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Abstract

In this paper, we propose a new frame-
work that unifies the output of three infor-
mation extraction (IE) tasks - entity men-
tions, relations and events as an informa-
tion network representation, and extracts
all of them using one single joint model
based on structured prediction. This novel
formulation allows different parts of the
information network fully interact with
each other. For example, many rela-
tions can now be considered as the re-
sultant states of events. Our approach
achieves substantial improvements over
traditional pipelined approaches, and sig-
nificantly advances state-of-the-art end-to-
end event argument extraction.

1 Introduction

Information extraction (IE) aims to discover entity
mentions, relations and events from unstructured
texts, and these three subtasks are closely inter-
dependent: entity mentions are core components
of relations and events, and the extraction of rela-
tions and events can help to accurately recognize
entity mentions. In addition, the theory of eventu-
alities (Dolling, 2011) suggested that relations can
be viewed as states that events start from and result
in. Therefore, it is intuitive but challenging to ex-
tract all of them simultaneously in a single model.
Some recent research attempted to jointly model
multiple IE subtasks (e.g., (Roth and Yih, 2007;
Riedel and McCallum, 2011; Yang and Cardie,
2013; Riedel et al., 2009; Singh et al., 2013; Li et
al., 2013; Li and Ji, 2014)). For example, Roth and
Yih (2007) conducted joint inference over entity
mentions and relations; Our previous work jointly
extracted event triggers and arguments (Li et al.,
2013), and entity mentions and relations (Li and
Ji, 2014). However, a single model that can ex-
tract all of them has never been studied so far.
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Figure 1: Information Network Representation.
Information nodes are denoted by rectangles. Ar-
rows represent information arcs.

For the first time, we uniformly represent the IE
output from each sentence as an information net-
work, where entity mentions and event triggers are
nodes, relations and event-argument links are arcs.
We apply a structured perceptron framework with
a segment-based beam-search algorithm to con-
struct the information networks (Collins, 2002; Li
etal., 2013; Liand Ji, 2014). In addition to the per-
ceptron update, we also apply k-best MIRA (Mc-
Donald et al., 2005), which refines the perceptron
update in three aspects: it is flexible in using var-
ious loss functions, it is a large-margin approach,
and it can use mulitple candidate structures to tune
feature weights.

In an information network, we can capture the
interactions among multiple nodes by learning
joint features during training. In addition to the
cross-component dependencies studied in (Li et
al., 2013; Li and Ji, 2014), we are able to cap-
ture interactions between relations and events. For
example, in Figure 1, if we know that the Person
mention “Asif Mohammed Hanif” is an Attacker
of the Attack event triggered by “detonated”, and
the Weapon mention “explosives” is an Instrument,
we can infer that there exists an Agent-Artifact
relation between them. Similarly we can infer
the Physical relation between “Asif Mohammed
Hanif” and “Tel Aviv”.

However, in practice many useful interactions
are missing during testing because of the data spar-

1846

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1846-1851,
October 25-29, 2014, Doha, Qatar. (©2014 Association for Computational Linguistics



sity problem of event triggers. We observe that
21.5% of event triggers appear fewer than twice in
the ACE’05' training data. By using only lexical
and syntactic features we are not able to discover
the corresponding nodes and their connections. To
tackle this problem, we use FrameNet (Baker and
Sato, 2003) to generalize event triggers so that
semantically similar triggers are clustered in the
same frame.

The following sections will elaborate the de-
tailed implementation of our new framework.

2 Approach

We uniformly represent the IE output from each
sentence as an information network y = (V, E).
Each node v; € V is represented as a triple
(ug,v;, t;) of start index u;, end index v;, and node
type t;. A node can be an entity mention or an
event trigger. A particular type of node is L (nei-
ther entity mention nor event trigger), whose max-
imal length is always 1. Similarly, each infor-
mation arc e; € E is represented as (uj, vj,7;),
where u; and v; are the end offsets of the nodes,
and r; is the arc type. For instance, in Fig-
ure 1, the event trigger “detonated” is represented
as (4,4,attack), the entity mention “Asif Mo-
hammed Hanif” is represented as (1,3, Person),
and their argument arc is (4,3, Attacker). Our
goal is to extract the whole information network y
for a given sentence x.

2.1 Decoding Algorithm

Our joint decoding algorithm is based on ex-
tending the segment-based algorithm described in
our previous work (Li and Ji, 2014). Let z =
(z1, ..., zm) be the input sentence. The decoder
performs two types of actions at each token x;
from left to right:

e NODEACTION(%, j): appends a new node
(j,1,t) ending at the i-th token, where i — d; <
J < 1, and d; is the maximal length of type-t
nodes in training data.

e ARCACTION(s, j): for each j < i, incremen-
tally creates a new arc between the nodes ending
at the j-th and i-th tokens respectively: (i, j, 7).

After each action, the top-k hypotheses are se-
lected according to their features f(z,y’) and

"http://www.itl.nist.gov/iad/mig/tests/ace

weights w:

best, f(z,y) -w

y' €buffer
Since a relation can only occur between a pair of
entity mentions, an argument arc can only occur
between an entity mention and an event trigger,
and each edge must obey certain entity type con-
straints, during the search we prune invalid AR-
CACTIONs by checking the types of the nodes
ending at the j-th and the i-th tokens. Finally, the
top hypothesis in the beam is returned as the final
prediction. The upper-bound time complexity of
the decoding algorithm is O(d - b - m?), where d
is the maximum size of nodes, b is the beam size,
and m is the sentence length. The actual execution
time is much shorter, especially when entity type
constraints are applied.

2.2 Parameter Estimation

For each training instance (z,y), the structured
perceptron algorithm seeks the assignment with
the highest model score:

z = argmax f(x,y’) - w
y' €Y(x)

and then updates the feature weights by using:
wY =w + f(z,y) — f(z, 2)

We relax the exact inference problem by the afore-
mentioned beam-search procedure. The stan-
dard perceptron will cause invalid updates be-
cause of inexact search. Therefore we apply early-
update (Collins and Roark, 2004), an instance of
violation-fixing methods (Huang et al., 2012). In
the rest of this paper, we override y and z to denote
prefixes of structures.

In addition to the simple perceptron update, we
also apply k-best MIRA (McDonald et al., 2005),
an online large-margin learning algorithm. During
each update, it keeps the norm of the change to
feature weights w as small as possible, and forces
the margin between y and the k-best candidate z
greater or equal to their loss L(y, z). It is formu-
lated as a quadratic programming problem:

min |[w" — wl|
s.t. WY (z,y) — wf(x,2) > L(y, 2)
Vz € besty(z,w)

We employ the following three loss functions
for comparison:
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Freq. | Relation Type Event Type Arg-1 Arg-2 Example
159 Physical Transport Artifact  Destination | He(arg.1) Was escorted gigger) into Iraqarg-2)-
46 Physical Attack Target Place Many people yg-1) Were in the cafe a2y during the blastrigger).-
42 Agent-Artifact Attack Attacker  Instrument | Terrorists(arg.1) might use(uigger) the devices(rg-2) as weapons.
41 Physical Transport Artifact Origin The truckarg.1) Was carryinguigger) Syrians fleeing the war in Iraqarg.2)-
33 Physical Meet Entity Place They arg-1y have reunitedyigger) With their friends in Norfolk o).
32 Physical Die Victim Place Two Marines arg.1) were killedigger) in the fighting in Kut(arg.2).
28 Physical Attack Attacker Place Protesters(arg-1) have been clashingigger) With police in Tehran(yg.).
26 ORG-Affiliation | End-Position | Person Entity NBCarg-2) is terminatingyigger) freelance reporter Peter Arnett(ae.1).

Table 1: Frequent overlapping relation and event types in the training set.

e The first one is F; loss:
_2-Jynz|
lyl + ||
When counting the numbers, we treat each node
and arc as a single unit. For example, in Fig-

Ll(y7 Z) =1

ure 1, |y| = 6.
e The second one is 0-1 loss:
1 z
LQ(yv Z) = Y 7&
0 y==z2

It does not discriminate the extent to which z
deviates from y.

e The third loss function counts the difference be-
tween y and z:

L3(y,z) = |yl + |2| =2 [y Nz

Similar to F; loss function, it penalizes both
missing and false-positive units. The difference
is that it is sensitive to the size of y and z.

2.3 Joint Relation-Event Features

By extracting three core IE components in a joint
search space, we can utilize joint features over
multiple components in addition to factorized fea-
tures in pipelined approaches. In addition to the
features as described in (Li et al., 2013; Li and
Ji, 2014), we can make use of joint features be-
tween relations and events, given the fact that
relations are often ending or starting states of
events (Dolling, 2011). Table 1 shows the most
frequent overlapping relation and event types in
our training data. In each partial structure ¢’ dur-
ing the search, if both arguments of a relation par-
ticipate in an event, we compose the correspond-
ing argument roles and relation type as a joint fea-
ture for 3. For example, for the structure in Fig-
ure 1, we obtain the following joint relation-event
features:

Agent-Artifact

N

Attacker Instrument Attacker Place

Physical

Split | Sentences | Mentions | Relations | Triggers | Arguments
Train 7.2k 25.7k 4.8k 2.8k 4.5k
Dev 1.7k 6.3k 1.2k 0.7k 1.1k
Test 1.5k 5.3k 1.1k 0.6k 1.0k

Table 2: Data set

~— Trigger Words
+——+ Frame IDs

Frequency

0 20 60 80 100

20
Number of instances

Figure 2: Distribution of triggers and their frames.

2.4 Semantic Frame Features

One major challenge of constructing information
networks is the data sparsity problem in extract-
ing event triggers. For instance, in the sen-
tence: “Others were mutilated beyond recogni-
tion.” The Injure trigger “mutilated” does not oc-
cur in our training data. But there are some sim-
ilar words such as “stab” and “smash”. We uti-
lize FrameNet (Baker and Sato, 2003) to solve
this problem. FrameNet is a lexical resource for
semantic frames. Each frame characterizes a ba-
sic type of semantic concept, and contains a num-
ber of words (lexical units) that evoke the frame.
Many frames are highly related with ACE events.
For example, the frame “Cause_harm” is closely
related with Injure event and contains 68 lexical
units such as “stab”, “smash” and “mutilate”.
Figure 2 compares the distributions of trigger
words and their frame IDs in the training data. We
can clearly see that the trigger word distribution
suffers from the long-tail problem, while Frames
reduce the number of triggers which occur only
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Methods Entity Mention (%) Relation (%) Event Trigger (%) | Event Argument (%)
P R F, P R Fy P R Fy P R F,

Pipelined Baseline 836 757 795 68.5 414 516|712 587 644|648 246 357
Pipeline + Li et al. (2013) N/A 745 569 645|675 31.6 43.1
Li and Ji (2014) 852 769 80.8 | 68.9 419 52.1 N/A

Joint w/ Avg. Perceptron 85.1 773 81.0 | 70.5 412 520|679 628 653|647 353 456
Joint w/ MIRA w/Fy Loss | 83.1 753 79.0 | 655 394 492 |59.6 635 615|606 389 474
Joint w/ MIRA w/0-1Loss | 84.2 76.1 80.0 | 654 41.8 510|656 61.0 632|605 396 479
Joint w/ MIRA w/ L3 Loss | 85.3 76.5 80.7 | 70.8 42.1 528 | 703 609 652|664 36.1 468

Table 3: Overall performance on test set.

once in the training data from 100 to 60 and al-
leviate the sparsity problem. For each token, we
exploit the frames that contain the combination of
its lemma and POS tag as features. For the above
example, “Cause_harm” will be a feature for “mu-
tilated”. We only consider tokens that appear in
at most 2 frames, and omit the frames that occur
fewer than 20 times in our training data.

3 Experiments

3.1 Data and Evaluation

We use ACE’05 corpus to evaluate our method
with the same data split as in (Li and Ji, 2014). Ta-
ble 2 summarizes the statistics of the data set. We
report the performance of extracting entity men-
tions, relations, event triggers and arguments sep-
arately using the standard F; measures as defined
in (Ji and Grishman, 2008; Chan and Roth, 2011):

e An entity mention is correct if its entity type (7
in total) and head offsets are correct.

e Arelation is correct if its type (6 in total) and the
head offsets of its two arguments are correct.

e An event trigger is correct if its event subtype
(33 in total) and offsets are correct.

e An argument link is correct if its event subtype,
offsets and role match those of any of the refer-
ence argument mentions.

In this paper we focus on entity arguments while
disregard values and time expressions because
they can be most effectively extracted by hand-
crafted patterns (Chang and Manning, 2012).

3.2 Results

Based on the results of our development set, we
trained all models with 21 iterations and chose the
beam size to be 8. For the k-best MIRA updates,
we set k as 3. Table 3 compares the overall perfor-
mance of our approaches and baseline methods.

Our joint model with perceptron update out-
performs the state-of-the-art pipelined approach
in (Li et al., 2013; Li and Ji, 2014), and further
improves the joint event extraction system in (Li
et al., 2013) (p < 0.05 for entity mention extrac-
tion, and p < 0.01 for other subtasks, accord-
ing to Wilcoxon Signed RankTest). For the k-
best MIRA update, the L3 loss function achieved
better performance than F; loss and 0-1 loss on
all sub-tasks except event argument extraction. It
also significantly outperforms perceptron update
on relation extraction and event argument extrac-
tion (p < 0.01). It is particularly encouraging to
see the end output of an IE system (event argu-
ments) has made significant progress (12.2% ab-
solute gain over traditional pipelined approach).

3.3 Discussions
3.3.1 Feature Study

Rank Feature Weight
1 Frame=Killing Die 0.80
2 Frame=Travel Transport 0.61
3 Physical(Artifact, Destination) 0.60
4 w1="“home” Transport 0.59
5 Frame=Arriving Transport 0.54
6 ORG-AFF(Person, Entity) 0.48
7 Lemma=charge Charge-Indict | 0.45
8 Lemma=birth Be-Born 0.44
9 Physical(Artifact,Origin) 0.44
10 | Frame=Cause_harm ‘ Injure 0.43

Table 4: Top Features about Event Triggers.

Table 4 lists the weights of the most significant
features about event triggers. The 3", 6, and
9th rows are joint relation-event features. For in-
stance, Physical(Artifact, Destination) means the
arguments of a Physical relation participate in a
Transport event as Artifact and Destination. We
can see that both the joint relation-event features
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and FrameNet based features are of vital impor-
tance to event trigger labeling. We tested the im-
pact of each type of features by excluding them in
the experiments of “MIRA w/ L3 loss”. We found
that FrameNet based features provided 0.8% and
2.2% F gains for event trigger and argument la-
beling respectively. Joint relation-event features
also provided 0.6% F; gain for relation extraction.

3.3.2 Remaining Challenges

Event trigger labeling remains a major bottleneck.
In addition to the sparsity problem, the remain-
ing errors suggest to incorporate external world
knowledge. For example, some words act as trig-
gers for some certain types of events only when
they appear together with some particular argu-
ments:

o “Williams picked up the child again and this
time, threwa - her out the window.”
The word “threw” is used as an Attack event
trigger because the Victim argument is a “child”.

e “Ellison to spend $10.3 billion to getyerge org
his company.” The common word “gef” is
tagged as a trigger of Merge_Org, because its
object is “company”.

o “We believe that the likelihood of them
using. . 5cx those weapons goes up.”
The word “using” is used as an Attack event
trigger because the Instrument argument is
“weapons’.

Another challenge is to distinguish physical and
non-physical events. For example, in the sentence:

e “‘we are paying great attention to their ability to
defendy+5cx on the ground.”,

our system fails to extract “defend’ as an Attack
trigger. In the training data, “defend”’ appears mul-
tiple times, but none of them is tagged as Artack.
For instance, in the sentence:

e “North Korea could do everything to defend it-
self: 2

“defend” is not an Attack trigger since it does not
relate to physical actions in a war. This challenge
calls for deeper understanding of the contexts.

Finally, some pronouns are used to refer to ac-
tual events. Event coreference is necessary to rec-
ognize them correctly. For example, in the follow-
ing two sentences from the same document:

e “It’s important that people all over the world
know that we don’t believe in the warat« 5cx. s

e “Nobody questions whether thisy,scx is right
or not.”

“this” refers to “war” in its preceding contexts.
Without event coreference resolution, it is difficult
to tag it as an Affack event trigger.

4 Conclusions

We presented the first joint model that effectively
extracts entity mentions, relations and events
based on a unified representation: information
networks. Experiment results on ACE’05 cor-
pus demonstrate that our approach outperforms
pipelined method, and improves event-argument
performance significantly over the state-of-the-art.
In addition to the joint relation-event features, we
demonstrated positive impact of using FrameNet
to handle the sparsity problem in event trigger la-
beling.

Although our primary focus in this paper is in-
formation extraction in the ACE paradigm, we be-
lieve that our framework is general to improve
other tightly coupled extraction tasks by capturing
the inter-dependencies in the joint search space.
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