,
2012). Finally, available pre-trained models have

'The code is available in the following repository
https://gitlab.inria.fr/bemuller/bert_nomalizer

297

been trained on the concatenation of the Wikipedia
corpus and the BookCorpus, which constitutes
a large corpus of canonical (i.e. proper, edited)
language.

Putting aside the efficiency of its transformer-
based architecture, these three aspects respectively
enable BERT to elegantly cope with out-of-
vocabulary words and to include contextual
information at the token and at the sentence levels,
while fully taking advantage of a training corpus
containing billions of words.

Without listing all of them, BERT successfully
improved the state-of-the-art for a number
of tasks such as Name-Entity Recognition,
Question Answering (Devlin et al., 2018) and
Machine Translation (Lample and Conneau, 2019).
Moreover, it has recently been shown to capture
a rich set of syntactic information (Hewitt and
Manning, 2019; Jawahar et al., 2019), without the
added complexity of more complex syntax-based
language models.

However, it remains unclear and, to the best of
our knowledge, unexplored, how well can BERT
be used in handling non-canonical text such as
User-Generated Content (UGC), especially in a
low resource scenario. This question is the focus
of this paper.

As described in (Foster, 2010; Seddah et al.,
2012; Eisenstein, 2013; Baldwin et al., 2013),
UGC is often characterized by the extensive use
of abbreviations, slang, internet jargon, emojis,
embedded metadata (such as hashtags, URLs
or at mentions), and non standard syntactic
constructions and spelling errors.

This type of non-canonical text, which we
characterize as noisy, negatively impacts NLP
models performances on many tasks as shown
in (van der Goot et al., 2017; van der Goot
and van Noord, 2018; Moon et al., 2018;
Michel and Neubig, 2018) on respectively Part-of-

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 297-306
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics

Speech Tagging, Syntactic Parsing, Name-Entity
Recognition and Machine Translation.

In this context and as impactful as BERT was
shown to be, its ability to handle noisy inputs is still
an open question’. Indeed, as highlighted above, it
was trained on highly edited texts, as expected from
Wikipedia and BookCorpus sources, which differ
from UGC at many levels of linguistic descriptions,
and which, of course, exhibit an important domain
gap.

Based on those observations, we take lexical
normalisation of UGC as a case study of how
BERT can model noisy inputs. Briefly, lexical
normalisation is the task of translating non-
canonical words into canonical ones. It involves
a detection step in assessing if a word is already
canonical or not, followed by a normalisation step.
All the experiments presented in this paper are
carried out on the dataset released by Baldwin et al.
(2015), which is the only non-raw resource we use.
This is because our goal is to study how well BERT
handles noisy UGC by itself, which means that,
unlike most previous work (e.g. van der Goot and
van Noord, 2017), we cannot make use of external
UGC-specific resources such as word embeddings
and language models trained on UGC or dedicated
lexicons.

Yet, building a lexical normalization model in
such a setting is a challenging endeavor. As we
will present, blindly fine-tuning BERT on such as
task is not possible. It requires architectural and
optimization adaptations that constitute the core of
our contribution.

In summary, we show that BERT can be adapted
to perform lexical normalisation in a low resource
setting without external data covering the source
UGC domain, aside from 2950 aligned training
examples that include only 3928 noisy words. In
this purpose, we make three contributions:

e We design a WordPiece tokenizer that
enforces alignment between canonical and
noisy tokens.

e We enhance the BERT architecture so that the
model is able to add extra tokens or remove
them when normalisation requires it.

e We fine-tune the overall architecture with a
novel noise-specific strategy.

>The importance of this research question is further
confirmed by the very recent pre-publication of the work by
(Gopalakrishnan et al., 2018) who study how BERT is affected
by synthetic noise

298

In a few words, our paper is the first attempt to
successfully design a domain transfer model based
on BERT in a low resource setting.

2 Related Work

There is an extensive literature on normalizing text
from UGC.

The first systematic attempt was Han and
Baldwin (2011). They released 549 tweets with
their normalized word-aligned counterparts and the
first result for a normalization system on tweets.
Their model was a Support-Vector-Machine for
detecting noisy words. Then a lookup and n-
gram based system would pick the best candidate
among the closest ones in terms of edit and
phonetic distances. Following this work, the
literature explored different modelling framework
to tackle the task, whether it is Statistical Machine
Translation (Li and Liu, 2012), purely unsupervised
approach (Yang and Eisenstein, 2013), or syllables
level model (Xu et al., 2015).

In 2015, on the occasion of the Workshop on
Noisy User-Generated Text, a shared task on lexical
normalization of English tweets was organized
(Baldwin et al., 2015) for which a collection of
annotated tweets for training and evaluation was
released. We will refer it as the lexnorm15 dataset.
A wide range of approaches competed. The best
approach (Supranovich and Patsepnia, 2015) used
a UGC feature-based CRF model for detection and
normalization.

In 2016, the MoNoise model (van der Goot and
van Noord, 2017) significantly improved the State-
of-the-art with a feature-based Random Forest. The
model ranks candidates provided by modules such
as a spelling checker (aspell), a n-gram based
language model and word embeddings trained on
millions of tweets.

In summary, two aspects of the past literature
on UGC normalization are striking. First, all the
past work is based on UGC-specific resources such
as lexicons or large UGC corpora. Second, most
successful models are modular in the sense that
they combine several independent modules that
capture different aspects of the problem.

3 Lexical Normalisation

3.1 Task

Lexical normalisation is the task of translating non
canonical words into canonical ones.. We illustrate
it with the following example (Table 1). Given a

noisy source sentence, our goal is to predict the
gold canonical sentence.

Noisy yea... @beautifulloser8 im abt to
type it uuup !!

Gold yeah... @beautifulloser8 i’m about
to type it up !

Table 1: Noisy UGC example and its canonical form
(Gold)

We make a few comments on this definition.
First, lexical normalisation assumes a certain
degree of word level alignment between the non-
canonical source text and the canonical one.

Second, language evolves. It varies across
domain, communities and time, specifically online
(Jurafsky, 2018). There is therefore no universal
definition of what is a canonical form and what is
not. In the context of NLP, this means that we have
to set conventions and define what we consider
as canonical. In our case, the task is made less
complicated as we are tied to the conventions set
by our training data set.

Finally, to grasp the complexity of such a task,
we list and illustrate non exhaustively the sort of
linguistic phenomenons that lexical normalisation
of UGC involves. Lexical normalisation involves
handling the following cases :

e spelling errors : makeing in making

e internet Slang : Imfao in laughing my f.cking
ass off >

e contraction : /il for little

e abbreviation : 2nite for tonight

e phonetics : dat for that

It also involves detecting that the following should
be untouched : :), @KhalilBrown, #Beyonce, rt

3.2 Data

We base all our experiments on the WNUT data
released by Baldwin et al. (2015). This dataset
includes 2950 noisy tweets for training and 1967
for test. Out of the 44,385 training tokens, 3,928
require normalisation leading to an unbalanced data
set. Among those 3,928 noisy tokens, 1043 are 1-
to-N (i.e. single noisy words that are normalized as
several words) and 10 are N-to-1 cases (i.e. several
noisy words that are normalized as single canonical
words).

3Normalisation found in the lexnorm 2015 dataset

As highlighted before, our framework is
more challenging than the standard approach to
normalisation, illustrated by the 2015 shared task,
that usually authorizes external UGC resources.
As our goal is to test the ability of BERT, a
model trained on canonical data only, we restrain
ourselves to only using the training data as
examples of normalisation and nothing more.

Our work is therefore to build a domain transfer
model in a low resource setting.

4 Normalisation with BERT

4.1 BERT

We start by presenting the components of BERT
that are relevant for our normalisation model. All
our work is done on the released base version.

4.1.1 WordPiece Tokenization

BERT takes as input sub-word units in the form of
WordPiece tokens originally introduced in Schuster
and Nakajima (2012). The WordPiece vocabulary
is computed based on the observed frequency of
each sequence of characters of the corpus BERT is
pre-trained on: Wikipedia and the BookCorpus. It
results in a 30 thousand tokens vocabulary. We
will refer to the process of getting WordPiece
tokens from word tokens simply as fokenization
for brievety.

Reusing BERT, in any way, requires to use its
original WordPiece vocabulary. In the context of
handling non canonical data, this is of primary
importance. Indeed, frequent tokens in our
non canonical data set might not appear in the
vocabulary of BERT and therefore will have to
be split. For example, the word /ol appear more
than 222 times in the original lexnorm15 dataset
(more than the word like that appears 187 times).
Still, it is not in BERT-base WordPiece vocabulary.
For tokenization of WordPieces, we follow the
implementation found in the huggingface pytorch-
pretrained-BERT project *. It is implemented as a
greedy matching algorithm. We write it in pseudo-
code in Algorithm 1.

4.1.2 Masked Language Model

We now present one crucial aspect of BERT
architecture. It was trained jointly on two
objectives : On next sentence prediction on the
one hand. On the other hand, it was trained on

“https://github.com/huggingface/pytorch-pretrained-
BERT

299

Algorithm 1: Greedy WordPiece tokenization

Vocabulary = Bert WordPiece Vocabulary;
init start=0, string=word,
wordPieceList = list();
while string not empty do
substring:=string[start:]
while substring not empty do
if substring in Vocabulary then
wordPieceList :=
wordPieceList U [substring]
break loop
else
| substring := substring[:-1]
end
end
start := start + length(substring)

end

Result: wordPieceList

Note : Tokenizing words into wordpiece tokens, by
matching in an iterative way from left to right, the
longest sub-string belonging to the wordpiece
vocabulary

Masked Language Model (MLM). As we frame our
normalization task very closely to it, we describe
MILM briefly.

For each input sequence, 15% of the WordPiece
tokens are either replaced with the special token
[MASK] (80% of the time), replaced by a random
token (10% of the time) or untouched (10% of the
time). BERT is trained by predicting this portion
of token based on the surrounding context.

4.2 Fine-Tuning BERT for Normalisation

We now present the core of our contribution. How
to make BERT a competitive normalisation model?
In a nutshell, there are many ways to do lexical
normalisation. Neural models have established
the state-of-the-art in the related Grammatical
Error Correction task using the sequence to
sequence paradigm (Sutskever et al., 2014) at the
character level. Still, this framework requires a
large amount of parallel data. Our preliminary
experiments showed that this was unusable for
UGC normalisation. Even the use a powerful
pre-trained model such as BERT for initializing
an encoder-decoder requires the decoder to learn
an implicit mapping between noisy words and
canonical ones. This is not reachable with only
3000 sentences.

We therefore adapted BERT in a direct way for
normalisation. As described in section 4, BERT
Masked Language Model ability allows token
prediction. Simply feeding the model with noisy
tokens on the input and fine-tuning on canonical
token labels transforms BERT into a normalisation

model. There are two critical points in doing so
successfully. The first is that it requires WordPiece
alignment (cf. section 4.2.1). The second is that it
requires careful fine-tuning (cf. section 4.2.3).

4.2.1 Wordpiece Alignment

We have in a majority of cases, as described in
section 3.2, word level alignment between non
canonical and canonical text. Still, the dataset
also includes words that are not aligned. For 1-
to-N cases we simply remove the spaces. As we
work at the WordPiece level this does not bring any
issue. For N-to-1 cases (only 10 observations), by
considering the special token ”|” of the lexnorm15
dataset as any other token, we simply handle source
multi-words as a single one, and let the wordpiece
tokenization splitting them.

We frame normalization as a 1-to-1 WordPiece
token mapping. Based on the word level alignment,
we present two methods to get WordPiece
alignment : an Independent Alignment approach
and a Parallel Alignment one.

Independent Alignment

We tokenize noisy words and non noisy ones
independently (cf. algorithm 1). By doing so, for
each word we get non-aligned WordPiece tokens.
We handle it in three ways :

e If it is the same number of WordPiece tokens,
we keep the alignment as such

o If there are more tokens on the target side,
we append the special token [MASK] on the
source side. This means that at training time,
we force the model to predict a token.

e If there are more tokens on the source side,
we introduce a new special token [SPACE].

An alignment example extracted from
lexnorm15 can be found in table 2. Briefly, we
can point some intuitive pros and cons of such
an alignment method. On the one hand, applying
tokenization that was used in pre-training BERT
means that the sequence of tokens observed during
training should be modelled properly by BERT.
This should help normalisation. On the other-hand,
we understand that learning normalisation in this
way requires (as potentially many [MASK] will
be introduced) abstracting away from the raw
tokens in understanding the surrounding context.
This should make normalisation harder. We will
see in section 5 that despite its simplicity, such

300

noisy canonical
ye yeah
##a [SPACE]
im i

MASK|

MASK| m
already already
knowing knowing
wa what
#it [SPACE]

Table 2: Independent Alignment of yea im already
knowing wat u sayin normalized as yeah i’m already
knowing what you saying

an alignment allows our model to reach good
performances.
Parallel Alignment

We enhance this first approach with a parallel
alignment method, described in Algorithm 2.

Our goal is to minimize the number of [MASK]
and [SPACE] appended into the source and gold
sequences. Therefore, for each word, we start by
tokenizing in WordPieces the noisy source word.
For each WordPiece met, we start the tokenization
on the gold side, starting and ending from the
same character positions. As soon as we tokenized
the entire gold sub-string, we switch to the next
noisy sub-string and so on. By doing so, we
ensure a closer alignment at the WordPiece level.
We illustrate on the same example this enhanced
parallel alignment in Table 3.

We highlight two aspects of our alignment
techniques. First, introducing the special token
[SPACE] induces an architecture change in the
MLM head. We detail this in section 4.2.2-(A).
Second, appending the extra token [MASK] on the
source side based on the gold sequence induces a
discrepancy between training and testing. Indeed,
at test time, we do not have the information about
whether we need to add an extra token or not.
We describe in section 4.2.2-(B) how we extend
BERT’s architecture with the addition of an extra
classification module to handle this discrepancy.

4.2.2 Architecture Enhancements

(A) Enhancing BERT MLM with [SPACE]

In order to formalize lexical normalisation as a
token prediction we introduced in section 4.2.1 the
need for a new special token [SPACE]. We want
our normalisation model to predict it. We therefore
introduce a new label in our output WordPiece
vocabulary as well as a new vector in the last
softmax layer. We do so in a straightforward way

301

Algorithm 2: Parallel WordPiece tokenization

Vocabulary = Bert WordPiece Vocabulary;
Init start=0; string=canonical word;
string_noisy = noisy word; end_gold=0;
wordPListNoisy=list(); wordPieceListGold=list();
while string_noisy not empty do
string_noisy:=string_noisy[start:]
substr_noisy:=string_noisy
while substr_noisy not empty do
breaking:=False
if substr_noisy in Vocabulary then
wordPListNoisy :=
wordPListNoisyU[substr_noisy]
if start equals length string_noisy then
| end_gold:=length(string)
else
end_gold:=
start+length(substr_noisy)
end
while substr_gold not empty do
substr_gold:=
string[start:end_gold]
if substr_gold in Vocabulary then
wordPieceListGold:=
wordPieceListGold U
[substr_gold]
break loop
else
| end_gold :=end_gold -1
end

end
else
| substr_noisy:=substr_noisy[:-1]
end
if breaking then
| break loop
end

end
start := start + length(substr_noisy)

end
Result: wordPListNoisy

Note : Tokenizing noisy tokens and canonical tokens
in wordpieces in parrallel to minimize the number of
appended [MASK] and [SPACE]

by appending to the output matrix a vector sampled
from a normal distribution®.
(B) #Next [MASK] predictor
As we have described, alignment requires in some
cases the introduction of [MASK] tokens within the
source sequence based on the gold sequence. We
handle the discrepancy introduced between training
and testing in the following way. We add an extra
token classification module to BERT architecture.
This module takes as input BERT last hidden state
of each WordPiece tokens and predict the number
of [MASK] to append next
In table 4, we illustrate the training signal of
each dimension vg ~ N(mean;(zq), o7 (xq)) (i
indexing the WordPiece vocabulary and d the dense dimension

of BERT output layer), mean; (resp. o2) means mean (resp.
variance) along i dimension

Noisy Canonical
ye ye
##a ##ah
im i

MASK| ~

MASK m
already already
knowing knowing
wa wh
#it #itat

Table 3: Parallel Alignment of yea im already knowing
wat u sayin normalized as yeah i’m already knowing
what you saying

Noisy Gold #next mask
ye ye 0
##a ##ah 0
im i 2
MASK| -
MASK| m -
already already 0
knowing knowing 0
wa wh 0
#Ht #Htat 0

Table 4: Parallel Alignment of yea im already knowing
wat u sayin normalized as yeah i’'m already knowing
what you saying with gold number of next masks for
each source token

the overall architecture. It takes noisy WordPiece
tokens as input. As gold labels, it takes on the one
side the gold WordPiece tokens and on the other
side the number of [MASK] to append next to each
source WordPiece tokens.

At test time, we first predict the number of next
masks to introduce in the noisy sequence. We then
predict normalized tokens using the full sequence.

This #next mask prediction module exceeds
the context of normalisation. Indeed, it
provides a straightforward way of performing
data augmentation on any Masked Language
Model architecture. We leave to future work
the investigation of its impact beyond lexical
normalisation.

4.2.3 Fine-Tuning

We describe here how we fine-tune our architecture
for normalisation. Our goal is to learn lexical
normalisation in a general manner. To do so,
intuitively, our model needs to: on the one hand,
preserve its language model ability that will allow
generalization. On the other hand, the MLM needs
to adjust itself to learn alignment between noisy
tokens and canonical tokens.

Based on those intuitions, we performe fine-tuning
in the following way:

(i) Our first approach is to back-propagate on all
tokens at each iteration. We also dropout 10% of
input tokens by replacing them with the [MASK]
as done during BERT pre-training. In this setting,
all tokens are considered indifferently whether they
require normalisation or not .

(i1) The second approach that happens to perform
the best is our Noise-focus fine-tuning. The
intuition is that it should be much easier for the
model to learn to predict already normalized tokens
than the ones that require normalization. For this
reason, we design the following strategy: For a
specific portion of batches noted pyise We only
back-propagate through noisy tokens. We found
that having an increasing number of noise-specific
batch while training provides the best results.

Formally we describe our strategy as follows.
For each mini-batch, we sample b following

the distribution b ~ Bernoulli(pyeise), with

Proise = min (fggg’;h,o.5), epoch being the

current number of epoch and n_epoch the total
number of epochs.

If b equals 1 we back-propagate through
noisy tokens, otherwise we back-propagate in
the standard way on all the tokens. In other
words, while training, for an increasing portion
of batches, we train on tokens that require
normalization. We found that this dynamic strategy
was much more efficient than applying a static
Proise- Moreover, we highlight that the portion
of noise specific update is capped at 50% (0.5 in
the equation). Above this value, we observed that
the performances degraded in predicting non-noisy
tokens.

4.2.4 Optimization Details

Note that, excluding the fine-tuning strategy and
the alignment algorithm, the optimization hyper-
parameters are shared to all the experiments we
present next. Generally speaking, we found that
optimizing BERT for lexical normalisation with
WordPiece alignment is extremely sensitive to
hyper-parameters. We managed to reach values
that work in all our following experiments. For the
optimization, we use the Adam algorithm (Kingma
and Ba, 2014). We found that le-5 provides the
most stable and consistent convergence across all
experiments as evaluated on validation set. We
found that a mini-batch of dimension 4 brings

302

the best performance also across all experiments.
Finally, we kept a dropout value of 0.1 within the
entire BERT model. We train the model for up to
10 epochs and used performance as measured with
the F1-score (detailed in the next section) on the
validation set as our early-stopping metric.

5 Experiments

All our experiments are run on the lexnorm15
dataset. We do not use any other resources making
our problem falling under a low resource domain
transfer framework. As only pre-processing, we
lower-case all tokens whether they are on the noisy
source side or on the canonical side.

We first present our analysis on the validation
set that corresponds to the last 450 sentences of the
original training set of lexnorm15.

We define the three evaluation metrics on
which we make our analysis. We distinguish
between need_norm words, words that require to be
normalized and need_no_norm words that have to
be “copied” by the model. We refer the words
normalized by our model (i.e our model gave
a prediction different from the source word) as
pred_need_norm. We refer to the number of True
Prediction of need_norm words as TP. We then
define recall and precision as:

I TP
recall = ———
#need_norm
. TP
precision =

#pred_need_norm

Following previous works, we will focus on
the F1 score as our main evaluation metric. F1
is simply the harmonic mean of the recall and
precision. For more fine grained analysis we also
report the recall on sub-sample of the evaluated
dataset. Particularly, we distinguish between Out-
of-Vocabulary (OOV) and In-Vocabulary words
(InV) and report the recall on those subsets. We
define it formally as:

TP N sample
#need_norm N sample

recall_sample =

5.1 Alignment algorithm

Does enforcing alignment in a greedy way as
described in Algorithm 2 help normalisation ?

As we compare in figure 1, our parallel
alignment method provides a +0.5 F1 improvement

303

90.0
mmm independant alignement
87.5 4 WM parrallel alignement

85.0 1
82.5 1
80.0 1
77.54

75.0 1

72.54

70.0 4
F1 recall-Inv

metric

recall-O0OV

Figure 1: Impact of noisy/canonical alignment
method with a focus on generalization by comparing
Out-of-Vocabulary (OOV) and In-Vocabulary (InV)
performance (development set)

Standard
78.1 79.28

Gain

+1.18

Noise-focused

Table 5: Impact of our noise-specific strategy on the F1
score (development set) reported with best alignment
setting

(78.1 vs 77.6 Fl). We also compare the
performance of our two models on OOV and InV
words. Indeed, normalising a seen word is much
easier than a word unseen during training. As we
observe, the gain coming from our our alignment
technique come from a better generalization. We
gain +0.6 in recall on OOV thanks to this parallel
alignment.

5.2 Fine-Tuning Strategy

As observed in table 5, our fine-tuning strategy
focused on noisy tokens improves with a large
margin the performance of our system. We
interpret it in the following way: lexical
normalisation is imbalanced. As seen in 3.2
there are around 9 times more need_no_norm than
need_norm tokens. By specifically training on
noisy tokens we successfully manage to alleviate
this aspect of the data.

In conclusion, our best model is BERT trained
on parallel tokenized data with the noise-focus fine-
tuning strategy. We reach 79.28 in F1 score. The
following table illustrates how our model performs
normalization on a typical example:

Noisy @aijaee i hear you u knw betta to cross mine
tho
Norm @aijaee i hear you you know better to cross

mine though

Model Accuracy
BERT noise-focused 97.5
MoNoise 97.6

Table 6: Comparing our systems to the State-of-the-
art system MoNoise (we report on same development
dataset reported in MoNoise original paper (last 950
sentences))

Model F1
Supranovich and Patsepnia, 2015 82.72
Berend and Tasnadi, 2015 80.52
our best model 79.28
Beckley, 2015 75.71
GIGO 72.64

Ruiz et al., 2014 53.1

Table 7: Comparing our systems to WNUT 2015
shared task that allowed UGC resources

6 Discussion

We now compare our system to previous works.

As we see in Table 8, our non-UGC system is far
from the State-of-the-Art model MoNoise (van der
Goot and van Noord, 2017) in terms of F1 score. In
order to take into account detection in our metric,
we also report the overall accuracy of the system in
table 6. We are therefore 6.7 points below in terms
of F1 score and 0.2 point below in terms of overall
accuracy on lexnorm15 dataset.

However, we emphasize that MoNoise is a
feature-based Random Forest based on external
modules. Among others, it makes use of a skip-
gram model trained on 5 millions tweets, the Aspell
tool and a n-gram model trained on more than 700
millions tweets.

In order to have a more balanced comparison,
we compare our system to the MoNoise model
after removing the feature that has the most impact,
according to the original paper: the n-gram module
(referred as MoNoise no n-gram). In this setting,
we significantly outperform the MoNoise model
(+1.78 improvement) (Table 8).

Moreover, we based all our work on the
lexnorm15 dataset released for the W-NUT 2015
shared task (Baldwin et al., 2015). We compare
our model to the competing systems (cf. table
7). Briefly, the second best model (Berend and
Tasnadi, 2015) use a n-gram model trained on a
English tweet corpus. The best competing system
(Supranovich and Patsepnia, 2015) is based on a
lexicon extracted from tweets. Still, we see that
our model is able to outperform models ranked 3,

Model F1 UGC resources speed
MoNoise 86.39 lex15+700Mtweets 57s
our best model 79.28 lexnorm15 9.5s

MoNoise NNG 717.5 lex15+5Mtweets -

Table 8: Comparing our systems to the State-of-the-art
system MoNoise on lexnorm15 test. Speed is reported
as time to predict 1000 tokens (includes model loading).
MoNoise No-Ngrams or MoNoise NNG is the score
reported in the original paper without the use of UGC-
n-grams but with a UGC word2vec

4 and 5 that are all built using UGC resources.

Finally, the state-of-the-art models we presented
are modular. They require features from external
modules. This makes them extremely slow at test
time. We compare it in Table 8, demonstrating
another practical interest for our approach. Our
model is 6 times faster than MoNoise at prediction
time.

Following those observations, we claim that
BERT, enhanced to handle token introduction and
token removal, fine-tuned in a precise way toward
noisy words, is a competitive lexical normalisation
model.

This result exceeds the context of lexical
normalization of noisy User Generated Content.
Indeed, the success of BERT in improving NLP
models on a diversity of tasks was, until now,
restricted to canonical edited texts. In our work,
we showed that it was possible to adapt such a
general model to the extreme case of normalising
noisy UGC in a low resource setting. We let for
future work the adaptation of BERT to other tasks
in out-of-domain non canonical context.

7 Conclusion

General pre-trained language model have demon-
strated their ability to improve Natural Language
Processing systems for most tasks on canonical
data. In our work, we demonstrated that they can
also be useful in non-canonical noisy text in low re-
source setting. We hope that this work will pave the
way for future research in modelling non-canonical
textual data.

Acknowledgments

We thank the reviewers for their valuable feedbacks.
This work was funded by the ANR projects ParSiTi
(ANR-16-CE33-0021), SoSweet (ANR15-CE38-
0011-01) and the French-Israeli PHC Maimonide
program.

304

References

Timothy Baldwin, Paul Cook, Marco Lui, Andrew
MacKinlay, and Li Wang. 2013. How noisy
social media text, how diffrnt social media sources?
In Proceedings of the Sixth International Joint
Conference on Natural Language Processing, pages
356-364.

Timothy Baldwin, Marie-Catherine de Marneffe,
Bo Han, Young-Bum Kim, Alan Ritter, and Wei Xu.
2015. Shared tasks of the 2015 workshop on noisy
user-generated text: Twitter lexical normalization
and named entity recognition. In Proceedings of the
Workshop on Noisy User-generated Text, pages 126—
135.

Russell Beckley. 2015. Bekli: A simple approach to
twitter text normalization. In Proceedings of the
Workshop on Noisy User-generated Text, pages 82—
86.

Gébor Berend and Ervin Tasnddi. 2015. Uszeged:
correction type-sensitive normalization of english
tweets using efficiently indexed n-gram statistics.
In Proceedings of the Workshop on Noisy User-
generated Text, pages 120-125.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training
of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In HLT-NAACL, Atlanta, USA.

Jennifer Foster. 2010. “cba to check the spelling”:
Investigating parser performance on discussion
forum posts. In NAACL, Los Angeles, California.

Rob van der Goot and Gertjan van Noord. 2017.
Monoise: modeling noise using a modular normal-
ization system. arXiv preprint arXiv:1710.03476.

Rob van der Goot and Gertjan van Noord. 2018.
Modeling input uncertainty in neural network
dependency parsing. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4984—4991.

Rob van der Goot, Barbara Plank, and Malvina Nissim.
2017. To normalize, or not to normalize: The impact
of normalization on part-of-speech tagging. arXiv
preprint arXiv:1707.05116.

Soorya Gopalakrishnan, Zhinus Marzi, Upamanyu
Madhow, and Ramtin Pedarsani. 2018. Combating
adversarial attacks using sparse representations.

Bo Han and Timothy Baldwin. 2011. Lexical
normalisation of short text messages: Makn sens
a# twitter. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 368-378. Association for Computational
Linguistics.

305

John Hewitt and Christopher D. Manning. 2019.
A Structural Probe for Finding Syntax in Word
Representations. In Proceedings of the 2019
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies. Association for
Computational Linguistics.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In in proc. of the 57th Annual Meeting
of the Association for Computational Linguistics
(ACL), Florence, Italy.

Dan Jurafsky. 2018. Speech & language processing,
3rd edition. Currently in draft.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Chen Li and Yang Liu. 2012. Improving text
normalization using character-blocks based models
and system combination. Proceedings of COLING
2012, pages 1587-1602.

Paul Michel and Graham Neubig. 2018. Mtnt: A
testbed for machine translation of noisy text. arXiv
preprint arXiv:1809.00388.

Seungwhan Moon, Leonardo Neves, and Vitor
Carvalho. 2018. Multimodal named entity
recognition for short social media posts. arXiv
preprint arXiv:1802.07862.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365.

Pablo Ruiz, Montse Cuadros, and Thierry Etchegoyhen.
2014. Lexical normalization of spanish tweets
with rule-based components and language models.
Procesamiento del Lenguaje Natural, page 8.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5149-5152.
IEEE.

Djamé Seddah, Benoit Sagot, Marie Candito, Virginie
Mouilleron, and Vanessa Combet. 2012. The French
Social Media Bank: a Treebank of Noisy User
Generated Content. In CoLing, Mumbai, India.

Dmitry Supranovich and Viachaslau Patsepnia. 2015.
Ihs_rd: Lexical normalization for english tweets.
In Proceedings of the Workshop on Noisy User-
generated Text, pages 78-81.

https://openreview.net/forum?id=S10qYwywf
https://openreview.net/forum?id=S10qYwywf
https://nlp.stanford.edu/pubs/hewitt2019structural.pdf
https://nlp.stanford.edu/pubs/hewitt2019structural.pdf
https://web.stanford.edu/~jurafsky/slp3/

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing
systems, pages 3104-3112.

Ke Xu, Yunqing Xia, and Chin-Hui Lee. 2015. Tweet
normalization with syllables. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), volume 1, pages 920-928.

Yi Yang and Jacob Eisenstein. 2013. A log-linear
model for unsupervised text normalization. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 61—
72.

306

