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Abstract

Word embedding has been widely studied and
proven helpful in solving many natural lan-
guage processing tasks. However, the ambi-
guity of natural language is always a prob-
lem on learning high quality word embed-
dings. A possible solution is sense embed-
ding which trains embedding for each sense
of words instead of each word. Some re-
cent work on sense embedding uses context
clustering methods to determine the senses of
words, which is heuristic in nature. Other
work creates a probabilistic model and per-
forms word sense disambiguation and sense
embedding iteratively. However, most of the
previous work has the problems of learning
sense embeddings based on imperfect word
embeddings as well as ignoring the depen-
dency between sense choices of neighboring
words. In this paper, we propose a novel
probabilistic model for sense embedding that
is not based on problematic word embedding
of polysemous words and takes into account
the dependency between sense choices. Based
on our model, we derive a dynamic program-
ming inference algorithm and an Expectation-
Maximization style unsupervised learning al-
gorithm. The empirical studies show that our
model outperforms the state-of-the-art model
on a word sense induction task by a 13% rela-
tive gain.

1 Introduction

Distributed representation of words (aka word em-
bedding) aims to learn continuous-valued vectors to
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represent words based on their context in a large cor-
pus. They can serve as input features for algorithms
of natural language processing (NLP) tasks. High
quality word embeddings have been proven helpful
in many NLP tasks (Collobert and Weston, 2008;
Turian et al., 2010; Collobert et al., 2011; Maas
et al., 2011; Chen and Manning, 2014). Recently,
with the development of deep learning, many novel
neural network architectures are proposed for train-
ing high quality word embeddings (Mikolov et al.,
2013a; Mikolov et al., 2013b).

However, since natural language is intrinsically
ambiguous, learning one vector for each word may
not cover all the senses of the word. In the case of a
multi-sense word, the learned vector will be around
the average of all the senses of the word in the em-
bedding space, and therefore may not be a good rep-
resentation of any of the senses. A possible solution
is sense embedding which trains a vector for each
sense of a word. There are two key steps in training
sense embeddings. First, we need to perform word
sense disambiguation (WSD) or word sense induc-
tion (WSI) to determine the senses of words in the
training corpus. Then, we need to train embedding
vectors for word senses according to their contexts.

Early work on sense embedding (Reisinger and
Mooney, 2010; Huang et al., 2012; Chen et al.,
2014; Neelakantan et al., 2014; Kageback et al.,
2015; Li and Jurafsky, 2015) proposes context clus-
tering methods which determine the sense of a word
by clustering aggregated embeddings of words in its
context. This kind of methods is heuristic in nature
and relies on external knowledge from lexicon like
WordNet (Miller, 1995).
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Recently, sense embedding methods based on
complete probabilistic models and well-defined
learning objective functions (Tian et al., 2014; Bar-
tunov et al., 2016; Jauhar et al., 2015) become
more popular. These methods regard the choice of
senses of the words in a sentence as hidden vari-
ables. Learning is therefore done with expectation-
maximization style algorithms, which alternate be-
tween inferring word sense choices in the training
corpus and learning sense embeddings.

A common problem with these methods is that
they model the sense embedding of each center word
dependent on the word embeddings of its context
words. As we previously explained, word embed-
ding of a polysemous word is not a good repre-
sentation and may negatively influence the qual-
ity of inference and learning. Furthermore, these
methods choose the sense of each word in a sen-
tence independently, ignoring the dependency that
may exist between the sense choices of neighbor-
ing words. We argue that such dependency is im-
portant in word sense disambiguation and therefore
helpful in learning sense embeddings. For exam-
ple, consider the sentence “He cashed a check at
the bank”. Both “check” and “bank” are ambiguous
here. Although the two words hint at banking related
senses, the hint is not decisive (as an alternative in-
terpretation, they may represent a check mark at a
river bank). Fortunately, “cashed” is not ambiguous
and it can help disambiguate “check”. However, if
we consider a small context window in sense em-
bedding, then “cashed” cannot directly help disam-
biguate “bank”. We need to rely on the dependency
between the sense choices of “check” and “bank” to
disambiguate “bank”.

In this paper, we propose a novel probabilistic
model for sense embedding that takes into account
the dependency between sense choices of neighbor-
ing words. We do not learn any word embeddings in
our model and hence avoid the problem with em-
bedding polysemous words discussed above. Our
model has a similar structure to a high-order hidden
Markov model. It contains a sequence of observable
words and latent senses and models the dependency
between each word-sense pair and between neigh-
boring senses in the sequence. The energy of neigh-
boring senses can be modeled using existing word
embedding approaches such as CBOW and Skip-

gram (Mikolov et al., 2013a; Mikolov et al., 2013b).
Given the model and a sentence, we can perform ex-
act inference using dynamic programming and get
the optimal sense sequence of the sentence. Our
model can be learned from an unannotated corpus
by optimizing a max-margin objective using an al-
gorithm similar to hard-EM.

Our main contributions are the following:

1. We propose a complete probabilistic model for
sense embedding. Unlike previous work, we
model the dependency between sense choices
of neighboring words and do not learn sense
embeddings dependent on problematic word
embeddings of polysemous words.

2. Based on our proposed model, we derive an
exact inference algorithm and a max-margin
learning algorithm which do not rely on ex-
ternal knowledge from any knowledge base or
lexicon (except that we determine the numbers
of senses of polysemous words according to an
existing sense inventory).

3. The performance of our model on contex-
tual word similarity task is competitive with
previous work and we obtain a 13% relative
gain compared with previous state-of-the-art
methods on the word sense induction task of
SemEval-2013.

The rest of this paper is organized as follows. We
introduce related work in section 2. Section 3 de-
scribes our models and algorithms in detail. We
present our experiments and results in section 4. In
section 5, a conclusion is given.

2 Related Work

Distributed representation of words (aka word em-
bedding) was proposed in 1986 (Hinton, 1986;
Rumelhart et al., 1986). In 2003, Bengio et al.
(2003) proposed a neural network architecture to
train language models which produced word em-
beddings in the neural network. Mnih and Hin-
ton (2007) replaced the global normalization layer
of Bengio’s model with a tree-structure to accel-
erate the training process. Collobert and Weston
(2008) introduced a max-margin objective function
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to replace the most computationally expensive max-
likelihood objective function. Recently proposed
Skip-gram model, CBOW model and GloVe model
(Mikolov et al., 2013a; Mikolov et al., 2013b; Pen-
nington et al., 2014) were more efficient than tradi-
tional models by introducing a log-linear layer and
making it possible to train word embeddings with
a large scale corpus. With the development of neu-
ral network and deep learning techniques, there have
been a lot of work based on neural network mod-
els to obtain word embedding (Turian et al., 2010;
Collobert et al., 2011; Maas et al., 2011; Chen and
Manning, 2014). All of them have proven that word
embedding is helpful in NLP tasks.

However, the models above assumed that one
word has only one vector as its representation which
is problematic for polysemous words. Reisinger
and Mooney (2010) proposed a method for con-
structing multiple sense-specific representation vec-
tors for one word by performing word sense dis-
ambiguation with context clustering. Huang et
al. (2012) further extended this context cluster-
ing method and incorporated global context to learn
multi-prototype representation vectors. Chen et al.
(2014) extended the context clustering method and
performed word sense disambiguation according to
sense glosses from WordNet (Miller, 1995). Nee-
lakantan et al. (2014) proposed an extension of the
Skip-gram model combined with context clustering
to estimate the number of senses for each word as
well as learn sense embedding vectors. Instead of
performing word sense disambiguation tasks, Kage-
back et al. (2015) proposed the instance-context em-
bedding method based on context clustering to per-
form word sense induction tasks. Li and Jurafsky
(2015) introduced a multi-sense embedding model
based on the Chinese Restaurant Process and applied
it to several natural language understanding tasks.

Since the context clustering based models are
heuristic in nature and rely on external knowledge,
recent work tends to create probabilistic models for
learning sense embeddings. Tian et al. (2014)
proposed a multi-prototype Skip-gram model and
designed an Expectation-Maximization (EM) algo-
rithm to do word sense disambiguation and learn
sense embedding vectors iteratively. Jauhar et al.
(2015) extended the EM training framework and
retrofitted embedding vectors to the ontology of

WordNet. Bartunov et al. (2016) proposed a non-
parametric Bayesian extension of Skip-gram to au-
tomatically learn the required numbers of represen-
tations for all words and perform word sense induc-
tion tasks.

3 Context-Dependent Sense Embedding
Model

We propose the context-dependent sense embedding
model for training high quality sense embeddings
which takes into account the dependency between
sense choices of neighboring words. Unlike pervi-
ous work, we do not learn any word embeddings in
our model and hence avoid the problem with embed-
ding polysemous words discussed previously. In this
section, we will introduce our model and describe
our inference and learning algorithms.

3.1 Model

We begin with the notation in our model. In a sen-
tence, let wi be the ith word of the sentence and si
be the sense of the ith word. S(w) denotes the set of
all the senses of word w. We assume that the sets of
senses of different words do not overlap. Therefore,
in this paper a word sense can be seen as a lexeme
of the word (Rothe and Schutze, 2015).

Our model can be represented as a Markov net-
work shown in Figure 1. It is similar to a high-
order hidden Markov model. The model contains
a sequence of observable words (w1, w2, . . .) and la-
tent senses (s1, s2, . . .). It models the dependency
between each word-sense pair and between neigh-
boring senses in the sequence. The energy function
is formulated as follows:

E(w, s) =
∑

i

(
E1(wi, si) + E2(si−k, . . . , si+k)

)

(1)

Here w = {wi|1 ≤ i ≤ l} is the set of words in
a sentence with length l and s = {si|1 ≤ i ≤ l} is
the set of senses. The function E1 models the de-
pendency between a word-sense pair. As we assume
that the sets of senses of different words do not over-
lap, we can formulate E1 as follows:
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Figure 1: Context-Dependent Sense Embedding Model with window size k = 1

E1(wi, si) =

{
0 si ∈ S(wi)

+∞ si /∈ S(wi)
(2)

Here we assume that all the matched word-sense
pairs have the same energy, but it would also be
interesting to model the degrees of matching with
different energy values in E1. In Equation 1, the
functionE2 models the compatibility of neighboring
senses in a context window with fixed size k. Ex-
isting embedding approaches like CBOW and Skip-
gram (Mikolov et al., 2013a; Mikolov et al., 2013b)
can be used here to define E2. The formulation us-
ing CBOW is as follows:

E2(si−k, . . . , si+k) =

− σ
( ∑

i−k≤j≤i+k,j 6=i

V T (sj)V
′(si)

)
(3)

Here V (s) and V ′(s) are the input and output em-
bedding vectors of sense s. The function σ is an
activation function and we use the sigmoid function
here in our model. The formulation using Skip-gram
can be defined in a similar way:

E2(si−k, . . . , si+k) =

−
∑

i−k≤j≤i+k,j 6=i

σ

(
V T (sj)V

′(si)
)

(4)

3.2 Inference
In this section, we introduce our inference algo-
rithm. Given the model and a sentence w, we want

to infer the most likely values of the hidden variables
(i.e. the optimal sense sequence of the sentence) that
minimize the energy function in Equation 1:

s∗ = arg min
s
E(w, s) (5)

We use dynamic programming to do inference
which is similar to the Viterbi algorithm of the
hidden Markov model. Specifically, for every
valid assignment Ai−2k, . . . , Ai−1 of every sub-
sequence of senses si−2k, . . . , si−1, we define
m(Ai−2k, . . . , Ai−1) as the energy of the best sense
sequence up to position i − 1 that is consistent
with the assignment Ai−2k, . . . , Ai−1. We start with
m(A1, . . . , A2k) = 0 and then recursively compute
m in a left-to-right forward process based on the up-
date formula:

m(Ai−2k+1, . . . , Ai) = min
Ai−2k

(
m(Ai−2k, . . . , Ai−1)

+ E1(wi, Ai) + E2(Ai−2k, . . . , Ai)

)

(6)

Once we finish the forward process, we can retrieve
the best sense sequence with a backward process.
The time complexity of the algorithm is O(n4kl)
where n is the maximal number of senses of a word.
Because most words in a typical sentence have either
a single sense or far less than n senses, the actual
running time of the algorithm is very fast.

3.3 Learning
In this section, we introduce our unsupervised learn-
ing algorithm. In learning, we want to learn all the
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input and output sense embedding vectors that opti-
mize the following max-margin objective function:

Θ∗ = arg min
Θ

∑

w∈C
min

s

‖w‖∑

i=1

∑

sneg∈Sneg(wi)

max

(
1 + E1(wi, si) + E2(si−k, . . . , si+k)−

E2(si−k, . . . , si−1, sneg, si+1, . . . , si+k), 0

)

(7)

Here Θ is the set of all the parameters includ-
ing V and V ′ for all the senses. C is the set of
training sentences. Our learning objective is similar
to the negative sampling and max-margin objective
proposed for word embedding (Collobert and We-
ston, 2008). Sneg(wi) denotes the set of negative
samples of senses of word wi which is defined with
the following strategy. For a polysemous word wi,
Sneg(wi) = S(wi)\{si}. For the other words with a
single sense, Sneg(wi) is a set of randomly selected
senses of a fixed size.

The objective in Equation 7 can be optimized by
coordinate descent which in our case is equivalent
to the hard Expectation-Maximization algorithm. In
the hard E step, we run the inference algorithm us-
ing the current model parameters to get the optimal
sense sequences of the training sentences. In the M
step, with the sense sequences s of all the sentences
fixed, we learn sense embedding vectors. Assume
we use the CBOW model for E2 (Equation 3), then
the M-step objective function is as follows:

Θ∗ = arg min
Θ

∑

w∈C

‖w‖∑

i=1

∑

sneg∈Sneg(wi)

max

(
1− σ(

∑

i−k≤j≤i+k,j 6=i

V (sj)
TV ′(si))

+ σ(
∑

i−k≤j≤i+k,j 6=i

V (sj)
TV ′(sneg)), 0

)

(8)

Here E1 is omitted because the sense sequences
produced from the E-step always have zero E1

value. Similarly, if we use the Skip-gram model for

E2 (Equation 4), then the M-step objective function
is:

Θ∗ = arg min
Θ

∑

w∈C

‖w‖∑

i=1

∑

i−k≤j≤i+k,j 6=i

∑

sneg∈Sneg(wi)

max

(
1− σ(V (sj)

TV ′(si))

+ σ(V (sj)
TV ′(sneg)), 0

)

(9)

We optimize the M-step objective function using
stochastic gradient descent.

We use a mini batch version of the hard EM al-
gorithm. For each sentence in the training corpus,
we run E-step to infer its sense sequence and then
immediately run M-step (for 1 iteration of stochas-
tic gradient descent) to update the model parameters
based on the senses in the sentence. Therefore, the
batch size of our algorithm depends on the length of
each sentence.

The advantage of using mini batch is twofold.
First, while our learning objective is highly non-
convex (Tian et al., 2014), the randomness in mini
batch hard EM may help us avoid trapping into local
optima. Second, the model parameters are updated
more frequently in mini batch hard EM, resulting in
faster convergence.

Note that before running hard-EM, we need to
determine, for each word w, the size of S(w). In
our experiments, we used the sense inventory pro-
vided by Coarse-Grained English All-Words Task of
SemEval-2007 Task 07 (Navigli et al., 2007) to de-
termine the number of senses for each word. The
sense inventory is a coarse version of WordNet sense
inventory. We do not use the WordNet sense in-
ventory because the senses in WordNet are too fine-
grained and are difficult to recognize even for human
annotators (Edmonds and Kilgarriff, 2002). Since
we do not link our learned senses with external sense
inventories, our approach can be seen as performing
WSI instead of WSD.

4 Experiments

This section presents our experiments and results.
First, we describe our experimental setup includ-
ing the training corpus and the model configuration.
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Word Nearest Neigbors
bank 1 banking, lender, loan
bank 2 river, canal, basin
bank 3 slope, tilted, slant
apple 1 macintosh, imac, blackberry
apple 2 peach, cherry, pie
date 1 birthdate, birth, day
date 2 appointment, meet, dinner
fox 1 cbs, abc, nbc
fox 2 wolf, deer, rabbit

Table 1: The nearest neighbors of senses of polysemous words

Then, we perform a qualitative evaluation on our
model by presenting the nearest neighbors of senses
of some polysemous words. Finally, we introduce
two different tasks and show the experimental re-
sults on these tasks respectively.

4.1 Experimental Setup

4.1.1 Training Corpus
Our training corpus is the commonly used

Wikipedia corpus. We dumped the October 2015
snapshot of the Wikipedia corpus which contains 3.6
million articles. In our experiments, we removed the
infrequent words with less than 20 occurrences and
the training corpus contains 1.3 billion tokens.

4.1.2 Configuration
In our experiments, we set the context window

size to 5 (5 words before and after the center word).
The embedding vector size is set to 300. The size
of negative sample sets of single-sense words is set
to 5. We trained our model using AdaGrad stochas-
tic gradient decent (Duchi et al., 2010) with initial
learning rate set to 0.025. Our configuration is simi-
lar to that of previous work.

Similar to Word2vec, we initialized our model
by randomizing the sense embedding vectors. The
number of senses of all the words is determined with
the sense inventory provided by Coarse-Grained En-
glish All-Words Task of SemEval-2007 Task 07
(Navigli et al., 2007) as we explained in section 3.3.

4.2 Case Study

In this section, we give a qualitative evaluation of
our model by presenting the nearest neighbors of the

senses of some polysemous words. Table 1 shows
the results of our qualitative evaluation. We list sev-
eral polysemous words in the table, and for each
word, some typical senses of the word are picked.
The nearest neighbors of each sense are listed aside.
We used the cosine distance to calculate the distance
between sense embedding vectors and find the near-
est neighbors.

In Table 1, we can observe that our model pro-
duces good senses for polysemous words. For exam-
ple, the word “bank” can be seen to have three dif-
ferent sense embedding vectors. The first one means
the financial institution. The second one means the
sloping land beside water. The third one means the
action of tipping laterally.

4.3 Word Similarity in Context

This section gives a quantitative evaluation of our
model on word similarity tasks. Word similar-
ity tasks evaluate a model’s performance with the
Spearman’s rank correlation between the similarity
scores of pairs of words given by the model and the
manual labels. However, traditional word similarity
tasks like Wordsim-353 (Finkelstein et al., 2001) are
not suitable for evaluating sense embedding models
because these datasets do not include enough am-
biguous words and there is no context information
for the models to infer and disambiguate the senses
of the words. To overcome this issue, Huang et
al. (2012) released a new dataset named Stanford’s
Contextual Word Similarities (SCWS) dataset. The
dataset consists of 2003 pairs of words along with
human labelled similarity scores and the sentences
containing these words.

Given a pair of words and their contexts, we
can perform inference using our model to disam-
biguate the questioned words. A similarity score can
be calculated with the cosine distance between the
two embedding vectors of the inferred senses of the
questioned words. We also propose another method
for calculating similarity scores. In the inference
process, we compute the energy of each sense choice
of the questioned word and consider the negative en-
ergy as the confidence of the sense choice. Then we
calculate the cosine similarity between all pairs of
senses of the questioned words and compute the av-
erage of similarity weighted by the confidence of the
senses. The first method is named HardSim and the

188



Model
Similarity
Metrics

ρ× 100

Huang AvgSim 62.8
Huang AvgSimC 65.7
Chen AvgSim 66.2
Chen AvgSimC 68.9
Neelakantan AvgSim 67.2
Neelakantan AvgSimC 69.2
Li 69.7
Tian Model M 63.6
Tian Model W 65.4
Bartunov AvgSimC 61.2
Ours + CBOW HardSim 64.3
Ours + CBOW SoftSim 65.6
Ours + Skip-gram HardSim 64.9
Ours + Skip-gram SoftSim 66.1

Table 2: Spearman’s rank correlation results on the SCWS

dataset

second method is named SoftSim.
Table 2 shows the results of our context-

dependent sense embedding models on the SCWS
dataset. In this table, ρ refers to the Spearman’s rank
correlation and a higher value of ρ indicates better
performance. The baseline performances are from
Huang et al. (2012), Chen et al. (2014), Neelakan-
tan et al. (2014), Li and Jurafsky (2015), Tian et
al. (2014) and Bartunov et al. (2016). Here Ours
+ CBOW denotes our model with a CBOW based
energy function and Ours + Skip-gram denotes our
model with a Skip-gram based energy function. The
results above the thick line are the models based
on context clustering methods and the results below
the thick line are the probabilistic models including
ours. The similarity metrics of context clustering
based models are AvgSim and AvgSimC proposed
by Reisinger and Mooney (2010). Tian et al. (2014)
propose two metrics Model M and Model W which
are similar to our HardSim and SoftSim metrics.

From Table 2, we can observe that our model out-
performs the other probabilistic models and is not
as good as the best context clustering based model.
The context clustering based models are overall bet-
ter than the probabilistic models on this task. A
possible reason is that most context clustering based
methods make use of more external knowledge than

probabilistic models. However, note that Faruqui
et al. (2016) presented several problems associated
with the evaluation of word vectors on word simi-
larity datasets and pointed out that the use of word
similarity tasks for evaluation of word vectors is not
sustainable. Bartunov et al. (2016) also suggest that
SCWS should be of limited use for evaluating word
representation models. Therefore, the results on this
task shall be taken with caution. We consider that
more realistic natural language processing tasks like
word sense induction are better for evaluating sense
embedding models.

4.4 Word Sense Induction
In this section, we present an evaluation of our
model on the word sense induction (WSI) tasks. The
WSI task aims to discover the different meanings
for words used in sentences. Unlike a word sense
disambiguation (WSD) system, a WSI system does
not link the sense annotation results to an existing
sense inventory. Instead, it produces its own sense
inventory and links the sense annotation results to
this sense inventory. Our model can be seen as a
WSI system, so we can evaluate our model with WSI
tasks.

We used the dataset from task 13 of SemEval-
2013 as our evaluation set (Jurgens and Klapaftis,
2013). The dataset contains 4664 instances inflected
from one of the 50 lemmas. Both single-sense
instances and instances with a graded mixture of
senses are included in the dataset. In this paper, we
only consider the single sense instances. Jurgens and
Klapaftis (2013) propose two fuzzy measures named
Fuzzy B-Cubed (FBC) and Fuzzy Normalized Mu-
tual Information (FNMI) for comparing fuzzy sense
assignments from WSI systems. the FBC measure
summarizes the performance per instance while the
FNMI measure is based on sense clusters rather than
instances.

Table 3 shows the results of our context-
dependent sense embedding models on this dataset.
Here HM is the harmonic mean of FBC and FNMI.
The result of AI-KU is from Baskaya et al. (2013),
MSSG is from Neelakantan et al. (2014), ICE-
online and ICE-kmeans are from Kageback et al.
(2015). Our models are denoted in the same way
as in the previous section.

From Table 3, we can observe that our models

189



Model FBC(%) FNMI(%) HM
AI-KU 35.1 4.5 8.0
MSSG 45.9 3.7 6.8
ICE-online 48.7 5.5 9.9
ICE-kmeans 51.1 5.9 10.6
Ours + CBOW 53.8 6.3 11.3
Ours + Skip-gram 56.9 6.7 12.0

Table 3: Results of single-sense instances on task 13 of

SemEval-2013

outperform the previous state-of-the-art models and
achieve a 13% relative gain. It shows that our mod-
els can beat context clustering based models on re-
alistic natural language processing tasks.

5 Conclusion

In this paper we propose a novel probabilistic model
for learning sense embeddings. Unlike previous
work, we do not learn sense embeddings dependent
on word embeddings and hence avoid the problem
with inaccurate embeddings of polysemous words.
Furthermore, we model the dependency between
sense choices of neighboring words which can help
us disambiguate multiple ambiguous words in a sen-
tence. Based on our model, we derive a dynamic
programming inference algorithm and an EM-style
unsupervised learning algorithm which do not rely
on external knowledge from any knowledge base
or lexicon except that we determine the number of
senses of polysemous words according to an existing
sense inventory. We evaluate our model both quali-
tatively by case studying and quantitatively with the
word similarity task and the word sense induction
task. Our model is competitive with previous work
on the word similarity task. On the word sense in-
duction task, our model outperforms the state-of-
the-art model and achieves a 13% relative gain.

For the future work, we plan to try learning our
model with soft EM. Besides, we plan to use shared
senses instead of lexemes in our model to improve
the generality of our model. Also, we will study
unsupervised methods to link the learned senses to
existing inventories and to automatically determine
the numbers of senses. Finally, we plan to evaluate
our model with more NLP tasks.

References

Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin,
and Dmitry Vetrov. 2016. Breaking sticks and am-
biguities with adaptive skip-gram.

Osman Baskaya, Enis Sert, Volkan Cirik, and Deniz
Yuret. 2013. Ai-ku: Using substitute vectors and
co-occurrence modeling for word sense induction and
disambiguation. In Second Joint Conference on Lexi-
cal and Computational Semantics (*SEM), Volume 2:
Seventh International Workshop on Semantic Evalua-
tion (SemEval 2013), pages 300–306.

Yoshua Bengio, Holger Schwenk, Jean Sbastien Sencal,
Frderic Morin, and Jean Luc Gauvain. 2003. A neu-
ral probabilistic language model. Journal of Machine
Learning Research, 3(6):1137–1155.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In EMNLP, pages 740–750.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and dis-
ambiguation. In EMNLP, pages 1025–1035. Associa-
tion for Computational Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th international conference on Machine learn-
ing, pages 160–167. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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