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Abstract

Generative neural models have recently
achieved state-of-the-art results for con-
stituency parsing. However, without a fea-
sible search procedure, their use has so far
been limited to reranking the output of ex-
ternal parsers in which decoding is more
tractable. We describe an alternative to
the conventional action-level beam search
used for discriminative neural models that
enables us to decode directly in these gen-
erative models. We then show that by im-
proving our basic candidate selection strat-
egy and using a coarse pruning function,
we can improve accuracy while explor-
ing significantly less of the search space.
Applied to the model of Choe and Char-
niak (2016), our inference procedure ob-
tains 92.56 F1 on section 23 of the Penn
Treebank, surpassing prior state-of-the-art
results for single-model systems.

1 Introduction

A recent line of work has demonstrated the success
of generative neural models for constituency pars-
ing (Dyer et al., 2016; Choe and Charniak, 2016).
As with discriminative neural parsers, these mod-
els lack a dynamic program for exact inference
due to their modeling of unbounded dependencies.
However, while discriminative neural parsers are
able to obtain strong results using greedy search
(Dyer et al., 2016) or beam search with a small
beam (Vinyals et al., 2015), we find that a simple
action-level approach fails outright in the genera-
tive setting. Perhaps because of this, the applica-
tion of generative neural models has so far been re-
stricted to reranking the output of external parsers.

Intuitively, because a generative parser defines
a joint distribution over sentences and parse trees,

probability mass will be allocated unevenly be-
tween a small number of common structural ac-
tions and a large vocabulary of lexical items.
This imbalance is a primary cause of failure for
search procedures in which these two types of ac-
tions compete directly. A notion of equal com-
petition among hypotheses is then desirable, an
idea that has previously been explored in gener-
ative models for constituency parsing (Henderson,
2003) and dependency parsing (Titov and Hen-
derson, 2010; Buys and Blunsom, 2015), among
other tasks. We describe a related state-augmented
beam search for neural generative constituency
parsers in which lexical actions compete only with
each other rather than with structural actions. Ap-
plying this inference procedure to the generative
model of Choe and Charniak (2016), we find that
it yields a self-contained generative parser that
achieves high performance.

Beyond this, we propose an enhanced candi-
date selection strategy that yields significant im-
provements for all beam sizes. Additionally, mo-
tivated by the look-ahead heuristic used in the
top-down parsers of Roark (2001) and Charniak
(2010), we also experiment with a simple coarse
pruning function that allows us to reduce the num-
ber of states expanded per candidate by several
times without compromising accuracy. Using our
final search procedure, we surpass prior state-of-
the-art results among single-model parsers on the
Penn Treebank, obtaining an F1 score of 92.56.

2 Common Framework

The generative neural parsers of Dyer et al. (2016)
and Choe and Charniak (2016) can be unified un-
der a common shift-reduce framework. Both sys-
tems build parse trees in left-to-right depth-first or-
der by executing a sequence of actions, as illus-
trated in Figure 1. These actions can be grouped
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Figure 1: A parse tree and the action sequence that
produced it, corresponding to the sentence “He
had an idea.” The tree is constructed in left-to-
right depth-first order. The tree contains only non-
terminals and words; part-of-speech tags are not
included. OPEN(X) and CLOSE(X) are rendered
as “(X” and “X)” for brevity.

into three major types: OPEN(X) and CLOSE(X),
which open and close a constituent with nontermi-
nal X ,1 respectively, and SHIFT(x), which adds
the word x to the current constituent. The proba-
bility of an action sequence (a1, . . . , aT ) is

P (a1, . . . , aT ) =
T∏

t=1

P (at | a1, . . . , at−1)

=
T∏

t=1

[softmax(Wut + b)]at ,

where ut is a continuous representation of the
parser’s state at time t, and [v]j denotes the jth
component of a vector v. We refer readers to the
respective authors’ papers for the parameterization
of ut in each model.

In both cases, the decoding process reduces to a
search for the most probable action sequence that
represents a valid tree over the input sentence. For
a given hypothesis, this requirement implies sev-
eral constraints on the successor set (Dyer et al.,
2016); e.g., SHIFT(x) can only be executed if the
next word in the sentence is x, and CLOSE(X)
cannot be executed directly after OPEN(X).

3 Model and Training Setup

We reimplemented the generative model described
in Choe and Charniak (2016) and trained it on
the Penn Treebank (Marcus et al., 1993) using

1The model described in Dyer et al. (2016) has only a
single CLOSE action, whereas the model described in Choe
and Charniak (2016) annotates CLOSE(X) actions with their
nonterminals. We present the more general version here.
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Figure 2: A plot of the action log probabilities
log P (at | a1, . . . , at−1) for the example in Fig-
ure 1 under our main model. We observe that
OPEN and CLOSE actions have much higher prob-
ability than SHIFT actions. This imbalance is re-
sponsible for the failure of standard action-level
beam search.

their published hyperparameters and preprocess-
ing. However, rather than selecting the final model
based on reranking performance, we instead per-
form early stopping based on development set per-
plexity. We use sections 2-21 of the Penn Tree-
bank for training, section 22 for development,
and section 23 for testing. The model’s action
space consists of 26 matching pairs of OPEN and
CLOSE actions, one for each nonterminal, and
6,870 SHIFT actions, one for each preprocessed
word type. While we use this particular model for
our experiments, we note that our subsequent dis-
cussion of inference techniques is equally appli-
cable to any generative parser that adheres to the
framework described above in Section 2.

4 Action-Level Search

Given that ordinary action-level search has been
applied successfully to discriminative neural
parsers (Vinyals et al., 2015; Dyer et al., 2016),
it offers a sensible starting point for decoding in
generative models. However, even for large beam
sizes, the following pathological behavior is en-
countered for generative decoding, preventing rea-
sonable parses from being found. Regardless of
the sequence of actions taken so far, the generative
model tends to assign much higher probabilities to
structural OPEN and CLOSE actions than it does
lexical SHIFT actions, as shown in Figure 2. The
model therefore prefers to continually open new
constituents until a hard limit is reached, as the al-
ternative at each step is to take the low-probability
action of shifting the next word. The resulting
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Beam Size k 200 400 600 800 1000 2000
kw = k 87.47 89.86 90.98 91.62 91.97 92.74

kw = k/10 89.25 91.16 91.83 92.12 92.38 92.93

Table 1: Development F1 scores using word-level
search with various beam sizes k and two choices
of word beam size kw.

sequence typically has much lower overall prob-
ability than a plausible parse, but the model’s my-
opic comparison between structural and lexical ac-
tions prevents reasonable candidates from staying
on the beam. Action-level beam search with beam
size 1000 obtains an F1 score of just 52.97 on the
development set.

5 Word-Level Search

The imbalance between the probabilities of struc-
tural and lexical actions suggests that the two
kinds of actions should not compete against each
other within a beam. This leads us to consider
an augmented state space in which they are kept
separate by design, as was done by Fried et al.
(2017). In conventional action-level beam search,
hypotheses are grouped by the length of their ac-
tion history |A|. Letting Ai denote the set of ac-
tions taken since the ith shift action, we instead
group hypotheses by the pair (i, |Ai|), where i
ranges between 0 and the length of the sentence.

Let k denote the target beam size. The search
process begins with the empty hypothesis in the
(0, 0) bucket. Word-level steps are then taken
according to the following procedure for i =
0, 1, . . . , up to the length of the sentence (inclu-
sive). Beginning with the (i, 0) bucket, the suc-
cessors of each hypothesis are pooled together,
sorted by score, and filtered down to the top k.
Of those that remain, successors obtained by tak-
ing an OPEN or CLOSE action advance to the (i, 1)
bucket, whereas successors obtained from a SHIFT

action are placed in the (i+1, 0) bucket if i is less
than the sentence length, or the completed list if i
is equal to the sentence length. This process is re-
peated for the (i, 1) bucket, the (i, 2) bucket, and
so forth, until the (i+1, 0) bucket contains at least
k hypotheses. If desired, a separate word beam
size kw < k can be used at word boundaries, in
which case each word-level step terminates when
the (i + 1, 0) bucket has kw candidates instead of
k. This introduces a bottleneck that can help to
promote beam diversity.

Development set results for word-level search
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Figure 3: One step of word-level search with fast-
track candidate selection (Sections 5 and 6) for the
example in Figure 1. Grouping candidates by the
current word i ensures that low-probability lexi-
cal actions are kept separate from high-probability
structural actions at the beam level. Fast-track
selection mitigates competition between the two
types of actions within a single pool of successors.

with a variety of beam sizes and with kw = k or
kw = k/10 are given in Table 1. We observe that
performance in both cases increases steadily with
beam size. Word-level search with kw = k/10
consistently outperforms search without a bottle-
neck at all beam sizes, indicating the utility of this
simple diversity-inducing modification. The top
result of 92.93 F1 is already quite strong compared
to other single-model systems.

6 Fast-Track Candidate Selection

The word-level beam search described in Section 5
goes one step toward ameliorating the issue that
causes action-level beam search to fail, namely
the direct competition between common structural
actions with high probabilities and low-frequency
shift actions with low probabilities. However, the
issue is still present to some extent, in that succes-
sors of both types from a given bucket are pooled
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Beam Size k 200 400 600 800 1000 2000
kw = k 91.33 92.17 92.51 92.73 92.89 93.05

kw = k/10 91.41 92.34 92.70 92.94 93.09 93.18

Table 2: Development F1 scores using the settings
from Table 1, together with the fast-track selection
strategy from Section 6 with ks = k/100.

together and filtered down as a single collection
before being routed to their respective destina-
tions. We therefore propose a more direct solution
to the problem, in which a small number ks � k
of SHIFT successors are fast-tracked to the next
word-level bucket before any filtering takes place.
These fast-tracked candidates completely bypass
competition with potentially high-scoring OPEN

or CLOSE successors, allowing for higher-quality
results in practice with minimal overhead. See
Figure 3 for an illustration.

We repeat the experiments from Section 5 with
ks = k/100 and report the results in Table 2. Note
that the use of fast-tracked candidates offers sig-
nificant gains under all settings. The top result im-
proves from 92.93 to 93.18 with the use of fast-
tracked candidates, surpassing prior single-model
systems on the development set.

7 OPEN Action Pruning

At any point during the trajectory of a hypothesis,
either 0 or all 26 of the OPEN actions will be avail-
able, compared with at most 1 CLOSE action and
at most 1 SHIFT action. Hence, when available,
OPEN actions comprise most or all of a candidate’s
successor actions. To help cut down on this por-
tion of the search space, it is natural to consider
whether some of these actions could be ruled out
using a coarse model for pruning.

7.1 Coarse Model

We consider a class of simple pruning models that
condition on the c ≥ 0 most recent actions and the
next word in the sentence, and predict a probabil-
ity distribution over the next action. In the interest
of efficiency, we collapse all SHIFT actions into
a single unlexicalized SHIFT action, significantly
reducing the size of the output vocabulary.

The input vt to the pruning model at time t is
the concatenation of a vector embedding for each
action in the context (at−c, at−c+1, . . . , at−1) and
a vector embedding for the next word w:

vt = [eat−c ; eat−c+1 ; . . . ; eat−1 ; ew],

where each ej is a learned vector embedding. The
pruning model itself is implemented by feeding
the input vector through a one-layer feedforward
network with a ReLU non-linearity, then applying
a softmax layer on top:

P (at = a | a1, . . . , at−1, next-word = w)
= P (at = a | at−c, . . . , at−1, next-word = w)
= [softmax(W2 max(W1vt + b1, 0) + b2)]a.

The pruning model is trained separately from the
main parsing model on gold action sequences de-
rived from the training corpus, with log-likelihood
as the objective function and a cross entropy loss.

7.2 Strategy and Empirical Lower Bound

Once equipped with a coarse model, we use it for
search reduction in the following manner. As men-
tioned above, when a hypothesis is eligible to open
a new constituent, most of its successors will be
obtained through OPEN actions. Accordingly, we
use the coarse model to restrict the set of OPEN

actions to be explored. When evaluating the pool
of successors for a given collection of hypothe-
ses during beam search, we run the coarse model
on each hypothesis to obtain a distribution over
its next possible actions, and gather together all
the coarse scores of the would-be OPEN succes-
sors. We then discard the OPEN successors whose
coarse scores lie below the top 1− p quantile for a
fixed 0 < p < 1, guaranteeing that no more than a
p-fraction of OPEN successors are considered for
evaluation. Taking p = 1 corresponds to the un-
pruned setting.

This strategy gives us a tunable hyperparameter
p that allows us to trade off between the amount
of search we perform and the quality of our re-
sults. Before testing our procedure, however, we
would first like to investigate whether there is a
principled bound on how low we can expect to set
p without a large drop in performance. A simple
estimate arises from noting that the pruning frac-
tion p should be set to a value for which most or
all of the outputs encountered in the training set
are retained. Otherwise, the pruning model would
prevent the main model from even recreating the
training data, let alone producing good parses for
new sentences.

To this end, we collect training corpus statis-
tics on the occurrences of inputs to the pruning
function and their corresponding outputs. We then
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c 1 2 3 4 5 6 7 8 9 10
0 20.0 58.4 82.4 91.0 94.9 96.8 97.9 98.6 98.9 99.2
1 54.9 80.5 91.1 95.9 97.7 98.8 99.5 99.8 99.9 100.0
2 61.2 85.0 93.8 97.4 98.6 99.5 99.8 99.9 100.0 100.0

Table 3: Cumulative distributions of the number
of unique OPEN outputs per input for an order-
c pruning function, computed over pruning inputs
with at least one OPEN output.

p 6/26 7/26 8/26 9/26 10/26 11/26 1
Dev F1 92.78 93.00 93.08 93.13 93.19 93.19 93.18

Table 4: Results when the best setting from Sec-
tion 6 is rerun with OPEN action pruning with con-
text size c = 2 and various pruning fractions p.
Lower values of p indicate more aggressive prun-
ing, while p = 1 means no pruning is performed.

compute the number of unique OPEN actions as-
sociated with inputs occurring at least 20 times,
and restrict our attention to inputs with at least
one OPEN output. The resulting cumulative dis-
tributions for context sizes c = 0, 1, 2 are given
in Table 3. If we require that our pruning frac-
tion p be large enough to recreate at least 99%
of the training data, then since there are 26 to-
tal nonterminals, approximate2 lower bounds for
p are 10/26 ≈ 0.385 for c = 0, 7/26 ≈ 0.269 for
c = 1, and 6/26 ≈ 0.231 for c = 2.

7.3 Pruning Results

We reran our best experiment from Section 6 with
an order-2 pruning function and pruning fractions
p = 6/26, . . . , 11/26. The results are given in
Table 4. We observe that performance is on par
with the unpruned setup (at most 0.1 absolute dif-
ference in F1 score) for p as low as 8/26 ≈ 0.308.
Setting p to 7/26 ≈ 0.269 results in a drop of
0.18, and setting p to 6/26 ≈ 0.231 results in a
drop of 0.40. Hence, degradation begins to occur
right around the empirically-motivated threshold
of 6/26 given above, but we can prune 1−8/26 ≈
69.2% of OPEN successors with minimal changes
in performance.

8 Final Results and Conclusion

We find that the best overall settings are a beam
size of k = 2000, a word beam size of kw = 200,
and ks = 20 fast-track candidates per step, as this

2These thresholds are not exact due to the fact that our
pruning procedure operates on collections of multiple hy-
potheses’ successors at inference time rather than the succes-
sors of an individual hypothesis.

Parser LR LP F1
Vinyals et al. (2015) – – 88.3
Shindo et al. (2012) – – 91.1
Cross and Huang (2016) 90.5 92.1 91.3
Dyer et al. (2016) – – 91.7
Liu and Zhang (2017) 91.3 92.1 91.7
Stern et al. (2017) 90.63 92.98 91.79
Our Best Result 92.57 92.56 92.56
Our Best Result (with pruning) 92.52 92.54 92.53
Vinyals et al. (2015) (ensemble) – – 90.5
Shindo et al. (2012) (ensemble) – – 92.4
Choe and Charniak (2016) (rerank) – – 92.6
Dyer et al. (2016) (rerank) – – 93.3
Fried et al. (2017) (ensemble, rerank) – – 94.25

Table 5: Comparison of F1 scores on section 23 of
the Penn Treebank. Here we only include models
trained without external silver training data. Re-
sults in the first two sections are for single-model
systems.

setup achieves both the highest probabilities un-
der the model and the highest development F1.
We report our test results on section 23 of the
Penn Treebank under these settings in Table 5 both
with and without pruning, as well as a number
of other recent results. We achieve F1 scores of
92.56 on the test set without pruning and 92.53
when 1 − 8/26 ≈ 69.2% of OPEN successors
are pruned, obtaining performance well above the
previous state-of-the-art scores for single-model
parsers. This demonstrates that the model of Choe
and Charniak (2016) works well as an accurate,
self-contained system. The fact that we match the
performance of their reranking parser using the
same generative model confirms the efficacy of
our approach. We believe that further refinements
of our search procedure can continue to push the
bar higher, such as the use of a learned heuristic
function for forward score estimation, or a more
sophisticated approximate decoding scheme mak-
ing use of specific properties of the model. We
look forward to exploring these directions in fu-
ture work.
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