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Abstract

Deep learning models have achieved remark-
able success in natural language inference
(NLI) tasks. While these models are widely
explored, they are hard to interpret and it is of-
ten unclear how and why they actually work.
In this paper, we take a step toward explain-
ing such deep learning based models through a
case study on a popular neural model for NLI.
In particular, we propose to interpret the in-
termediate layers of NLI models by visualiz-
ing the saliency of attention and LSTM gat-
ing signals. We present several examples for
which our methods are able to reveal interest-
ing insights and identify the critical informa-
tion contributing to the model decisions.

1 Introduction

Deep learning has achieved tremendous success
for many NLP tasks. However, unlike traditional
methods that provide optimized weights for hu-
man understandable features, the behavior of deep
learning models is much harder to interpret. Due
to the high dimensionality of word embeddings,
and the complex, typically recurrent architectures
used for textual data, it is often unclear how and
why a deep learning model reaches its decisions.

There are a few attempts toward explain-
ing/interpreting deep learning-based models,
mostly by visualizing the representation of words
and/or hidden states, and their importances (via
saliency or erasure) on shallow tasks like senti-
ment analysis and POS tagging (Bahdanau et al.,
2014; Denil et al., 2014; Li et al., 2016; Arras
et al., 2017; Li et al., 2017; Rei and Søgaard,
2018). In contrast, we focus on interpreting the
gating and attention signals of the intermediate
layers of deep models in the challenging task of
Natural Language Inference. A key concept in
explaining deep models is saliency, which deter-
mines what is critical for the final decision of a

deep model. So far, saliency has only been used to
illustrate the impact of word embeddings. In this
paper, we extend this concept to the intermediate
layer of deep models to examine the saliency of
attention as well as the LSTM gating signals to
understand the behavior of these components and
their impact on the final decision.

We make two main contributions. First, we in-
troduce new strategies for interpreting the behav-
ior of deep models in their intermediate layers,
specifically, by examining the saliency of the at-
tention and the gating signals. Second, we provide
an extensive analysis of the state-of-the-art model
for the NLI task and show that our methods reveal
interesting insights not available from traditional
methods of inspecting attention and word saliency.

In this paper, our focus was on NLI, which is
a fundamental NLP task that requires both under-
standing and reasoning. Furthermore, the state-of-
the-art NLI models employ complex neural archi-
tectures involving key mechanisms, such as atten-
tion and repeated reading, widely seen in success-
ful models for other NLP tasks. As such, we ex-
pect our methods to be potentially useful for other
natural understanding tasks as well.

2 Task and Model

In NLI (Bowman et al., 2015), we are given two
sentences, a premise and a hypothesis, the goal
is to decide the logical relationship (Entailment,
Neutral, or Contradiction) between them.

Many of the top performing NLI models
(Ghaeini et al., 2018b; Tay et al., 2018; Peters
et al., 2018; McCann et al., 2017; Gong et al.,
2017; Wang et al., 2017; Chen et al., 2017), are
variants of the ESIM model (Chen et al., 2017),
which we choose to analyze in this paper. ESIM
reads the sentences independently using LSTM at
first, and then applies attention to align/contrast
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Figure 1: Normalized attention and attention saliency visualization. Each column shows visualization of one sam-
ple. Top plots depict attention visualization and bottom ones represent attention saliency visualization. Predicted
(the same as Gold) label of each sample is shown on top of each column.

the sentences. Another round of LSTM reading
then produces the final representations, which are
compared to make the prediction. Detailed de-
scription of ESIM can be found in the Supplemen-
tary Materials.

Using the SNLI (Bowman et al., 2015) data, we
train two variants of ESIM, with dimensionality 50
and 300 respectively, referred to as ESIM-50 and
ESIM-300 in the remainder of the paper.

3 Visualization of Attention and Gating

In this work, we are primarily interested in the in-
ternal workings of the NLI model. In particular,
we focus on the attention and the gating signals
of LSTM readers, and how they contribute to the
decisions of the model.

3.1 Attention
Attention has been widely used in many NLP tasks
(Ghaeini et al., 2018a; Dhingra et al., 2017; Bah-
danau et al., 2014) and is probably one of the
most critical parts that affects the inference deci-
sions. Several pieces of prior work in NLI have
attempted to visualize the attention layer to pro-
vide some understanding of their models (Ghaeini
et al., 2018b; Parikh et al., 2016). Such visualiza-
tions generate a heatmap representing the similar-
ity between the hidden states of the premise and
the hypothesis (Eq. 3 of the Supplementary Mate-
rials). Unfortunately the similarities are often the
same regardless of the decision.

Let us consider the following example, where
the same premise “A kid is playing in the garden”,

is paired with three different hypotheses:
h1: A kid is taking a nap in the garden
h2: A kid is having fun in the garden with her

family
h3: A kid is having fun in the garden

Note that the ground truth relationships are Con-
tradiction, Neutral, and Entailment, respectively.

The first row of Fig. 1 shows the visualization of
normalized attention for the three cases produced
by ESIM-50, which makes correct predictions for
all of them. As we can see from the figure, the
three attention maps are fairly similar despite the
completely different decisions. The key issue is
that the attention visualization only allows us to
see how the model aligns the premise with the hy-
pothesis, but does not show how such alignment
impacts the decision. This prompts us to consider
the saliency of attention.

3.1.1 Attention Saliency
The concept of saliency was first introduced in vi-
sion for visualizing the spatial support on an im-
age for a particular object class (Simonyan et al.,
2013). In NLP, saliency has been used to study the
importance of words toward a final decision (Li
et al., 2016) .

We propose to examine the saliency of atten-
tion. Specifically, given a premise-hypothesis pair
and the model’s decision y, we consider the sim-
ilarity between a pair of premise and hypothesis
hidden states eij as a variable. The score of the
decision S(y) is thus a function of eij for all i and
j. The saliency of eij is then defined to be |∂S(y)∂eij

|.
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Figure 2: Normalized attention and attention saliency visualizations of two examples (p1 and p2) for ESIM-50 (a)
and ESIM-300 (b) models. Each column indicates visualization of a model and each row represents visualization
of one example.

The second row of Fig. 1 presents the atten-
tion saliency map for the three examples acquired
by the same ESIM-50 model. Interestingly, the
saliencies are clearly different across the exam-
ples, each highlighting different parts of the align-
ment. Specifically, for h1, we see the alignment
between “is playing” and “taking a nap” and the
alignment of “in a garden” to have the most promi-
nent saliency toward the decision of Contradiction.
For h2, the alignment of “kid” and “her family”
seems to be the most salient for the decision of
Neutral. Finally, for h3, the alignment between “is
having fun” and “kid is playing” have the strongest
impact toward the decision of Entailment.

From this example, we can see that by inspect-
ing the attention saliency, we effectively pinpoint
which part of the alignments contribute most criti-
cally to the final prediction whereas simply visual-
izing the attention itself reveals little information.

3.1.2 Comparing Models
In the previous examples, we study the behavior of
the same model on different inputs. Now we use
the attention saliency to compare the two different
ESIM models: ESIM-50 and ESIM-300.

Consider two examples with a shared hypothe-
sis of “A man ordered a book” and premise:
p1: John ordered a book from amazon
p2: Mary ordered a book from amazon

Here ESIM-50 fails to capture the gender connec-
tions of the two different names and predicts Neu-

tral for both inputs, whereas ESIM-300 correctly
predicts Entailment for the first case and Contra-
diction for the second.

In the first two columns of Fig. 2 (column a and
b) we visualize the attention of the two examples
for ESIM-50 (left) and ESIM-300 (right) respec-
tively. Although the two models make different
predictions, their attention maps appear qualita-
tively similar.

In contrast, columns 3-4 of Fig. 2 (column
c and d) present the attention saliency for the
two examples by ESIM-50 and ESIM-300 respec-
tively. We see that for both examples, ESIM-50
primarily focused on the alignment of “ordered”,
whereas ESIM-300 focused more on the align-
ment of “John” and “Mary” with “man”. It is
interesting to note that ESIM-300 does not ap-
pear to learn significantly different similarity val-
ues compared to ESIM-50 for the two critical pairs
of words (“John”, “man”) and (“Mary”, “man”)
based on the attention map. The saliency map,
however, reveals that the two models use these
values quite differently, with only ESIM-300 cor-
rectly focusing on them.

3.2 LSTM Gating Signals
LSTM gating signals determine the flow of infor-
mation. In other words, they indicate how LSTM
reads the word sequences and how the informa-
tion from different parts is captured and combined.
LSTM gating signals are rarely analyzed, possibly
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Figure 3: Normalized signal and saliency norms for the input and inference LSTMs (forward) of ESIM-50 for
three examples. The bottom (top) three rows show the signals of the input (inference) LSTM. Each row shows one
of the three gates (input, forget and output).

due to their high dimensionality and complexity.
In this work, we consider both the gating signals
and their saliency, which is computed as the partial
derivative of the score of the final decision with re-
spect to each gating signal.

Instead of considering individual dimensions of
the gating signals, we aggregate them to consider
their norm, both for the signal and for its saliency.
Note that ESIM models have two LSTM layers,
the first (input) LSTM performs the input encod-
ing and the second (inference) LSTM generates
the representation for inference.

In Fig. 3 we plot the normalized signal and
saliency norms for different gates (input, forget,
output)1 of the Forward input (bottom three rows)
and inference (top three rows) LSTMs. These re-
sults are produced by the ESIM-50 model for the
three examples of Section 3.1, one for each col-
umn.

From the figure, we first note that the saliency
tends to be somewhat consistent across different
gates within the same LSTM, suggesting that we
can interpret them jointly to identify parts of the
sentence important for the model’s prediction.

Comparing across examples, we see that the
saliency curves show pronounced differences
across the examples. For instance, the saliency
pattern of the Neutral example is significantly dif-
ferent from the other two examples, and heavily
concentrated toward the end of the sentence (“with

1We also examined the memory cell but it shows very sim-
ilar behavior with the output gate and is hence omitted.

her family”). Note that without this part of the
sentence, the relationship would have been Entail-
ment. The focus (evidenced by its strong saliency
and strong gating signal) on this particular part,
which presents information not available from the
premise, explains the model’s decision of Neutral.

Comparing the behavior of the input LSTM and
the inference LSTM, we observe interesting shifts
of focus. In particular, we see that the infer-
ence LSTM tends to see much more concentrated
saliency over key parts of the sentence, whereas
the input LSTM sees more spread of saliency. For
example, for the Contradiction example, the input
LSTM sees high saliency for both “taking” and
“in”, whereas the inference LSTM primarily fo-
cuses on “nap”, which is the key word suggesting
a Contradiction. Note that ESIM uses attention
between the input and inference LSTM layers to
align/contrast the sentences, hence it makes sense
that the inference LSTM is more focused on the
critical differences between the sentences. This is
also observed for the Neutral example as well.

It is worth noting that, while revealing similar
general trends, the backward LSTM can some-
times focus on different parts of the sentence (e.g.,
see Fig. 8 of the Supplementary Materials), sug-
gesting the forward and backward readings pro-
vide complementary understanding of the sen-
tence.
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4 Conclusion

We propose new visualization and interpretation
strategies for neural models to understand how and
why they work. We demonstrate the effective-
ness of the proposed strategies on a complex task
(NLI). Our strategies are able to provide interest-
ing insights not achievable by previous explana-
tion techniques. Our future work will extend our
study to consider other NLP tasks and models with
the goal of producing useful insights for further
improving these models.
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Leila Arras, Grégoire Montavon, Klaus-Robert Müller,

and Wojciech Samek. 2017. Explaining recurrent
neural network predictions in sentiment analysis.
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, WASSA@EMNLP 2017, Copen-
hagen, Denmark, September 8, 2017, pages 159–
168.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 632–642.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM
for natural language inference. Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2017, Vancouver, Canada,
July 30 - August 4, Volume 1: Long Papers, pages
1657–1668.

Misha Denil, Alban Demiraj, Nal Kalchbrenner, Phil
Blunsom, and Nando de Freitas. 2014. Mod-
elling, visualising and summarising documents with
a single convolutional neural network. CoRR,
abs/1406.3830.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang,
William W. Cohen, and Ruslan Salakhutdinov.
2017. Gated-attention readers for text compre-
hension. Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers, pages 1832–1846.

Reza Ghaeini, Xiaoli Z. Fern, Hamed Shahbazi, and
Prasad Tadepalli. 2018a. Dependent gated reading
for cloze-style question answering. Proceedings of

the 27th International Conference on Computational
Linguistics, COLING 2018, Santa Fe, New Mexico,
USA, August 20-26, 2018, pages 3330–3345.

Reza Ghaeini, Sadid A. Hasan, Vivek V. Datla, Joey
Liu, Kathy Lee, Ashequl Qadir, Yuan Ling, Aaditya
Prakash, Xiaoli Z. Fern, and Oladimeji Farri. 2018b.
Dr-bilstm: Dependent reading bidirectional LSTM
for natural language inference. NAACL HLT 2018,
The 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Yichen Gong, Heng Luo, and Jian Zhang. 2017.
Natural language inference over interaction space.
CoRR, abs/1709.04348.

Jiwei Li, Xinlei Chen, Eduard H. Hovy, and Dan Ju-
rafsky. 2016. Visualizing and understanding neural
models in NLP. NAACL HLT 2016, The 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, San Diego California, USA,
June 12-17, 2016, pages 681–691.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2017. Un-
derstanding neural networks through representation
erasure. CoRR, abs/1612.08220.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. Advances in Neural Infor-
mation Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-
9 December 2017, Long Beach, CA, USA, pages
6297–6308.
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