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Abstract
Accurate estimation of user location is impor-
tant for many online services. Previous neural
network based methods largely ignore the hi-
erarchical structure among locations. In this
paper, we propose a hierarchical location pre-
diction neural network for Twitter user ge-
olocation. Our model first predicts the home
country for a user, then uses the country re-
sult to guide the city-level prediction. In ad-
dition, we employ a character-aware word em-
bedding layer to overcome the noisy informa-
tion in tweets. With the feature fusion layer,
our model can accommodate various feature
combinations and achieves state-of-the-art re-
sults over three commonly used benchmarks
under different feature settings. It not only im-
proves the prediction accuracy but also greatly
reduces the mean error distance.

1 Introduction

Accurate estimation of user location is an impor-
tant factor for many online services, such as rec-
ommendation systems (Quercia et al., 2010), event
detection (Sakaki et al., 2010), and disaster man-
agement (Carley et al., 2016). Though internet ser-
vice providers can directly obtain users’ location
information from some explicit metadata like IP
address and GPS signal, such private information
is not available for third-party contributors. With
this motivation, researchers have developed loca-
tion prediction systems for various platforms, such
as Wikipedia (Overell, 2009), Facebook (Back-
strom et al., 2010), and Twitter (Han et al., 2012).

In the case of Twitter, due to the sparsity of
geotagged tweets (Graham et al., 2014) and the
unreliability of user self-declared home location
in profile (Hecht et al., 2011), there is a growing
body of research trying to determine users’ loca-
tions automatically. Various methods have been
proposed for this purpose. They can be roughly di-
vided into three categories. The first type consists

of tweet text-based methods, where the word dis-
tribution is used to estimate geolocations of users
(Roller et al., 2012; Wing and Baldridge, 2011).
In the second type, methods combining metadata
features such as time zone and profile descrip-
tion are developed to improve performance (Han
et al., 2013). Network-based methods form the last
type. Several studies have shown that incorporat-
ing friends’ information is very useful for this task
(Miura et al., 2017; Ebrahimi et al., 2018). Em-
pirically, models enhanced with network informa-
tion work better than the other two types, but they
do not scale well to larger datasets (Rahimi et al.,
2015a).

In recent years, neural network based prediction
methods have shown great success on this Twit-
ter user geolocation prediction task (Rahimi et al.,
2017; Miura et al., 2017). However, these neu-
ral network based methods largely ignore the hi-
erarchical structure among locations (eg. coun-
try versus city), which have been shown to be
very useful in previous study (Mahmud et al.,
2012; Wing and Baldridge, 2014). In recent work,
Huang and Carley (2017) also demonstrate that
country-level location prediction is much easier
than city-level location prediction. It is natural to
ask whether we can incorporate the hierarchical
structure among locations into a neural network
and use the coarse-grained location prediction to
guide the fine-grained prediction. Besides, most of
these previous work uses word-level embeddings
to represent text, which may not be sufficient for
noisy text from social media.

In this paper, we present a hierarchical location
prediction neural network (HLPNN) for user ge-
olocation on Twitter. Our model combines text
features, metadata features (personal description,
profile location, name, user language, time zone),
and network features together. It uses a character-
aware word embedding layer to deal with the noisy
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text and capture out-of-vocabulary words. With
transformer encoders, our model learns the cor-
relation between different feature fields and out-
puts two classification representations for country-
level and city-level predictions respectively. It first
computes the country-level prediction, which is
further used to guide the city-level prediction. Our
model is flexible in accommodating different fea-
ture combinations, and it achieves state-of-the-art
results under various feature settings.

2 Related Work

Because of insufficient geotagged data (Graham
et al., 2014; Huang and Carley, 2019), there is a
growing interest in predicting Twitter users’ lo-
cations. Though there are some potential privacy
concerns, user geolocation is a key factor for many
important applications such as earthquake detec-
tion (Earle et al., 2012), and disaster management
(Carley et al., 2016), health management (Huang
and Carley, 2018).

Early work tried to identify users’ locations by
mapping their IP addresses to physical locations
(Buyukokkten et al., 1999). However, such private
information is only accessible to internet service
providers. There is no easy way for a third-party
to find Twitter users’ IP addresses. Later, various
text-based location prediction systems were pro-
posed. Bilhaut et al. (2003) utilize a geographical
gazetteer as an external lexicon and present a rule-
based geographical references recognizer. Amitay
et al. (2004) extracted location-related information
listed in a gazetteer from web content to identify
geographical regions of webpages. However, as
shown in (Berggren et al., 2016), performances of
gazetteer-based methods are hindered by the noisy
and informal nature of tweets.

Moving beyond methods replying on external
knowledge sources (e.g. IP and gazetteers), many
machine learning based methods have recently
been applied to location prediction. Typically, re-
searchers first represent locations as earth grids
(Wing and Baldridge, 2011; Roller et al., 2012),
regions (Miyazaki et al., 2018; Qian et al., 2017),
or cities (Han et al., 2013). Then location classi-
fiers are built to categorize users into different lo-
cations. Han et al. (2012) first utilized feature se-
lection methods to find location indicative words,
then they used multinomial naive Bayes and logis-
tic regression classifiers to find correct locations.
Han et al. (2013) further present a stacking based

method that combines tweet text and metadata to-
gether. Along with these classification methods,
some approaches also try to learn topic regions
automatically by topic modeling, but these do not
scale well to the magnitude of social media (Hong
et al., 2012; Zhang et al., 2017).

Recently, deep neural network based meth-
ods are becoming popular for location prediction
(Miura et al., 2016). Huang and Carley (2017) in-
tegrate text and user profile metadata into a sin-
gle model using convolutional neural networks,
and their experiments show superior performance
over stacked naive Bayes classifiers. Miura et al.
(2017); Ebrahimi et al. (2018) incorporate user
network connection information into their neural
models, where they use network embeddings to
represent users in a social network. Rahimi et al.
(2018) also uses text and network feature together,
but their approach is based on graph convolutional
neural networks.

Similar to our method, some research has tried
to predict user location hierarchically (Mahmud
et al., 2012; Wing and Baldridge, 2014). Mahmud
et al. (2012) develop a two-level hierarchical loca-
tion classifier which first predicts a coarse-grained
location (country, time zone), and then predicts
the city label within the corresponding coarse re-
gion. Wing and Baldridge (2014) build a hierar-
chical tree of earth grids. The probability of a fi-
nal fine-grained location can be computed recur-
sively from the root node to the leaf node. Both
methods have to train one classifier separately for
each parent node, which is quite time-consuming
for training deep neural network based methods.
Additionally, certain coarse-grained locations may
not have enough data samples to train a local neu-
ral classifier alone. Our hierarchical location pre-
diction neural network overcomes these issues and
only needs to be trained once.

3 Method

There are seven features we want to utilize in our
model — tweet text, personal description, pro-
file location, name, user language, time zone, and
mention network. The first four features are text
fields where users can write anything they want.
User language and time zone are two categorical
features that are selected by users in their profiles.
Following previous work (Rahimi et al., 2018), we
construct mention network directly from mentions
in tweets, which is also less expensive to collect
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than following network1.
The overall architecture of our hierarchical lo-

cation prediction model is shown in Figure 1. It
first maps four text features into a word embedding
space. A bidirectional LSTM (Bi-LSTM) neu-
ral network (Hochreiter and Schmidhuber, 1997)
is used to extract location-specific features from
these text embedding vectors. Following Bi-
LSTM, we use a word-level attention layer to gen-
erate representation vectors for these text fields.
Combining all the text representations, a user lan-
guage embedding, a timezone embedding, and a
network embedding, we apply several layers of
transformer encoders (Vaswani et al., 2017) to
learn the correlation among all the feature fields.
The probability for each country is computed af-
ter a field-level attention layer. Finally, we use
the country probability as a constraint for the city-
level location prediction. We elaborate details of
our model in the following sections.

3.1 Word Embedding

Assume one user has T tweets, there are T + 3
text fields for this user including personal de-
scription, profile location, and name. We first
map each word in these T + 3 text fields into a
low dimensional embedding space. The embed-
ding vector for word w is computed as xw =
[E(w), CNNc(w)], where [, ] denotes vector con-
catenation. E(w) is the word-level embedding re-
trieved directly from an Embedding matrix E ∈
RV×D by a lookup operation, where V is the vo-
cabulary size, and D is the word-level embedding
dimension. CNNc(w) is a character-level word
embedding that is generated from a character-level
convolutional layer. Using character-level word
embeddings is helpful for dealing with out-of-
vocabulary tokens and overcoming the noisy na-
ture of tweet text.

The character-level word embedding generation
process is as follows. For a character ci in the word
w = (c1, ..., ck), we map it into a character em-
bedding space and get a vector vci ∈ Rd. In the
convolutional layer, each filter u ∈ Rlc×d gener-
ates a feature vector θ = [θ1, θ2, ..., θk−lc+1] ∈
Rk−lc+1, where θi = relu(u ◦ vci:ci+lc−1

+ b).
b is a bias term, and “◦” denotes element-wise
inner product between u and character window
vci:ci+lc−1

∈ Rlc×d. After this convolutional op-
eration, we use a max-pooling operation to select

1https://developer.twitter.com

the most representative feature θ̂ = max(θ). With
D such filters, we get the character-level word em-
bedding CNNc(w) ∈ RD.

3.2 Text Representation
After the word embedding layer, every word in
these T + 3 texts are transformed into a 2D di-
mension vector. Given a text with word sequence
(w1, ..., wN ), we get a word embedding matrix
X ∈ RN×2D from the embedding layer. We then
apply a Bi-LSTM neural network to extract high-
level semantic representations from text embed-
ding matrices.

At every time step i, a forward LSTM takes the
word embedding xi of word wi and previous state−−→
hi−1 as inputs, and generates the current hidden
state

−→
h i. A backward LSTM reads the text from

wN to w1 and generates another state sequence.
The hidden state hi ∈ R2D for word wi is the con-
catenation of

−→
hi and

←−
hi . Concatenating all the hid-

den states, we get a semantic matrix H ∈ RN×2D

−→
hi =

−−−−→
LSTM(xi,

−−→
hi−1)

←−
hi =

←−−−−
LSTM(xi,

←−−
hi+1)

Because not all words in a text contribute
equally towards location prediction, we further use
a multi-head attention layer (Vaswani et al., 2017)
to generate a representation vector f ∈ R2D for
each text. There are h attention heads that al-
low the model to attend to important informa-
tion from different representation subspaces. Each
head computes a text representation as a weighted
average of these word hidden states. The compu-
tation steps in a multi-head attention layer are as
follows.

f = MultiHead(q,H) = [head1, ...,headh]W
O

headi(q,H) = softmax(
qWQ

i · (HWK
i )T√

dk
)HW V

i

where q ∈ R2d is an attention context vec-
tor learned during training, WQ

i ,W
K
i ,W

V
i ∈

R2D×dk , and WO ∈ R2D×2D are projection pa-
rameters, dk = 2D/h. An attention head headi
first projects the attention context q and the se-
mantic matrix H into query and key subspaces by
WQ

i , WK
i respectively. The matrix product be-

tween query qWQ
i and key HWK

i after softmax
normalization is an attention weight that indicates
important words among the projected value vec-
tors HW V

i . Concatenating h heads together, we
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Figure 1: The architecture of our hierarchical location prediction neural network.

get one representation vector f ∈ R2D after pro-
jection by WO for each text field.

3.3 Feature Fusion
For two categorical features, we assign an em-
bedding vector with dimension 2D for each time
zone and language. These embedding vectors are
learned during training. We pretrain network em-
beddings for users involved in the mention net-
work using LINE (Tang et al., 2015). Network
embeddings are fixed during training. We get a
feature matrix F ∈ R(T+6)×2D by concatenating
text representations of T + 3 text fields, two em-
bedding vectors of categorical features, and one
network embedding vector.

We further use several layers of transformer en-
coders (Vaswani et al., 2017) to learn the corre-
lation between different feature fields. Each layer
consists of a multi-head self-attention network and
a feed-forward network (FFN). One transformer
encoder layer first uses input feature to attend im-
portant information in the feature itself by a multi-
head attention sub-layer. Then a linear transfor-
mation sub-layer FFN is applied to each position
identically. Similar to Vaswani et al. (2017), we
employ residual connection (He et al., 2016) and
layer normalization (Ba et al., 2016) around each
of the two sub-layers. The output F1 of the first
transformer encoder layer is generated as follows.

F ′ = LayerNorm(MultiHead(F, F ) + F )

F1 = LayerNorm(FFN(F ′) + F ′)

where FFN(F ′) = max(0, F ′W1 + b1)W2 + b2,
W1 ∈ R2D×Dff , and W2 ∈ RDff×2D.

Since there is no position information in the
transformer encoder layer, our model cannot dis-
tinguish between different types of features, eg.

tweet text and personal description. To overcome
this issue, we add feature type embeddings to the
input representations F . There are seven features
in total. Each of them has a learned feature type
embedding with dimension 2D so that one feature
type embedding and the representation of the cor-
responding feature can be summed.

Because the input and the output of transformer
encoder have the same dimension, we stack L
layers of transformer encoders to learn represen-
tations for country-level prediction and city-level
prediction respectively. These two sets of en-
coders share the same input F , but generate dif-
ferent representations FL

co and FL
ci for country and

city predictions.
The final classification features for country-

level and city-level location predictions are the
row-wise weighted average of Fco and Fci. Simi-
lar to the word-level attention, we use a field-level
multi-head attention layer to select important fea-
tures from T+6 vectors and fuse them into a single
vector.

Fco = MultiHead(qco, F
L
co)

Fci = MultiHead(qci, F
L
ci)

where qco, qci ∈ R2D are two attention context
vectors.

3.4 Hierarchical Location Prediction
The final probability for each country is computed
by a softmax function

Pco = softmax(WcoFco + bco)

where Wco ∈ RMco×2D is a linear projection pa-
rameter, bco ∈ RMco is a bias term, and Mco is the
number of countries.
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Twitter-US Twitter-World WNUT
Train Dev. Test Train Dev. Test Train Dev. Test

# users 429K 10K 10K 1.37M 10K 10K 742K 7.46K 10K
# users
with meta

228K 5.32K 5.34K 917K 6.50K 6.48K 742K 7.46K 10K

# tweets 36.4M 861K 831K 11.2M 488K 315K 8.97M 90.3K 99.7K
# tweets
per user

84.60 86.14 83.12 8.16 48.83 31.59 12.09 12.10 9.97

Table 1: A brief summary of our datasets. For each dataset, we report the number of users, number of users with
metadata, number of tweets, and average number of tweets per user. We collected metadata for 53% and 67%
of users in Twitter-US and Twitter-World. Time zone information was not available when we collected metadata
for these two datasets. About 25% of training and development users’ data was inaccessible when we collected
WNUT in 2017.

After we get the probability for each country,
we further use it to constrain the city-level predic-
tion

Pci =softmax(WciFci + bci + λPcoBias)

where Wci ∈ RMci×2D is a linear projection pa-
rameter, bci ∈ RMci is a bias term, and Mci is
the number of cities. Bias ∈ RMco×Mci is the
country-city correlation matrix. If city j belongs
to country i, thenBiasij is 0, otherwise−1. λ is a
penalty term learned during training. The larger of
λ, the stronger of the country constraint. In prac-
tise, we also experimented with letting the model
learn the country-city correlation matrix during
training, which yields similar performance.

We minimize the sum of two cross-entropy
losses for country-level prediction and city-level
prediction.

loss = −(Yci · logPci + αYco · logPco)

where Yci and Yco are one-hot encodings of city
and country labels. α is the weight to control
the importance of country-level supervision sig-
nal. Since a large α would potentially interfere
with the training process of city-level prediction,
we just set it as 1 in our experiments. Tuning this
parameter on each dataset may further improve the
performance.

4 Experiment Settings

4.1 Datasets
To validate our method, we use three widely
adopted Twitter location prediction datasets. Table
1 shows a brief summary of these three datasets.
They are listed as follows.

Twitter-US is a dataset compiled by Roller
et al. (2012). It contains 429K training users, 10K

development users, and 10K test users in North
America. The ground truth location of each user
is set to the first geotag of this user in the dataset.
We assign the closest city to each user’s ground
truth location using the city category built by Han
et al. (2012). Since this dataset only covers North
America, we change the first level location predic-
tion from countries to administrative regions (eg.
state or province). The administrative region for
each city is obtained from the original city cate-
gory.

Twitter-World is a Twitter dataset covering the
whole world, with 1,367K training users, 10K de-
velopment users, and 10K test users (Han et al.,
2012). The ground truth location for each user
is the center of the closest city to the first geotag
of this user. Only English tweets are included in
this dataset, which makes it more challenging for
a global-level location prediction task.

We downloaded these two datasets from Github
2. Each user in these two datasets is represented by
the concatenation of their tweets, followed by the
geo-coordinates. We queried Twitter’s API to add
user metadata information to these two datasets in
February 2019. We only get metadata for about
53% and 67% users in Twitter-US and Twitter-
World respectively. Because of Twitter’s privacy
policy change, we could not get the time zone in-
formation anymore at the time of collection.

WNUT was released in the 2nd Workshop on
Noisy User-generated Text (Han et al., 2016). The
original user-level dataset consists of 1 million
training users, 10K users in development set and
test set each. Each user is assigned with the clos-
est city center as the ground truth label. Because
of Twitter’s data sharing policy, only tweet IDs

2https://github.com/afshinrahimi/geomdn
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of training and development data are provided.
We have to query Twitter’s API to reconstruct the
training and development dataset. We finished our
data collection around August 2017. About 25%
training and development users’ data cannot be ac-
cessed at that time. The full anonymized test data
is downloaded from the workshop website 3.

4.2 Text Preprocessing & Network
Construction

For all the text fields, we first convert them into
lower case, then use a tweet-specific tokenizer
from NLTK4 to tokenize them. To keep a rea-
sonable vocabulary size, we only keep tokens with
frequencies greater than 10 times in our word vo-
cabulary. Our character vocabulary includes char-
acters that appear more than 5 times in the training
corpus.

We construct user networks from mentions in
tweets. For WNUT, we keep users satisfying one
of the following conditions in the mention net-
work: (1) users in the original dataset (2) users
who are mentioned by two different users in the
dataset. For Twitter-US and Twitter-World, fol-
lowing previous work (Rahimi et al., 2018), a uni-
directional edge is set if two users in our dataset di-
rectly mentioned each other, or they co-mentioned
another user. We remove celebrities who are men-
tioned by more than 10 different users from the
mentioning network. These celebrities are still
kept in the dataset and their network embeddings
are set as 0.

4.3 Evaluation Metrics
We evaluate our method using four commonly
used metrics listed below.
Accuracy: The percentage of correctly predicted
home cities.
Acc@161: The percentage of predicted cities
which are within a 161 km (100 miles) radius of
true locations to capture near-misses.
Median: The median distance measured in kilo-
meter from the predicted city to the true location
coordinates.
Mean: The mean value of error distances in pre-
dictions.

4.4 Hyperparameter Settings
In our experiments, we initialize word embed-
dings with released 300-dimensional Glove vec-

3https://noisy-text.github.io/2016/geo-shared-task.html
4https://www.nltk.org/api/nltk.tokenize.html

tors (Pennington et al., 2014). For words not ap-
pearing in Glove vocabulary, we randomly ini-
tialize them from a uniform distribution U(-0.25,
0.25). We choose the character embedding dimen-
sion as 50. The character embeddings are ran-
domly initialized from a uniform distribution U(-
1.0,1.0), as well as the timezone embeddings and
language embeddings. These embeddings are all
learned during training. Because our three datasets
are sufficiently large to train our model, the learn-
ing is quite stable and performance does not fluc-
tuate a lot.

Network embeddings are trained using LINE
(Tang et al., 2015) with parameters of dimension
600, initial learning rate 0.025, order 2, negative
sample size 5, and training sample size 10000M.
Network embeddings are fixed during training.
For users not appearing in the mention network,
we set their network embedding vectors as 0.

Twitter-US Twitter-World WNUT
Batch size 32 64 64
Initial learning rate 10−4 10−4 10−4

D: Word embedding
dimension

300 300 300

d: Char. embedding
dimension

50 50 50

lc: filter sizes
in Char. CNN

3,4,5 3,4,5 3,4,5

Filter number
for each size

100 100 100

h: number of heads 10 10 10
L: layers of
transformer encoder

3 3 3

λ: initial penalty term 1 1 1
α: weight for country
supervision

1 1 1

Dff : inner
dimension of FFN

2400 2400 2400

Max number of
tweets per user

100 50 20

Table 2: A summary of hyperparameter settings of our
model.

A brief summary of hyperparameter settings of
our model is shown in Table 2. The initial learn-
ing rate is 10−4. If the validation accuracy on the
development set does not increase, we decrease
the learning rate to 10−5 and train the model for
additional 3 epochs. Empirically, training termi-
nates within 10 epochs. Penalty λ is initialized
as 1.0 and is adapted during training. We apply
dropout on the input of Bi-LSTM layer and the
output of two sub-layers in transformer encoders
with dropout rate 0.3 and 0.1 respectively. We
use the Adam update rule (Kingma and Ba, 2014)
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Twitter-US Twitter-World WNUT
Acc@161↑ Median↓ Mean↓ Acc@161↑ Median↓ Mean↓ Accuracy↑ Acc@161↑ Median↓ Mean↓

Text
Wing and Baldridge (2014) 49.2 170.5 703.6 32.7 490.0 1714.6 - - - -
Rahimi et al. (2015b)* 50 159 686 32 530 1724 - - - -
Miura et al. (2017)-TEXT 55.6 110.5 585.1 - - - 35.4 50.3 155.8 1592.6
Rahimi et al. (2017) 55 91 581 36 373 1417 - - - -
HLPNN-Text 57.1 89.92 516.6 40.1 299.1 1048.1 37.3 52.9 109.3 1289.4
Text+Meta
Miura et al. (2017)-META 67.2 46.8 356.3 - - - 54.7 70.2 0 825.8
HLPNN-Meta 61.1 64.3 454.8 56.4 86.2 762.1 57.2 73.1 0 572.5
Text+Net
Rahimi et al. (2015a)* 60 78 529 53 111 1403 - - - -
Rahimi et al. (2017) 61 77 515 53 104 1280 - - - -
Miura et al. (2017)-UNET 61.5 65 481.5 - - - 38.1 53.3 99.9 1498.6
Do et al. (2017) 66.2 45 433 53.3 118 1044 - - - -
Rahimi et al. (2018)-MLP-TXT+NET 66 56 420 58 53 1030 - - - -
Rahimi et al. (2018)-GCN 62 71 485 54 108 1130 - - - -
HLPNN-Net 70.8 31.6 361.5 58.9 59.9 827.6 37.8 53.3 105.26 1297.7
Text+Meta+Net
Miura et al. (2016) - - - - - - 47.6 - 16.1 1122.3
Jayasinghe et al. (2016) - - - - - - 52.6 - 21.7 1928.8
Miura et al. (2017) 70.1 41.9 335.7 - - - 56.4 71.9 0 780.5
HLPNN 72.7 28.2 323.1 68.4 6.20 610.0 57.6 73.4 0 538.8

Table 3: Comparisons between our method and baselines. We report results under four different feature settings:
Text, Text+Metadata, Text+Network, Text+Metadata+Network. “-” signifies that no results were published for the
given dataset, “*” denotes that results are cited from Rahimi et al. (2017). Note that Miura et al. (2017) only used
279K users added with metadata in their experiments of Twitter-US.

to optimize our model. Gradients are clipped be-
tween -1 and 1. The maximum numbers of tweets
per user for training and evaluating on Twitter-US
are 100 and 200 respectively. We only tuned our
model, learning rate, and dropout rate on the de-
velopment set of WNUT.

5 Results

5.1 Baseline Comparisons

In our experiments, we evaluate our model under
four different feature settings: Text, Text+Meta,
Text+Network, Text+Meta+Network. HLPNN-
Text is our model only using tweet text as input.
HLPNN-Meta is the model that combines text and
metadata (description, location, name, user lan-
guage, time zone). HLPNN-Net is the model that
combines text and mention network. HLPNN is
our full model that uses text, metadata, and men-
tion network for Twitter user geolocation.

We present comparisons between our model and
previous work in Table 3. As shown in the ta-
ble, our model outperforms these baselines across
three datasets under various feature settings.

Only using text feature from tweets, our model
HLPNN-Text works the best among all these text-
based location prediction systems and wins by a
large margin. It not only improves prediction ac-
curacy but also greatly reduces mean error dis-
tance. Compared with a strong neural model

equipped with local dialects (Rahimi et al., 2017),
it increases Acc@161 by an absolute value 4% and
reduces mean error distance by about 400 kilo-
meters on the challenging Twitter-World dataset,
without using any external knowledge. Its mean
error distance on Twitter-World is even compara-
ble to some methods using network feature (Do
et al., 2017).

With text and metadata, HLPNN-Meta cor-
rectly predicts locations of 57.2% users in WNUT
dataset, which is even better than these location
prediction systems that use text, metadata, and net-
work. Because in the WNUT dataset the ground
truth location is the closest city’s center, Our
model achieves 0 median error when its accuracy
is greater than 50%. Note that Miura et al. (2017)
used 279K users added with metadata in their ex-
periments on Twitter-US, while we use all 449K
users for training and evaluation, and only 53%
of them have metadata, which makes it difficult to
make a fair comparison.

Adding network feature further improves our
model’s performances. It achieves state-of-the-
art results combining all features on these three
datasets. Even though unifying network informa-
tion is not the focus of this paper, our model still
outperforms or has comparable results to some
well-designed network-based location prediction
systems like (Rahimi et al., 2018). On Twitter-US
dataset, our model variant HLPNN-Net achieves a
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4.6% increase in Acc@161 against previous state-
of-the-art methods (Do et al., 2017) and (Rahimi
et al., 2018). The prediction accuracy of HLPNN-
Net on WNUT dataset is similar to (Miura et al.,
2017), but with a noticeable lower mean error dis-
tance.

5.2 Ablation Study

In this section, we provide an ablation study to ex-
amine the contribution of each model component.
Specifically, we remove the character-level word
embedding, the word-level attention, the field-
level attention, the transformer encoders, and the
country supervision signal one by one at a time.
We run experiments on the WNUT dataset with
text features.

Accuracy Acc@161 Median Mean
HLPNN 37.3 52.9 109.3 1289.4
w/o Char-CNN 36.3 51.0 130.8 1429.9
w/o Word-Att 36.4 51.5 130.2 1377.5
w/o Field-Att 37.0 52.0 121.8 1337.5
w/o encoders 36.8 52.5 117.4 1402.9
w/o country 36.7 52.6 124.8 1399.2

Table 4: An ablation study on WNUT dataset.

The performance breakdown for each model
component is shown in Table 4. Compared to
the full model, we can find that the character-
level word embedding layer is especially helpful
for dealing with noisy social media text. The
word-level attention also provides performance
gain, while the field-level attention only provides
a marginal improvement. The reason could be
the multi-head attention layers in the transformer
encoders already captures important information
among different feature fields. These two trans-
former encoders learn the correlation between fea-
tures and decouple these two level predictions.
Finally, using the country supervision can help
model to achieve a better performance with a
lower mean error distance.

5.3 Country Effect

To directly measure the effect of adding country-
level supervision, we define a relative country er-
ror which is the percentage of city-level predic-
tions located in incorrect countries among all mis-
classified city-level predictions.

relative country error = # of incorrect country
# of incorrect city

The lower this metric means the better one model
can predict the city-level location, at least in the
correct country.

We vary the weight α of country-level supervi-
sion signal in our loss function from 0 to 20. The
larger α means the more important the country-
level supervision during the optimization. When
α equals 0, there is no country-level supervision
in our model. As shown in Figure 2, increas-
ing α would improve the relative country error
from 26.2% to 23.1%, which shows the country-
level supervision signal indeed can help our model
predict the city-level location towards the correct
country. This possibly explains why our model
has a lower mean error distance when compared
to other methods.

Figure 2: Relative country error with varying α on
test dataset. Experiments were conducted on WNUT
dataset with text feature.

6 Conclusion

In this paper, we propose a hierarchical location
prediction neural network, which combines text,
metadata, network information for user location
prediction. Our model can accommodate various
feature combinations. Extensive experiments have
been conducted to validate the effectiveness of our
model under four different feature settings across
three commonly used benchmarks. Our experi-
ments show our HLPNN model achieves state-of-
the-art results on these three datasets. It not only
improves the prediction accuracy but also signif-
icantly reduces the mean error distance. In our
ablation analysis, we show that using character-
aware word embeddings is helpful for overcom-
ing noise in social media text. The transformer
encoders effectively learn the correlation between
different features and decouple the two different
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level predictions. In our experiments, we also an-
alyzed the effect of adding country-level regular-
ization. The country-level supervision could effec-
tively guide the city-level prediction towards the
correct country, and reduce the errors where users
are misplaced in the wrong countries.

Though our HLPNN model achieves great per-
formances under Text+Net and Text+Meta+Net
settings, potential improvements could be made
using better graph-level classification frameworks.
We currently only use network information to train
network embeddings as user-level features. For
future work, we would like to explore ways to
combine graph-level classification methods and
our user-level learning model. Propagating fea-
tures from connected friends would provide much
more information than just using network embed-
ding vectors. Besides, our model assumes each
post of one user all comes from one single home
location but ignores the dynamic user movement
pattern like traveling. We plan to incorporate tem-
poral states to capture location changes in future
work.
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