
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2830–2836
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

2830

Adversarial training for multi-context
joint entity and relation extraction

Giannis Bekoulis Johannes Deleu Thomas Demeester Chris Develder

Ghent University - imec, IDLab

Department of Information Technology

{firstname.lastname}@ugent.be

Abstract

Adversarial training (AT) is a regularization

method that can be used to improve the ro-

bustness of neural network methods by adding

small perturbations in the training data. We

show how to use AT for the tasks of entity

recognition and relation extraction. In par-

ticular, we demonstrate that applying AT to a

general purpose baseline model for jointly ex-

tracting entities and relations, allows improv-

ing the state-of-the-art effectiveness on sev-

eral datasets in different contexts (i.e., news,

biomedical, and real estate data) and for dif-

ferent languages (English and Dutch).

1 Introduction

Many neural network methods have recently been

exploited in various natural language processing

(NLP) tasks, such as parsing (Zhang et al., 2017),

POS tagging (Lample et al., 2016), relation extrac-

tion (dos Santos et al., 2015), translation (Bah-

danau et al., 2015), and joint tasks (Miwa and

Bansal, 2016). However, Szegedy et al. (2014)

observed that intentional small scale perturbations

(i.e., adversarial examples) to the input of such

models may lead to incorrect decisions (with high

confidence). Goodfellow et al. (2015) proposed

adversarial training (AT) (for image recognition)

as a regularization method which uses a mixture

of clean and adversarial examples to enhance the

robustness of the model. Although AT has recently

been applied in NLP tasks (e.g., text classifica-

tion (Miyato et al., 2017)), this paper — to the best

of our knowledge — is the first attempt investigat-

ing regularization effects of AT in a joint setting

for two related tasks.

We start from a baseline joint model that per-

forms the tasks of named entity recognition (NER)

and relation extraction at once. Previously pro-

posed models (summarized in Section 2) exhibit

several issues that the neural network-based base-

line approach (detailed in Section 3.1) overcomes:

(i) our model uses automatically extracted features

without the need of external parsers nor manually

extracted features (see Gupta et al. (2016); Miwa

and Bansal (2016); Li et al. (2017)), (ii) all enti-

ties and the corresponding relations within the sen-

tence are extracted at once, instead of examining

one pair of entities at a time (see Adel and Schütze

(2017)), and (iii) we model relation extraction in a

multi-label setting, allowing multiple relations per

entity (see Katiyar and Cardie (2017); Bekoulis

et al. (2018a)). The core contribution of the paper

is the use of AT as an extension in the training pro-

cedure for the joint extraction task (Section 3.2).

To evaluate the proposed AT method, we per-

form a large scale experimental study in this joint

task (see Section 4), using datasets from different

contexts (i.e., news, biomedical, real estate) and

languages (i.e., English, Dutch). We use a strong

baseline that outperforms all previous models that

rely on automatically extracted features, achieving

state-of-the-art performance (Section 5). Com-

pared to the baseline model, applying AT during

training leads to a consistent additional increase in

joint extraction effectiveness.

2 Related work

Joint entity and relation extraction: Joint mod-

els (Li and Ji, 2014; Miwa and Sasaki, 2014)

that are based on manually extracted features have

been proposed for performing both the named en-

tity recognition (NER) and relation extraction sub-

tasks at once. These methods rely on the availabil-

ity of NLP tools (e.g., POS taggers) or manually

designed features leading to additional complex-

ity. Neural network methods have been exploited

to overcome this feature design issue and usu-

ally involve RNNs and CNNs (Miwa and Bansal,
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2016; Zheng et al., 2017). Specifically, Miwa

and Bansal (2016) as well as Li et al. (2017) ap-

ply bidirectional tree-structured RNNs for differ-

ent contexts (i.e., news, biomedical) to capture

syntactic information (using external dependency

parsers). Gupta et al. (2016) propose the use

of various manually extracted features along with

RNNs. Adel and Schütze (2017) solve the sim-

pler problem of entity classification (EC, assum-

ing entity boundaries are given), instead of NER,

and they replicate the context around the entities,

feeding entity pairs to the relation extraction layer.

Katiyar and Cardie (2017) investigate RNNs with

attention without taking into account that relation

labels are not mutually exclusive. Finally, Bek-

oulis et al. (2018a) use LSTMs in a joint model for

extracting just one relation at a time, but increase

the complexity of the NER part. Our baseline

model enables simultaneous extraction of multi-

ple relations from the same input. Then, we fur-

ther extend this strong baseline using adversarial

training.

Adversarial training (AT) (Goodfellow et al.,

2015) has been proposed to make classifiers more

robust to input perturbations in the context of im-

age recognition. In the context of NLP, several

variants have been proposed for different tasks

such as text classification (Miyato et al., 2017), re-

lation extraction (Wu et al., 2017) and POS tag-

ging (Yasunaga et al., 2018). AT is considered

as a regularization method. Unlike other regu-

larization methods (i.e., dropout (Srivastava et al.,

2014), word dropout (Iyyer et al., 2015)) that in-

troduce random noise, AT generates perturbations

that are variations of examples easily misclassified

by the model.

3 Model

3.1 Joint learning as head selection

The baseline model, described in detail in Bek-

oulis et al. (2018b), is illustrated in Fig. 1. It aims

to detect (i) the type and the boundaries of the en-

tities and (ii) the relations between them. The in-

put is a sequence of tokens (i.e., sentence) w =
w1, ..., wn. We use character level embeddings

to implicitly capture morphological features (e.g.,

prefixes and suffixes), representing each character

by a vector (embedding). The character embed-

dings are fed to a bidirectional LSTM (BiLSTM)

to obtain the character-based representation of the

word. We also use pre-trained word embeddings.
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Figure 1: Our model for joint entity and relation ex-

traction with adversarial training (AT) comprises

(i) a word and character embedding layer, (ii) a

BiLSTM layer, (iii) a CRF layer and (iv) a relation

extraction layer. In AT, we compute the worst-case

perturbations η of the input embeddings.

Word and character embeddings are concatenated

to form the final token representation, which is

then fed to a BiLSTM layer to extract sequential

information.

For the NER task, we adopt the BIO (Begin-

ning, Inside, Outside) encoding scheme. In Fig. 1,

the B-PER tag is assigned to the beginning token

of a ‘person’ (PER) entity. For the prediction of

the entity tags, we use: (i) a softmax approach for

the entity classification (EC) task (assuming entity

boundaries given) or (ii) a CRF approach where

we identify both the type and the boundaries for

each entity. During decoding, in the softmax set-

ting, we greedily detect the entity types of the to-

kens (i.e., independent prediction). Although in-

dependent distribution of types is reasonable for

EC tasks, this is not the case when there are strong

correlations between neighboring tags. For in-

stance, the BIO encoding scheme imposes several

constraints in the NER task (e.g., the B-PER and I-

LOC tags cannot be sequential). Motivated by this

intuition, we use a linear-chain CRF for the NER

task (Lample et al., 2016). For decoding, in the

CRF setting, we use the Viterbi algorithm. Dur-

ing training, for both EC (softmax) and NER tasks

(CRF), we minimize the cross-entropy loss LNER.

The entity tags are later fed into the relation ex-

traction layer as label embeddings (see Fig. 1), as-

suming that knowledge of the entity types is ben-

eficial in predicting the relations between the in-

volved entities.

We model the relation extraction task as

a multi-label head selection problem (Bekoulis
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et al., 2018b; Zhang et al., 2017). In our model,

each word wi can be involved in multiple relations

with other words. For instance, in the example il-

lustrated in Fig. 1, “Smith” could be involved not

only in a Lives in relation with the token “Cali-

fornia” (head) but also in other relations simulta-

neously (e.g., Works for, Born In with some corre-

sponding tokens). The goal of the task is to predict

for each word wi, a vector of heads ŷi and the vec-

tor of corresponding relations r̂i. We compute the

score s(wj , wi, rk) of word wj to be the head of

wi given a relation label rk using a single layer

neural network. The corresponding probability is

defined as: P(wj , rk | wi; θ) = σ(s(wj , wi, rk)),
where σ(.) is the sigmoid function. During train-

ing, we minimize the cross-entropy loss Lrel as:

n∑

i=0

m∑

j=0

− logP(yi,j , ri,j | wi; θ) (1)

where m is the number of associated heads (and

thus relations) per word wi. During decoding, the

most probable heads and relations are selected us-

ing threshold-based prediction. The final objective

for the joint task is computed as LJOINT(w; θ) =
LNER + Lrel where θ is a set of parameters. In the

case of multi-token entities, only the last token of

the entity can serve as head of another token, to

eliminate redundant relations. If an entity is not

involved in any relation, we predict the auxiliary

“N” relation label and the token itself as head.

3.2 Adversarial training (AT)

We exploit the idea of AT (Goodfellow et al.,

2015) as a regularization method to make our

model robust to input perturbations. Specifically,

we generate examples which are variations of the

original ones by adding some noise at the level

of the concatenated word representation (Miyato

et al., 2017). This is similar to the concept intro-

duced by Goodfellow et al. (2015) to improve the

robustness of image recognition classifiers. We

generate an adversarial example by adding the

worst-case perturbation ηadv to the original em-

bedding w that maximizes the loss function:

ηadv = argmax
‖η‖≤ǫ

LJOINT(w + η; θ̂) (2)

where θ̂ is a copy of the current model parameters.

Since Eq. (2) is intractable in neural networks,

we use the approximation proposed in Goodfellow

et al. (2015) defined as: ηadv = ǫg/ ‖g‖ , with g =

∇wLJOINT(w; θ̂), where ǫ is a small bounded norm

treated as a hyperparameter. Similar to Yasunaga

et al. (2018), we set ǫ to be α
√
D (where D is

the dimension of the embeddings). We train on

the mixture of original and adversarial examples,

so the final loss is computed as: LJOINT(w; θ̂) +
LJOINT(w + ηadv; θ̂).

4 Experimental setup

We evaluate our models on four datasets, us-

ing the code as available from our github code-

base.1 Specifically, we follow the 5-fold cross-

validation defined by Miwa and Bansal (2016) for

the ACE04 (Doddington et al., 2004) dataset. For

the CoNLL04 (Roth and Yih, 2004) EC task (as-

suming boundaries are given), we use the same

splits as in Gupta et al. (2016); Adel and Schütze

(2017). We also evaluate our models on the NER

task similar to Miwa and Sasaki (2014) in the

same dataset using 10-fold cross validation. For

the Dutch Real Estate Classifieds, DREC (Bek-

oulis et al., 2017) dataset, we use train-test splits

as in Bekoulis et al. (2018a). For the Adverse

Drug Events, ADE (Gurulingappa et al., 2012),

we perform 10-fold cross-validation similar to Li

et al. (2017). To obtain comparable results that

are not affected by the input embeddings, we use

the embeddings of the previous works. We em-

ploy early stopping in all of the experiments. We

use the Adam optimizer (Kingma and Ba, 2015)

and we fix the hyperparameters (i.e., α, dropout

values, best epoch, learning rate) on the valida-

tion sets. The scaling parameter α is selected from

{5e−2, 1e−2, 1e−3, 1e−4}. Larger values of α
(i.e., larger perturbations) lead to consistent per-

formance decrease in our early experiments. This

can be explained from the fact that adding more

noise can change the content of the sentence as

also reported by Wu et al. (2017).

We use three types of evaluation, namely:

(i) S(trict): we score an entity as correct if

both the entity boundaries and the entity type

are correct (ACE04, ADE, CoNLL04, DREC),

(ii) B(oundaries): we score an entity as correct

if only the entity boundaries are correct while the

entity type is not taken into account (DREC) and

(iii) R(elaxed): a multi-token entity is considered

correct if at least one correct type is assigned to

the tokens comprising the entity, assuming that the

1https://github.com/bekou/multihead_

joint_entity_relation_extraction
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Settings Features Eval. Entity Relation Overall
A

C
E

0
4

Miwa and Bansal (2016) ✓ S 81.80 48.40 65.10

Katiyar and Cardie (2017) ✗ S 79.60 45.70 62.65

baseline ✗ S 81.16 47.14 64.15

baseline + AT ✗ S 81.64 47.45 64.54

C
o

N
L

L

0
4

Gupta et al. (2016) ✓ R 92.40 69.90 81.15

Gupta et al. (2016) ✗ R 88.80 58.30 73.60

Adel and Schütze (2017) ✗ R 82.10 62.50 72.30

baseline EC ✗ R 93.26 67.01 80.14

baseline EC + AT ✗ R 93.04 67.99 80.51

Miwa and Sasaki (2014) ✓ S 80.70 61.00 70.85

baseline ✗ S 83.04 61.04 72.04

baseline + AT ✗ S 83.61 61.95 72.78

D
R

E
C

Bekoulis et al. (2018a) ✗ B 79.11 49.70 64.41

baseline ✗ B 82.30 52.81 67.56

baseline + AT ✗ B 82.96 53.87 68.42

baseline ✗ S 81.39 52.26 66.83

baseline + AT ✗ S 82.04 53.12 67.58

A
D

E

Li et al. (2016) ✓ S 79.50 63.40 71.45

Li et al. (2017) ✓ S 84.60 71.40 78.00

baseline ✗ S 86.40 74.58 80.49

baseline + AT ✗ S 86.73 75.52 81.13

Table 1: Comparison of our method with the state-

of-the-art in terms of F1 score. The proposed mod-

els are: (i) baseline, (ii) baseline EC (predicts only

entity classes) and (iii) baseline (EC) + AT (reg-

ularized by AT). The ✓and ✗ symbols indicate

whether the models rely on external NLP tools.

We include different evaluation types (S, R and B).

boundaries are known (CoNLL04), to compare to

previous works. In all cases, a relation is consid-

ered as correct when both the relation type and the

argument entities are correct.

5 Results

Table 1 shows our experimental results. The name

of the dataset is presented in the first column while

the models are listed in the second column. The

proposed models are the following: (i) baseline:

the baseline model shown in Fig. 1 with the CRF

layer and the sigmoid loss, (ii) baseline EC: the

proposed model with the softmax layer for EC,

(iii) baseline (EC) + AT: the baseline regular-

ized using AT. The final three columns present

the F1 results for the two subtasks and their av-

erage performance. Bold values indicate the best

results among models that use only automatically

extracted features.

For ACE04, the baseline outperforms Katiyar

and Cardie (2017) by ∼2% in both tasks. This

improvement can be explained by the use of:

(i) multi-label head selection, (ii) CRF-layer and

(iii) character level embeddings. Compared to

Miwa and Bansal (2016), who rely on NLP tools,

the baseline performs within a reasonable margin

(less than 1%) on the joint task. On the other

hand, Li et al. (2017) use the same model for

the ADE biomedical dataset, where we report a

2.5% overall improvement. This indicates that

NLP tools are not always accurate for various con-

texts. For the CoNLL04 dataset, we use two eval-

uation settings. We use the relaxed evaluation

similar to Gupta et al. (2016); Adel and Schütze

(2017) on the EC task. The baseline model outper-

forms the state-of-the-art models that do not rely

on manually extracted features (>4% improve-

ment for both tasks), since we directly model the

whole sentence, instead of just considering pairs

of entities. Moreover, compared to the model

of Gupta et al. (2016) that relies on complex fea-

tures, the baseline model performs within a margin

of 1% in terms of overall F1 score. We also re-

port NER results on the same dataset and improve

overall F1 score with ∼1% compared to Miwa and

Sasaki (2014), indicating that our automatically

extracted features are more informative than the

hand-crafted ones. These automatically extracted

features exhibit their performance improvement

mainly due to the shared LSTM layer that learns

to automatically generate feature representations

of entities and their corresponding relations within

a single model. For the DREC dataset, we use two

evaluation methods. In the boundaries evaluation,

the baseline has an improvement of ∼3% on both

tasks compared to Bekoulis et al. (2018a), whose

quadratic scoring layer complicates NER.

Table 1 and Fig. 2 show the effectiveness of the

adversarial training on top of the baseline model.

In all of the experiments, AT improves the pre-

dictive performance of the baseline model in the

joint setting. Moreover, as seen in Fig. 2, the

performance of the models using AT is closer to

maximum even from the early training epochs.

Specifically, for ACE04, there is an improvement

in both tasks as well as in the overall F1 perfor-

mance (0.4%). For CoNLL04, we note an im-

provement in the overall F1 of 0.4% for the EC

and 0.8% for the NER tasks, respectively. For the

DREC dataset, in both settings, there is an overall

improvement of ∼1%. Figure 2 shows that from

the first epochs, the model obtains its maximum

performance on the DREC validation set. Finally,

for ADE, our AT model beats the baseline F1 by

0.7%.

Our results demonstrate that AT outperforms

the neural baseline model consistently, consider-

ing our experiments across multiple and more di-

verse datasets than typical related works. The im-
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