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Abstract

Sememes are defined as the minimum seman-
tic units of human languages. As impor-
tant knowledge sources, sememe-based lin-
guistic knowledge bases have been widely
used in many NLP tasks. However, most lan-
guages still do not have sememe-based lin-
guistic knowledge bases. Thus we present
a task of cross-lingual lexical sememe pre-
diction, aiming to automatically predict se-
memes for words in other languages. We
propose a novel framework to model corre-
lations between sememes and multi-lingual
words in low-dimensional semantic space for
sememe prediction. Experimental results on
real-world datasets show that our proposed
model achieves consistent and significant im-
provements as compared to baseline methods
in cross-lingual sememe prediction. The codes
and data of this paper are available at https:
//github.com/thunlp/CL-SP.

1 Introduction

Words are regarded as the smallest meaningful unit
of speech or writing that can stand by themselves
in human languages, but not the smallest indivisi-
ble semantic unit of meaning. That is, the meaning
of a word can be represented as a set of semantic
components. For example, “Man = human + male
+ adult” and “Boy = human + male + child”. In lin-
guistics, the minimum semantic unit of meaning is
named sememe (Bloomfield, 1926). Some people
believe that semantic meanings of concepts such as
words can be composed of a limited closed set of
sememes. And sememes can help us comprehend
human languages better.

Unfortunately, the lexical sememes of words are
not explicit in most human languages. Hence, peo-
ple construct sememe-based linguistic knowledge

* Indicates equal contribution
' Corresponding author

liuzy@tsinghua.edu.cn

word FR
apple

AN

EXY <71<%>) (4*—% (%)
apple (fruit) apple (brand)

,,,,, %,,,,,,,,,F,,,,,,,,,,,,,,,,
KR LA
fruit

computer
v

fit o
PatternValue able bring

sense

I
I
1
I
I

sememe
1
I
| SpecificBrand
I

Figure 1: An example of HowNet.

bases (KBs) via manually annotating every words
with a pre-defined closed set of sememes. HowNet
(Dong and Dong, 2003) is one of the most well-
known sememe-based linguistic KBs. Different
from WordNet (Miller, 1995) which focuses on the
relations between senses, it annotates each word
with one or more relevant sememes. As illustrated
in Fig. 1, the word apple has two senses includ-
ing apple (fruit) and apple (brand) in HowNet.
The sense apple (fruit) has one sememe fruit, and
the sense apple (brand) has five sememes includ-
ing computer, PatternValue, able, bring and Speci-
ficBrand. There exist about 2,000 sememes and
over 100 thousand labeled Chinese and English
words in HowNet. HowNet has been widely used
in various NLP applications such as word simi-
larity computation (Liu and Li, 2002), word sense
disambiguation (Zhang et al., 2005), question clas-
sification (Sun et al., 2007) and sentiment classifi-
cation (Dang and Zhang, 2010).

However, most languages do not have such
sememe-based linguistic KBs, which prevents us
understanding and utilizing human languages to
a greater extent. Therefore, it is important to
build sememe-based linguistic KBs for various
languages. Manual construction for sememe-
based linguistic KBs requires efforts of many
linguistic experts, which is time-consuming and
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labor-intensive. For example, the construction of
HowNet has cost lots of Chinese linguistic experts
more than 10 years.

To address the issue of the high labor cost of
manual annotation, we propose a new task, cross-
lingual lexical sememe prediction (CLSP) which
aims to automatically predict lexical sememes for
words in other languages. CLSP aims to assist
in the annotation of linguistic experts. There are
two critical challenges for CLSP: (1) There is not
a consistent one-to-one match between words in
different languages. For example, English word
“beautiful” can refer to Chinese words of either
“Em”or“iZ%”. Hence, we cannot simply trans-
late HowNet into another language. And how to
recognize the semantic meaning of a word in other
languages becomes a critical problem. (2) Since
there is a gap between the semantic meanings of
words and sememes, we need to build semantic
representations for words and sememes to capture
the semantic relatedness between them.

To tackle these challenges, in this paper, we pro-
pose a novel model for CLSP, which aims to trans-
fer sememe-based linguistic KBs from source lan-
guage to target language. Our model contains three
modules including (1) monolingual word embed-
ding learning which is intended for learning se-
mantic representations of words for source and tar-
get languages respectively; (2) cross-lingual word
embedding alignment which aims to bridge the gap
between the semantic representations of words in
two languages; (3) sememe-based word embed-
ding learning whose objective is to incorporate se-
meme information into word representations. For
simplicity, we do not consider the hierarchy infor-
mation in HowNet in this paper.

In experiments, we take Chinese as source lan-
guage and English as target language to show the
effectiveness of our model. Experimental results
show that our proposed model could effectively
predict lexical sememes for words with differ-
ent frequencies in other languages. Our model
also has consistent improvements on two auxiliary
experiments including bilingual lexicon induction
and monolingual word similarity computation by
jointly learning the representations of sememes,
words in source and target languages.

2 Related Work

Since HowNet was published (Dong and Dong,
2003), it has attracted wide attention of re-
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searchers. Most of related works focus on apply-
ing HowNet to specific NLP tasks (Liu and Li,
2002; Zhang et al., 2005; Sun et al., 2007; Dang
and Zhang, 2010; Fu et al., 2013; Niu et al., 2017;
Zeng et al., 2018; Gu et al., 2018). To the best of
our knowledge, only Xie et al. (2017) and Jin et al.
(2018) conduct studies of augmenting HowNet by
recommending sememes for new words. How-
ever, both of the two works are aimed to recom-
mend sememes for monolingual words and not ap-
plicable to cross-lingual circumstance. Accord-
ingly, our work is the first effort to automatically
perform cross-lingual sememe prediction to enrich
sememe-based linguistic KBs.

Our novel model adopts the method of word
representation learning (WRL). Recent years have
witnessed great advances in WRL. Models like
Skip-gram, CBOW (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014) are immensely
popular and achieve remarkable performance in
many NLP tasks. However, most WRL meth-
ods learn distributional information of words
from large corpora while the valuable information
contained in semantic lexicons are disregarded.
Therefore, some works try to inject semantic infor-
mation of KBs into WRL (Faruqui et al., 2015; Liu
et al., 2015; MrkSic et al., 2016; Bollegala et al.,
2016). Nevertheless, these works are all applied
to word-based KBs such as WordNet, few works
pay attention to how to incorporate the knowledge
from sememe-based linguistic KBs.

There also have been plenty of studies work-
ing on cross-lingual WRL (Upadhyay et al., 2016;
Ruder, 2017). Most of them require parallel cor-
pora (Zou et al., 2013; AP et al., 2014; Her-
mann and Blunsom, 2014; Kocisky et al., 2014;
Gouws et al., 2015; Luong et al., 2015; Coulmance
et al., 2015). Some of them adopt unsupervised
or weakly supervised methods (Mikolov et al.,
2013b; Vuli¢ and Moens, 2015; Conneau et al.,
2017; Artetxe et al., 2017). There are also some
works using a seed lexicon as the cross-lingual sig-
nal (Dinu et al., 2014; Faruqui and Dyer, 2014;
Lazaridou et al., 2015; Shi et al., 2015; Lu et al.,
2015; Gouws et al., 2015; Wick et al., 2016; Am-
mar et al., 2016; Duong et al., 2016; Vuli¢ and Ko-
rhonen, 2016).

In terms of our cross-lingual sememe prediction
task, parallel data-based bilingual WRL methods
are unsuitable because most language pairs have
no large parallel corpora. Besides, unsupervised



methods are not appropriate either as they are gen-
erally hard to learn high-quality bilingual word
embeddings. Therefore, we choose the seed lex-
icon method in our model, and further introduce
matching mechanism that is inspired by Zhang
et al. (2017) to enhance its performance.

3 Methodology

In this section, we introduce our novel model for
CLSP. Here we define the language with sememe
annotations as source language and the language
without sememe annotations as target language.
The main idea of our model is to learn word em-
beddings of source and target languages jointly
in a unified semantic space, and then predict se-
memes for words in target language according
to the words with similar semantic meanings in
source language.

Our method consists of three parts: monolingual
word representation learning, cross-lingual word
embedding alignment and sememe-based word
representation learning. Hence, we define the ob-
jective function of our method corresponding to
the three parts:

£ - Emono + ‘CCT’OSS + Esememe' (1)
Here, the monolingual term L0, is designed for
learning monolingual word embeddings from non-
parallel corpora for source and target languages re-
spectively. The cross-lingual term Lg0s5 aims to
align cross-lingual word embeddings in a unified
semantic space. And Lgememe can draw sememe
information into word representation learning and
conduce to better word embeddings for sememe
prediction. In the following subsections, we intro-
duce the three parts in detail.

3.1 Monolingual Word Representation

Monolingual word representation is responsible
for explaining regularities in monolingual corpora
of source and target languages. Since the two cor-
pora are non-parallel, £,,0n, cOMprises two mono-
lingual sub-models that are independent of each
other:

Emono = AC;?,; + E% (2)

ono ono?

where the superscripts S and 1" denote source and
target languages respectively.

As a common practice, we choose the well es-
tablished Skip-gram model to obtain monolingual
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word embeddings. Skip-gram model is aimed at
maximizing the predictive probability of context
words conditioned on the centered word. For-
mally, taking the source side for example, given a
training word sequence {w?, - - - , w5 }, Skip-gram
model intends to minimize:

n—K
‘ngno == Z Z logP(wf+k|wf),
c=K+1 -K<k<K,k#0
)

where K is the size of the sliding window.
P(w?,_|w?) stands for the predictive probability
of one of the context words conditioned on the cen-
tered word w2, formalized by the following soft-
max function:

xS W)

a waevs exp(w - w?)’

P (w§+k |7~Uf )

4)

in which V? indicates the word vocabulary of
source language. LI~ can be formulated simi-
larly.

3.2 Cross-lingual Word Embedding
Alignment

Cross-lingual word embedding alignment aims to
build a unified semantic space for the words in
source and target languages. Inspired by Zhang
et al. (2017), we align the cross-lingual word em-
beddings with signals of a seed lexicon and self-
matching.

Formally, L.0ss 1s composed of two terms in-
cluding alignment by seed lexicon L4 and align-
ment by matching L,,q¢ch:

£cross = Asﬁseed + Amﬁmatcha (5)
where \g and )\, are hyperparameters for control-
ling relative weightings of the two terms.

Alignment by Seed Lexicon

The seed lexicon term L..q encourages word em-
beddings of translation pairs in a seed lexicon D to
be close, which can be achieved via a Lo regular-
izer:

S T2
[ws —wi |17,

(6)

£seed =

2

(wf,wl)eD

in which w? and w] indicate the words in source
and target languages in the seed lexicon respec-
tively.



Alignment by Matching Mechanism

As for the matching process, it is founded on an as-
sumption that each target word should be matched
to a single source word or a special empty word,
and vice versa. The goal of the matching process
is to find the matched source (target) word for each
target (source) word and maximize the matching
probabilities for all the matched word pairs. The
loss of this part can be formulated as:

T2S S2T
Lonatch = Ematch + ‘Cmatchﬂ (7)

where L%gch is the term for target-to-source
matching and ,C;jfafch is the term for source-to-
target matching.

Next, we give a detailed explanation of
target-to-source matching, and the source-to-
target matching is defined in the same way.
We first introduce a latent variable m; €
{0,1,--- |V} (t = 1,2,---,|VT]) for each
target word w; , where |V°| and |V'7| indicate the
vocabulary size of source and target languages re-
spectively. Here, m; specifies the index of the
source word that w;f matches with, and m; = 0
signifies the empty word is matched. Then we
have m = {my, ma,--- ,myr}, and can formal-
ize the target-to-source matching term:

= —log P(CT|C%)
= —log)_ P(C",mc%),  ©

£T25

match

where CT and C*® denote the target and source cor-
pus respectively. Here, we simply assume that the
matching processes of target words are indepen-
dent of each other. Therefore, we have:

P m/c) = ] P@” m|c?)
wTecT
V7| )
H P t C(wt )7
where w2, is the source word that w{ matches

with, and c(w]) is the number of times w; occurs

in the target corpus.

3.3 Sememe-based Word Representation

Sememe-based word representation is intended for
improving word embeddings for sememe predic-
tion by introducing the information of sememe-
based linguistic KBs of source language. In this
section, we present two methods of sememe-based
word representation.
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Word Relation-based Approach

A simple and intuitive method is to let words with
similar sememe annotations tend to have similar
word embeddings, which we name word relation-
based approach. To begin with, we construct a syn-
onym list from sememe-based linguistic KBs of
source language, where we regard words sharing
a certain number of sememes as synonyms. Next,
we force synonyms to have closer word embed-
dings.

Formally, we let w7 be original word embed-
ding of wis and Wf be its adjusted word embed-
ding. And let Syn(w?’) denote the synonym set of
word fwf . Then the loss function is:

£sememe: Z |:Q{Z||W _WS”2

wZSEVS
S S 12 (10)
> Bulwy =Wl },

s s
w3 €Syn(w;’)

where a and [ control the relative strengths
of the two terms. It should be noted that
the idea of forcing similar words to have close
word embeddings is similar to the state-of-the-
art retrofitting approach (Faruqui et al., 2015).
However, retrofitting approach cannot be applied
here because sememe-based linguistic KBs such
as HowNet cannot directly provide its needed syn-
onym list.

Sememe Embedding-based Approach

Simple and effective as the word relation-based
approach is, it cannot make full use of the infor-
mation of sememe-based linguistic KBs because it
disregards the complicated relations between se-
memes and words as well as relations between
different sememes. To address this limitation,
we propose sememe embedding-based approach,
which learns both sememe and word embeddings
jointly.

In this approach, we represent sememes with
distributed vectors as well and place them into the
same semantic space as words. Similar to SPSE
(Xie et al., 2017), which learns sememe embed-
dings by decomposing word-sememe matrix and
sememe-sememe matrix, our method utilizes se-
meme embeddings as regularizers to learn better
word embeddings. Different from SPSE, we do
not use pre-trained word embeddings. Instead, we
learn word embeddings and sememe embeddings
simultaneously.



More specifically, from HowNet we can ex-
tract a source-side word-sememe matrix M° with
M SS] = 1 indicating word w? is annotated with

sememe x;, otherwise M Sg = (. Hence by fac-
torizing M*°, we can define the loss function as:

Esememe = E

w§€vs,$]’€X

(W5 X +bs b} — M),

(11)
where b, and b;- are the biases of wf and x;, and
X denotes sememe set.

In this approach, we obtain word and sememe
embeddings in a unified semantic space. The se-
meme embeddings bear all the information about
the relationships between words and sememes, and
they inject the information into word embeddings.
Therefore, the word embeddings are expected to
be more suitable for sememe prediction.

3.4 Training and Prediction

Training

When training monolingual word embeddings, we
use negative sampling following Mikolov et al.
(2013a). In the optimization of sememe part,
we adopt the iterative updating method following
Faruqui et al. (2015) for word relation-based ap-
proach and stochastic gradient descent (SGD) for
sememe embedding-based approach. As for the
optimization of the seed lexicon term of cross-
lingual part, we also apply SGD.

Nevertheless, due to the existence of the la-
tent variable, optimization of the matching process
in cross-lingual part poses a challenge. We set-
tle on Viterbi EM algorithm to address the prob-
lem. Next, we still take the target-to-source side
as an example and give a detailed description of
the training process using Viterbi EM algorithm.

Viterbi EM algorithm alternates between a
Viterbi E step and a subsequent M step. The
Viterbi E step aims to find the most probable
matched word pairs given the current parameters.
Considering the independence, we can seek the
match for each word individually:

g = argmax  P(wl|w?). (12)

s€{0,1,-+,|[VS[}
As for the parametrization of the matching prob-
ability, there are various choices. For computa-
tional simplicity, we select cosine similarity:

ifs=0
Pw! [wf) =4 ° 13
(wi ) {cos(th,wf) otherwise, (13)
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where € is a hyperparameter indicating the proba-
bility of matching the empty word. Therefore, the
Viterbi E step computes matching by:

my = argmax cos(wl,w>),  (14)
s€{l, |[VS[}
~ .f T S
iy = my i cos(vyt W2, ) > €, (15)
0  otherwise.

From this, we can see that € serves as a threshold
to keep out unreliable matched pairs.

The Viterbi M step performs maximization as if
the latent variable has been observed in the Viterbi
E step. Thus, we can treat the matched pairs as cor-
rect translations, and use a Lo regularizer as well.
Consequently, the M step computes:

(WY, w!) = argmax M(w”, w?), (16)
wS wT
where M(w®, w?) is defined as:
‘VT| C(wT)
M W) = = S iy 2 0G5 -,
t=1
(17)

Prediction

Since we assume that words with similar sememe
annotations are similar and similar words should
have similar sememes, which resembles collabora-
tive filtering in personalized recommendation, we
can recommend sememes for target words accord-
ing to their most similar source words.

Formally, we define the score function
P(zj|lw]) of sememes z; given a target word w{
as:

Playluf) = 3 cos(ws.

wSevs

wi )M, (18)

where rg is the descending rank of word simi-
larity cos(w?, w]") for the source word w?, and
¢ € (0,1) is a hyperparameter. Thus, ¢ is a de-
clined confidence factor which can eliminate the
noise from irrelevant source words and concentrate
on the most similar source words when predicting

sememes for target words.

4 Experiments

In this section, we first introduce the dataset used
in the experiments and then describe the experi-
mental settings of both baseline method and our



model. Next, we present the experimental results
of different methods on the task of cross-lingual
lexical sememe prediction. And then we con-
duct detailed analysis and exhaustive case stud-
ies. Following this, we investigate the effect of
word frequency on cross-lingual sememe predic-
tion results. Finally, we perform further quantita-
tive analysis through two sub-tasks including bilin-
gual lexicon induction and word similarity compu-
tation.

4.1 Dataset

We use sememe annotations in HowNet for se-
meme prediction. HowNet annotates sememes
for 118,346 Chinese words and 104,025 En-
glish words. The number of sememes in to-
tal is 1,983. Since some sememes only appear
few times in HowNet, which are expected to be
unimportant, we filter out those low-frequency se-
memes. Specifically, the frequency threshold is 5,
and the final number of distinct sememes used in
our experiments is 1, 400.

In our experiments, Chinese is source language
and English is target language. To learn Chi-
nese and English monolingual word embeddings,
we extract about 2.0G text from Sogou-T! and
Wikipedia? respectively. And we use THULAC?
(Liand Sun, 2009) for Chinese word segmentation.

As for seed lexicon, we build it in a similar way
to Zhang et al. (2017). First, we employ Google
Translation API* to translate the source side (Chi-
nese) vocabulary. Then the translations in the tar-
get language (English) are queried again in the re-
verse direction to translate back to the source lan-
guage (Chinese). And we only keep the translation
pairs whose back translated words match with the
original source words.

In the task of bilingual lexicon induction, we opt
for Chinese-English Translation Lexicon Version
3.0° to be the gold standard. In the task of word
similarity computation, we choose WordSim-240
and WordSim-297 (Jin and Wu, 2012) datasets
for Chinese, and WordSim-353 (Finkelstein et al.,
2002) and SimLex-999 (Hill et al., 2015) datasets
for English to evaluate the performance of our

'Sogou-T is a corpus of web pages provided by a Chinese
commercial search engine. https://www.sogou.com/
labs/resource/t.php

https://dumps.wikimedia.org/

*http://thulac.thunlp.org/

‘nttps://cloud.google.com/translate/

Shttps://catalog.ldc.upenn.edu/
LDC2002L27

model. These datasets contain word pairs as well
as human-assigned similarity scores. The word
vectors are evaluated by ranking the word pairs ac-
cording to their cosine similarities, and measuring
Spearman’s rank correlation coefficient with the
human ratings.

4.2 Experimental Settings

We empirically set the dimension of word and se-
meme embeddings to 200. And the embeddings
are all randomly initialized. In monolingual word
embedding learning, we follow the optimal param-
eter settings in Mikolov et al. (2013a). We set the
window size K to 5, down-sampling rate for high-
frequency words to 1072, learning rate to 0.025
and the number of negative samples to 5. In cross-
lingual word embedding alignment, the seed lexi-
con term weight \g is 0.01, and the matching term
weight A\, is 1, 000. In sememe-based word repre-
sentation, the number of shared sememes for syn-
onyms in the word relation-based approach is 2.
In the training of matching process, we set € to 0.5
empirically. When predicting sememes for words
in target language, we only consider 100 most sim-
ilar source words for each target word and the at-
tenuation parameter c is 0.8. The testing set for
cross-lingual lexical sememe prediction contains
2,000 randomly selected English words from the
vocabulary.

4.3 Cross-lingual Lexical Sememe Prediction

We evaluate our model by recommending se-
memes for English words. In HowNet, many
words have multiple sememes, so that sememe
prediction can be regarded as a multi-label clas-
sification task. We use mean average precision
(MAP) and F; score to evaluate the sememe pre-
diction results.

We compare our model that incorporates se-
meme information with word relation-based ap-
proach (named CLSP-WR) and our model which
jointly trains word and sememe embeddings
(named CLSP-SE) with a baseline method BiLex
(Zhang et al., 2017), a bilingual WRL model with-
out incorporation of sememe information. For
BiLex, we use its trained bilingual word embed-
dings to predict sememes for the words in target
language with our sememe prediction approach.

Table 1 exhibits the evaluation results of cross-
lingual lexical sememe prediction with different
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Sememe Prediction
Method LSef: d

€xicon MAP F1 Score

1000 2757  16.08

BiLex 2000 3379 2233

4000 3578  25.74

6000 3829 2871

1000 2812  18.55

2000 3378 23.64

CLSP-WR 4000 3830  27.74

6000 4123 30.64

1000 3178 1822

2000 3770 2431

CLSP-SE 4000 4077  29.33

6000  43.16  32.49

Table 1: Evaluation results of cross-lingual lexi-
cal sememe prediction with different seed lexicon
sizes.

seed lexicon sizes in {1000, 2000, 4000, 6000°}.
From the table, we can clearly see that:

(1) Our two models perform much better com-
pared with BiLex in all the seed lexicon size set-
tings. It indicates that incorporating sememe infor-
mation into word embeddings can effectively im-
prove the performance of predicting sememes for
target words. The reason is that both of our models
make words with similar sememe annotations have
similar embeddings, and as a result, we can recom-
mend better sememes for target words according to
its related source words.

(2) CLSP-SE model achieves better results than
CLSP-WR model. The reason is that by represent-
ing sememes in a latent semantic space, CLSP-
SE model can further capture the relatedness be-
tween sememes as well as the relatedness between
words and sememes, which is helpful for model-
ing the representations of those words with similar
sememes.

4.4 Case Study

In case study, we conduct qualitative analysis to
explain the effectiveness of our models with de-
tailed cases. We show two examples of cross-
lingual word sememe prediction, in which we pre-
dict sememes for handcuffs and canoeist. Fig. 2
shows the embeddings of five closest Chinese and
English words to handcuffs and canoeist, and the
vector of each word is projected down to two di-
mensions using t-SNE (Maaten and Hinton, 2008).

SThe largest seed lexicon size is 6000 because that is the
maximum number of translation word pairs that we can obtain
from the bilingual corpora.
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Figure 2: Two examples of nearest English and
Chinese words.

Table 2 lists top-5 sememes we predict for the
two words and the sememes annotated for each
word in HowNet are in boldface. In the table,
we also exhibit the annotated sememes of the five
closest Chinese words.

In the first example, our model finds the best
translated word for handcuffs in Chinese 5 4%
“handcuffs”, whose sememe annotations are ex-
actly the same as those of handcuffs. In addition,
the second closest Chinese word 4& 4% “shack-
les” is a synonym for 5 4% “handcuffs” and also
has the same sememe annotations. Therefore, our
model predicts all the correct sememes success-
fully. From the prediction results of this exam-
ple, we notice that our model can accurately pre-
dict general sememes like /] B “tool” and A “hu-
man”, which are supposed to be difficult to predict.

In the second example, accurate Chinese trans-
lated counterpart for canoeist does not exist, but
our model still hits all the three annotated sememes
in the top-5 predicted sememes. By observing the
most similar Chinese words, we can find that al-
though these words do not have the same meaning
as canoeist, they are related to canoeist in different
aspects. For example, 42 ¥ “sprint” and canoeist
are both in the sports domain so that they share the
sememes 4% Mk “exercise” and /& F “sport”. & ¥
“sports star” has the meaning of sports star and it
can provide the sememe A “human” in sememe
prediction. Furthermore, it is noteworthy that our
model predicts #% “ship” due to the nearest Chi-
nese words J% K fF “canoe” and &£ “kayak”,
whereas #% “ship” is not annotated for canoeist in
HowNet. It is obvious that A% “ship” is an appro-
priate sememe for canoeist. Since HowNet is man-
ually annotated by experts, misannotated words al-
ways exist inevitably, which in some cases under-
estimates our models.



Type Words Sememes
English Word handcuffs 2 “tool”, ¥ “police”, u{E “detain”, A “human”, & £ “guilty”
andcuffs uilty”, olice”, uman”, etain”, L “too
%‘é% “handcuffs” ﬁ-gﬁ “g il y” % ssp lice”. A_“h 2 *"ﬁ “d in”, fj AL« 1”
454 “shackles” A I “guilty”, £ “police”, A “human”, 3={f “detain”, F £ “tool”
5 Nearest Chinese Words 45 “tie” &, 3L “wrap”
¥Z 22 7] “screwdriver” B “tool”, 74 “loosen”, ¥ % “tighten”
%8, “rope” 4 “linear”, #1# “material”, &% “fasten”
English Word canoeist 4% “exercise”, A “human”, 4KF “sport”, ¥ I “fact”, A& “ship”
%2 36, “sprint” F I “fact” 485 “exercise” &K FH “sport”
Ik K S “canoe” A% “ship”
5 Nearest Chinese Words R A “kayak” A& “ship”
& F% “sports star” # % “famous”, A “human”, ‘& “official”, & “military”
R A “kayak” T “fact”, 480k “exercise”, & F “sport”

Table 2: Two examples of cross-lingual lexical sememe prediction.

4.5 Effect of Word Frequency

To explore how frequencies of target words affect
cross-lingual sememe prediction results, we split
the testing set into four subsets according to word
frequency and then calculate the sememe predic-
tion MAP and F; score for each subset. The results
are shown in Table 3.

. Word Sememe Prediction
Frequency  pMAP  F, Score
<200 3035  21.83
BiLex 200-500 3483 2595
501-2500 4021  28.62
52500 4756  35.80
<200 3473 2441
200-500 3950  29.49
CLSP-WR 551 2500 4392 33387
52500 4733 34.99
<200 3654 2749
200-500 4146 30.09
CLSP-SE 5012500 4535 3501
52500 4934  37.16

Table 3: Evaluation results of cross-lingual lexical
sememe prediction with different word frequen-
cies. The number of words in each frequency range
18 497, 458, 522 and 523 respectively.

From the table we can see that: (1) The more
frequently a target word appears in the corpus, the
better its predicted sememes are. It is because
high-frequency words normally have better word
embeddings, which are crucial to sememe predic-
tion. (2) Our models evidently perform better than
BiLex in different word frequencies, especially in
low frequency. It indicates that by considering
external information of HowNet, our models are
more robust and can competently handle sparse
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scenarios.

4.6 Further Quantitative Analysis

In this section, we conduct two typical auxiliary
experiments to further analyze the superiority of
our models quantitatively.

Bilingual Lexicon Induction

Our models learn bilingual word embeddings in
one unified semantic space. Here we use transla-
tion top-1 and top-5 average precision (P@1 and
P@5) to evaluate bilingual lexicon induction per-
formance of our models and BiLex. The seed lex-
icon size also varies in {1000, 2000, 4000, 6000}.

Method Se.ed Lexicon Induction
Lexicon P@1 P@5

1000 6.48 10.78

BiLe 2000 10.84  15.84
thex 4000 19.48  23.96
6000 2589  29.59

1000 6.89 11.28

2000 11.96  18.08

CLSP-WR 4000 1950 2578
6000 2583  31.03

1000 6.60 11.04

2000 1190  18.62

CLSP-SE 4000 1926  25.11
6000 2691  32.17

Table 4: Bilingual lexicon induction performance
with different seed lexicon sizes.

The results are shown in Table 4. From this ta-
ble, we observe that our models, especially CLSP-
SE model, enhance the performance of word trans-
lation compared to BiLex no matter how large the
seed lexicon is. It indicates that our models can
bind bilingual word embeddings better.



Word Similarity Computation

We also evaluate the task of monolingual word
similarity computation on WordSim-240 (WS-
240) and WordSim-297 (WS-297) datasets
for Chinese, and WordSim-353 (WS-353) and
SimLex-999 (SL-999) datasets for English.

Chinese (source) English (target)

Method
WS-240 WS-297  WS-353  SL-999
BiLex 60.36 62.17 60.46 27.22
CLSP-WR 61.27 65.25 60.46 27.22
CLSP-SE 60.84 65.62 62.47 28.79

Table 5: Performance on monolingual word simi-
larity computation with seed lexicon size 6000.

Table 5 shows the results of monolingual word
similarity computation on four datasets. From
the table, we find that: (1) Our models per-
form better than BilLex on both Chinese word
similarity datasets. It signifies incorporating se-
meme information helps learn better monolingual
embeddings; (2) CLSP-WR model does not en-
hance English word similarity results but CLSP-
SE model does. It is because CLSP-WR model
only post-processes Chinese word embeddings and
keeps English word embeddings unchanged while
CLSP-SE model undertakes bilingual alignment
and sememe information incorporation together,
which makes English word embeddings improve
with Chinese word embeddings.

5 Conclusion and Future Work

In this paper, we introduce a new task of cross-
lingual sememe prediction. This task is very im-
portant because the construction of sememe-based
linguistic knowledge bases in various languages
is beneficial to better understanding these lan-
guages. We propose a simple and effective model
for this task, including monolingual word repre-
sentation learning, cross-lingual word representa-
tion alignment and sememe-based word represen-
tation learning. Experimental results on real-world
datasets show that our model achieves consistent
and significant improvements compared to base-
line method in cross-lingual sememe prediction.
In the future, we will explore the following re-
search directions: (1) In this paper, for simplifi-
cation, we ignore the rich hierarchy information
in HowNet and also ignore the fact that a word
may have multiple senses. We will extend our
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models to consider the structure information of se-
meme and multiple senses of words; (2) In fact,
our framework for cross-lingual lexical sememe
prediction can be transferred to other cross-lingual
tasks. We will explore the effectiveness of our
model in these tasks such as cross-lingual infor-
mation retrieval.
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