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Abstract

The work presented in this paper explores
a supervised method for learning a prob-
abilistic model of a lexicon of VerbNet
classes. We intend for the probabilis-
tic model to provide a probability dis-
tribution of verb-class associations, over
known and unknown verbs, including pol-
ysemous words. In our approach, train-
ing instances are obtained from an ex-
isting lexicon and/or from an annotated
corpus, while the features, which repre-
sent syntactic frames, semantic similarity,
and selectional preferences, are extracted
from unannotated corpora. Our model
is evaluated in type-level verb classifica-
tion tasks: we measure the prediction ac-
curacy of VerbNet classes for unknown
verbs, and also measure the dissimilarity
between the learned and observed proba-
bility distributions. We empirically com-
pare several settings for model learning,
while we vary the use of features, source
corpora for feature extraction, and disam-
biguated corpora. In the task of verb clas-
sification into all VerbNet classes, our best
model achieved a 10.69% error reduction
in the classification accuracy, over the pre-
viously proposed model.

1 Introduction

Lexicons are invaluable resources for semantic
processing. In many cases, lexicons are neces-
sary to restrict a set of semantic classes to be as-
signed to a word. In fact, a considerable number of
works on semantic processing implicitly or explic-
itly presupposes the availability of a lexicon, such
as in word sense disambiguation (WSD) (Mc-
Carthy et al., 2004), and in token-level verb class
disambiguation (Lapata and Brew, 2004; Girju et

al., 2005; Li and Brew, 2007; Abend et al., 2008).
In other words, those methods are heavily de-
pendent on the availability of a semantic lexicon.
Therefore, recent research efforts have invested in
developing semantic resources, such as WordNet
(Fellbaum, 1998), FrameNet (Baker et al., 1998),
and VerbNet (Kipper et al., 2000; Kipper-Schuler,
2005), which greatly advanced research in seman-
tic processing. However, the construction of such
resources is expensive, and it is unrealistic to pre-
suppose the availability of full-coverage lexicons;
this is the case because unknown words always ap-
pear in real texts, and word-semantics associations
may vary (Abend et al., 2008).

This paper explores a method for the supervised
learning of a probabilistic model for the VerbNet
lexicon. We target the automatic classification of
arbitrary verbs, including polysemous verbs, into
all VerbNet classes; further, we target the esti-
mation of a probabilistic model, which represents
the saliences of verb-class associations for polyse-
mous verbs. In our approach, an existing lexicon
and/or an annotated corpus are used as the training
data. Since VerbNet classes are designed to rep-
resent the distinctions in the syntactic frames that
verbs can take, features, representing the statistics
of syntactic frames, are extracted from the unan-
notated corpora. Additionally, as the classes rep-
resent semantic commonalities, semantically in-
spired features, like distributionally similar words,
are used. These features can be considered as a
generalized representation of verbs, and we ex-
pect that the obtained probabilistic model predicts
VerbNet classes of the unknown words.

Our model is evaluated in two tasks of type-
level verb classification: one is the classification
of monosemous verbs into a small subset of the
classes, which was studied in some previous works
(Joanis and Stevenson, 2003; Joanis et al., 2008).
The other task is the classification of all verbs into
the full set of VerbNet classes, which has not yet
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been attempted. In the experiments, training in-
stances are obtained from VerbNet and/or Sem-
Link (Loper et al., 2007), while features are ex-
tracted from the British National Corpus or from
Wall Street Journal. We empirically compare sev-
eral settings for model learning by varying the
set of features, the source domain and the size
of a corpus for feature extraction, and the use of
the token-level statistics obtained from a manually
disambiguated corpus. We also provide the anal-
ysis of the remaining errors, which will lead us to
further improve the supervised learning of a prob-
abilistic semantic lexicon.

Supervised methods for automatic verb classifi-
cation have been extensively investigated (Steven-
son et al., 1999; Stevenson and Merlo, 1999;
Merlo and Stevenson, 2001; Stevenson and Joa-
nis, 2003; Joanis and Stevenson, 2003; Joanis et
al., 2008). However, their focus has been lim-
ited to a small subset of verb classes, and a lim-
ited number of monosemous verbs. The main con-
tributions of the present work are: i) to provide
empirical results for the automatic classification
of all verbs, including polysemous ones, into all
VerbNet classes, and ii) to empirically explore the
effective settings for the supervised learning of a
probabilistic lexicon of verb semantic classes.

2 Background

2.1 Verb lexicon

Levin’s (1993) work on verb classification has
broadened the field of computational research that
concerns the relationships between the syntactic
and semantic structures of verbs. The principal
idea behind the work is that the meanings of verbs
can be identified by observing possible syntactic
frames that the verbs can take. In other words,
with the knowledge of syntactic frames, verbs can
be semantically classified. This idea provided the
computational linguistics community with crite-
ria for the definition and the classification of verb
semantics; it has subsequently resulted in the re-
search of the induction of verb classes (Korhonen
and Briscoe, 2004), and the construction of a verb
lexicon based on Levin’s criteria.

VerbNet (Kipper et al., 2000; Kipper-Schuler,
2005) is a lexicon of verbs organized into classes
that share the same syntactic behaviors and seman-
tics. The design of classes originates from Levin
(1993), though the design has been considerably
reorganized and extends beyond the original clas-

43 Emission
43.1 Light Emission

beam, glow, sparkle, . . .
43.2 Sound Emission

blare, chime, jangle, . . .
. . .

44Destroy
annihilate, destroy, ravage, . . .

45 Change of State
. . .

47 Existence
47.1Exist

exist, persist, remain, . . .
47.2 Entity-Specific Modes Being

bloom, breathe, foam, . . .
47.3 Modes of Being with Motion

jiggle, sway, waft, . . .
. . .

Figure 1: VerbNet classes

43.2 Sound Emission
Theme V
Theme V P:loc Location
P:loc Location V Theme
there V Theme P:loc Location
Agent V Theme
Theme V Oblique
Location V with Theme

47.3 Modes of Being with Motion
Theme V
Theme V P:loc Location
P:loc Location V Theme
there V Theme
Agent V Theme

Figure 2: Syntactic frames for VerbNet classes

sification. The classes therefore cover more En-
glish verbs, and the classification should be more
consistent (Korhonen and Briscoe, 2004; Kipper
et al., 2006).

The current version of VerbNet includes 270
classes.1 Figure 1 shows a part of the classes of
VerbNet. The top-level categories, e.g.Emis-
sion and Destroy, represent a coarse classifica-
tion of verb semantics. They are further classi-
fied into verb classes, each of which expresses
a group of verbs sharing syntactic frames. Fig-
ure 2 shows an excerpt from VerbNet, which rep-
resents the possible syntactic frames for theSound
Emission class, including “chime” and “jangle,”
and theModes of Being with Motion class, in-
cluding “jiggle” and “waft.” In this figure, each
line represents a syntactic frame, whereAgent ,

1Throughout this paper, we refer to VerbNet 2.3. Sub-
classes are ignored in this work, following the setting of
Abend et al. (2008).
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. . . the walls still shook;VN=47.3 and an evacuation
alarm blared;VN=43.2 outside.

Suddenly the woman begins;VN=55.1 swaying
;VN=47.3 and then . . .

Figure 3: An excerpt from SemLink

Theme, and Location indicate the thematic
roles,V denotes a verb, andP specifies a prepo-
sition. P:loc defines locative prepositions such
as: “in” and “at.” For example, the second syn-
tactic frame ofSound Emission, i.e., Theme V
P:loc Location , corresponds to the follow-
ing sentence:

1. The coinsjangledin my pocket.

Themecorresponds to “the coins,” V to “jangled,”
P:loc to “in,” andLocation to “my pocket.”

While VerbNet provides associations between
verbs and semantic classes, SemLink (Loper et
al., 2007) additionally provides mappings among
VerbNet, FrameNet (Baker et al., 1998), PropBank
(Palmer et al., 2005), and WordNet (Fellbaum,
1998). Since FrameNet and PropBank include an-
notated instances of sentences, SemLink can be
considered as a corpus annotated with VerbNet
classes. Figure 3 presents some annotated sen-
tences obtained from SemLink. For example, the
annotation “blared;VN=43.2 ” indicates that the
occurrence of “blare” in this context is classified
asSound Emission.

2.2 Related work

There has been much research effort invested in
the automatic classification of verbs into lexical
semantic classes, in a supervised or unsupervised
way. The present work inherits the spirit of the su-
pervised approaches to verb classification (Steven-
son et al., 1999; Stevenson and Merlo, 1999;
Merlo and Stevenson, 2001; Stevenson and Joanis,
2003; Joanis and Stevenson, 2003; Joanis et al.,
2008). Our learning framework basically follows
the above listed works: features are obtained from
an unannotated (automatically parsed) corpus, and
gold verb-class associations are used as training
instances for machine learning classifiers, such as
decision trees and support vector machines. How-
ever, those works targeted a small subset of Levin
classes, and a limited number of monosemous
verbs; for example, Merlo and Stevenson (2001)
studied three classes and 59 verbs, and Joanis et al.

(2008) focused on 14 classes and 835 verbs. Al-
though these works provided a theoretical frame-
work for supervised verb classification, their re-
sults were not readily available for practical ap-
plications, because of the limitation in the cover-
age of the targeted classes/verbs on real texts. On
the contrary, we target the classification of arbi-
trary verbs, including polysemous verbs, into all
VerbNet classes (270 in total). In this realistic sit-
uation, we will empirically compare settings for
model learning, in order to explore effective con-
ditions to obtain better models.

Another difference from the aforementioned
works is that we aim at obtaining a probabilis-
tic model, which representssaliencesof classes
of polysemous verbs. Lapata and Brew (2004)
and Li and Brew (2007) focused on this issue,
and described methods for inducing probabilities
of verb-class associations. The obtained proba-
bilistic model was intended to be incorporated into
a token-level disambiguation model. Their meth-
ods claimed to be unsupervised, meaning that the
induction of a probabilistic lexicon did not re-
quire any hand-annotated corpora. In fact, how-
ever, their methods relied on the existence of a
full-coverage lexicon, both in training and running
time. In their methods, a lexicon was necessary
for restricting possible classes to which each word
belongs. Since most verbs are associated with
only a couple of classes, such a restriction signif-
icantly reduces the search space, and the problem
becomes much easier to solve. This presupposi-
tion is implicitly or explicitly used in other seman-
tic disambiguation tasks (McCarthy et al., 2004),
but it is unrealistic for practical applications.

Clustering methods have also been extensively
researched for verb classification (Stevenson and
Merlo, 1999; Schulte im Walde, 2000; McCarthy,
2001; Korhonen, 2002; Korhonen et al., 2003;
Schulte im Walde, 2003). The extensive research
is in large part due to the intuition that the set of
classes could not be fixed beforehand. In partic-
ular, it is often problematic to define a static set
of semantic classes. However, it is reasonable to
assume that the set of VerbNet classes is fixed, be-
cause Levin-type classes are more static than on-
tological classes, like in WordNet synsets. There-
fore, we can apply supervised classification meth-
ods to our task. It is true that the current VerbNet
classes are imperfect and require revisions, but in
this work we adopt them as they are, because as
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time advances, more stable classifications will be-
come available.

The problem focused in this work has a close re-
lationship with automatic thesaurus/ontology ex-
pansion. In fact, we evaluate our method in the
task of automatic verb classification, which can
be considered as lexicon expansion. The most
prominent difference of the present work from the-
saurus/ontology expansion is that the number of
classes is much smaller in our problem, and the set
of verb classes can be assumed to be fixed. These
characteristics indicate that our problem is easier
and more well-defined than is the case for auto-
matic thesaurus/ontology expansion.

Supervised approaches to token-level verb class
disambiguation have recently been addressed
(Girju et al., 2005; Abend et al., 2008), largely ow-
ing to SemLink. Their approaches fundamentally
follow traditional supervised WSD methods: ex-
tracting features representing the context in which
the target word appears, and training a classifica-
tion model with an annotated corpus. While those
works achieved an impressive accuracy (more than
95%), the results may not necessarily indicate the
method’s effectiveness; rather, it may imply the
importance of a lexicon. In fact, these works re-
strict their target to verb tokens, in which the cor-
rect class exists in a given lexicon, and they only
consider candidate classes that are registered in the
lexicon. This setting reduces the ambiguity signif-
icantly, and the problem becomes much easier to
handle; for example, approximately half of verb
tokens are monosemous in their setting. Thus, a
simple baseline achieves very high accuracy fig-
ures. However, in our preliminary experiment
on token-level verb classification with unknown
verbs, we found that the accuracy for unknown
verbs (i.e., lemmas not included in the VerbNet
lexicon) is catastrophically low. This indicates
that VerbNet and SemLink are insufficient for un-
known verbs, and that we cannot expect the avail-
ability of a full-coverage lexicon in the real world.
Instead of a static lexicon, our probabilistic model
is intended to be used as a prior distribution for the
token-level disambiguation, as in Lapata and Brew
(2004)’s model.

3 A probabilistic model for verb
semantic classes

In this work, supervised learning is applied to the
probabilistic modeling of a lexicon of verb seman-

tic classes. We do not presuppose the existence of
a full-coverage lexicon; instead, we use an existing
lexicon for the training data. Combined with fea-
tures extracted from unannotated corpora, a proba-
bilistic model is learned from the existing lexicon.
Like other supervised learning applications, our
probabilistic lexicon can predict classes for words
that are not included in the original lexicon.

Our model is defined in the following way. We
assume that the set,C, of verb classes is fixed,
while a set of verbs is unfixed. With this assump-
tion, probabilistic modeling can be reduced to a
classification problem. Specifically, the goal is to
obtain a probability distribution,p(c|v), of verb
classc ∈ C for a given verb (lemma)v. We
can therefore apply well-known supervised learn-
ing methods to estimatep(c|v).

This probability is modeled in the form of a log-
linear model.

p(c|v) =
1
Z

exp

(∑
i

λifi(c, v)

)
,

wherefi(c, v) are features that represent charac-
teristics ofc andv, andλi are model parameters
that express weights of the corresponding features.

Model parameters can be estimated whentrain-
ing instances, i.e., pairs 〈c, v〉, and features,
fi(c, v), for each instance are given. Therefore,
what we have to do is to prepare the training in-
stances〈c, v〉, and effective featuresfi(c, v) that
contribute to the better estimation of probabili-
ties. In token tagging tasks, both training instances
and features are extracted from annotated corpora.
However, since our goal is the probabilistic mod-
eling of a lexicon, we have to determine how to
derive the training instances and features for lexi-
con entries, to be discussed in the next section.

For the parameter estimation of log-linear mod-
els, we applied the stochastic gradient descent
method. A hyperparameter forl2-regularization
was tuned to minimize the KL-divergence (see
Section 4.4) for the development set.

4 Experiment design

In this work, we empirically compare several set-
tings for the learning of the above probabilistic
model, in the two tasks of automatic verb classi-
fication. In what follows, we explain the train-
ing/test data, corpora for extracting features, and
the design of the features and evaluation tasks.
The measures for evaluation are also introduced.
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1 sound_emission-43.2 chime
0.5 sound_emission-43.2 blare
0.5 manner_speaking-37.3 blare
0.5 modes_of_being_with_motion-47.3 sway
0.5 urge-58.1 sway

1 sound_emission-43.2 chime
0.7 sound_emission-43.2 blare
0.3 manner_speaking-37.3 blare
0.6 modes_of_being_with_motion-47.3 sway
0.4 urge-58.1 sway

Figure 4: Training instances obtained from Verb-
Net (upper) and VerbNet+SemLink (lower)

4.1 Data

As our goal is the supervised learning of a lexicon
of verb semantic classes, VerbNet is used as the
training/test data. In addition, since we aim at rep-
resenting the saliences of verb-class associations
with probabilities, the gold probabilities are nec-
essary. For this purpose, we count the occurrences
of each verb-class association in the VerbNet-
PropBank token mappings in the subset of the
SemLink corresponding to sections 2 through 21
of Penn Treebank (Marcus et al., 1994). Fre-
quency counts are normalized for each lemma,
with the Laplace smoothing (the parameter is 0.5).

In this work, we compare the two settings for
creating training instances. By comparing the re-
sults of these settings, we evaluate the necessity
of an annotated corpus for learning a probabilistic
lexicon of verb semantic classes.

VerbNet We collect all〈c, v〉 pairs registered in
VerbNet. For eachv, all of the associated
classes are assigned equal weights (see the
upper part of Figure 4).

VerbNet+SemLink Each pair〈c, v〉 in VerbNet
is weighted by the normalized frequency ob-
tained from SemLink (see the lower part of
Figure 4).

Because VerbNet classes represent groups of
syntactic frames, and it is impossible to guess the
verb class by referring to only one occurrence in
a text, it is necessary to have statistics over a suf-
ficient amount of a corpus. Hence, features are
extracted from a large unannotated corpus. In this
paper, we use the following two corpora:

WSJ Wall Street Journal newspaper articles
(around 40 million words).

BNC British National Corpus, which is a bal-
anced corpus of around 100 million words.

In addition to the variance of the corpus domains,
we vary the size of the corpus to observe the ef-
fect of increasing the corpus size. These corpora
are automatically parsed by Enju 2.3.1 (Miyao and
Tsujii, 2008), and the features are extracted from
the parsing results.

4.2 Features

Levin-like classes, including VerbNet, are de-
signed to represent distinctions in syntactic frames
and alternations. Hence, if we were given the per-
fect knowledge of the possible syntactic frames,
verbs can be classified into the correct classes al-
most perfectly (Dorr and Jones, 1996). Previ-
ous works thus proposed features that express the
corpus statistics of syntactic frames. However,
class boundaries are subtle in some cases; several
classes share syntactic frames with each other to a
large extent.

For example, the classes shown in Figure 2 have
very similar syntactic frames. The difference is in-
dicated in the last two frames ofSound Emission,
although they appear much less frequently in real
texts. Therefore, it is difficult to accurately capture
the distinctions between these classes, if we are
only provided with the statistics of the syntactic
frames that appear in real texts. In this case, how-
ever, it is easy to observe that the verbs of these
classes have different selectional preferences; that
is, the Theme of Sound Emissionverbs would
be objects that make sounds, while theTheme of
Modes of Being with Motion is likely to be ob-
jects that move.2 Although Levin’s classification
initially focused on syntactic alternations, the re-
sulting classes represent some semantic common-
alities. Hence, it would be reasonable to design
features that capture such semantic characteristics.

In this work, we re-implemented the following
features proposed by Joanis et al. (2008) as the
starting point.

Syntactic slot Features to count the occurrences
of each syntactic slot, such as subject, ob-
ject, and prepositional phrases. For the sub-
ject slot, we also count its transitive and in-
transitive usages separately. Additionally, we
count the appearances of reflexive pronouns
and semantically empty constituents (it and

2Syntactic frames in VerbNet include specifications of se-
lectional preferences, such asanimateand place, although
we do not explicitly use them, because it is not apparent to
determine the members of these semantic classes.
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Syntactic slot subj:0.885
intrans-subj:0.578

Slot overlap overlap-subj-obj:0.299
overlap-obj-in:0.074

Tense, voice, aspect pos-VBG:0.307
pos-VBD:0.290

Animacy anim-subj:0.244
anim-obj:0.057

Slot POS subj-PRP:0.270
subj-NN:0.270

Syntactic frame NP_V:0.326
NP_V_NP:0.307

Similar word sim-rock:0.090
sim-swing:0.083

Slot class subj-C82:0.219
obj-C12:0.081

Figure 5: Example of features for “sway”

there). Differently from Joanis et al. (2008),
we consider non-nominal arguments, such as
sentential and adjectival complements.

Slot overlap Features to measure the overlap in
words (lemmas) between two syntactic slots
of the verb. They are intended to approxi-
mate argument alternations, such as the erga-
tive alternation. For example, for the alter-
nation “The sky cleared”/“ The clouds cleared
from the sky,” a feature to indicate the overlap
between the subject slot and thefrom slot is
added (Joanis et al., 2008). The value of this
feature is computed by the method of Merlo
and Stevenson (2001).

Tense, voice, aspectFeatures to approximate the
tendency of the tense, voice, and aspect of
the target verb. The Penn Treebank POS tags
for verbs (VB, VBP, VBZ, VBG, VBD, and
VBN) are counted. In addition, included are
the frequency of the co-occurrences with an
adverb or an auxiliary verb, and the count of
usages as a noun or an adjective.

Animacy Features to measure the frequency of
animate arguments for each syntactic slot.
Personal pronouns exceptit are counted as
animate, following Joanis et al. (2008), while
named entity recognition was not used.

Examples of these features are shown in Figure 5.
For details, refer to Joanis et al. (2008).

The above features mainly represent syntactic
behaviors of target verbs. Since our target classes
are broader than in the previous works, we further
enhance the syntactic features. Additionally, as
discussed above, semantically motivated features

may present strong clues to distinguish among
syntactically similar classes. We therefore include
the following four types of feature; the first two
are syntactic, while the other two are intended to
capture semantic characteristics:

Slot POS In addition to the syntactic slot fea-
tures, we add features that represent a com-
bination of a syntactic slot and the POS of
its head word. Since VerbNet includes ex-
tended classes that take verbal and adjecti-
val arguments, the POSs of arguments would
provide a strong clue to discriminate among
these syntactic frames.

Syntactic frame The number of arguments and
their syntactic categories. This feature was
mentioned as a baseline in Joanis et al.
(2008), but we include it in our model.

Similar word Similar words (lemmas) to the tar-
get verb. Similar words are automatically
obtained from a corpus (the same corpus as
used for feature extraction) by Lin (1998)’s
method. This feature is motivated by the
hypothesis that distributionally similar words
tend to be classified into the same class. Be-
cause Lin’s method is based on the similar-
ity of words in syntactic slots, the obtained
similar words are expected to represent a verb
class that share selectional preferences.

Slot classSemantic classes of the head words of
the arguments. This feature is also intended
to approximate selectional preferences. The
semantic classes are obtained by clustering
nouns, verbs, and adjectives into 200, 100,
and 50 classes respectively, by using thek-
medoid method with Lin (1998)’s similarity.

Figure 5 shows an example of the features for
“sway,” extracted from the BNC corpus.3 Feature
values are defined as relative frequencies for each
lemma; while, for similar word features, feature
values are weighted by Lin’s similarity measure.

4.3 Tasks

We evaluate our model in the tasks of auto-
matic verb classification (a.k.a. lexicon expan-
sion): given gold verb-class associations for some
set of verbs, we predict the classes for unknown

3“C82” and “C12” are automatically assigned cluster
names.
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Verb class Levin class number
Recipient 13.1, 13.3
Admire 31.2
Amuse 31.1
Run 51.3.2
Sound Emission 43.2
Light and Substance Emission 43.1, 43.4
Cheat 10.6
StealandRemove 10.5, 10.1
Wipe 10.4.1, 10.4.2
Spray/Load 9.7
Fill 9.8
Other Verbs of Putting 9.1–6
Change of State 45.1–4
Object Drop 26.1, 26.3, 26.7

Table 1: 14 classes used in Joanis et al. (2008) and
their corresponding Levin class numbers

verbs. While our main target is the full set of Verb-
Net classes, we also show results for the task stud-
ied in the previous work.

14-class taskThe task to classify (almost)
monosemous verbs into 14 classes. Refer to
Table 1 for the definition of the 14 classes.
Following Joanis et al. (2008)’s task def-
inition, we removed verbs that belong to
multiple classes in these 14 classes, and also
removed overly polysemousverbs (in our
experiment, verb-class associations that have
the relative frequency that is less than 0.5
in SemLink are removed). For each class,
member verbs are randomly split into 50%
(training), 25% (development), and 25%
(final test) sets.

All-class task The task to classify all target verbs
into 268 classes.4 Any verbs that did not
occur at least 100 times in the BNC cor-
pus were removed.5 The remaining verbs
(2517 words) are randomly split into 80%
(training), 10% (development), and 10% (fi-
nal test) sets, under the constraint that at least
one instance for each class is included in the
training set.6

4.4 Evaluation measures

For the 14-class task, we simply measure the clas-
sification accuracy. However, the evaluation in the

4Two classes (Being DressedandDebone) are not used in
the experiments because no lemmas belonged to these classes
after filtering by the frequency in BNC.

5This is the same preprocessing as Joanis et al. (2008),
although we use VerbNet, while Joanis et al. (2008) used the
original Levin classifications.

6Because polysemous verbs belong to multiple classes,
the class-wise data split was not adopted for the all-class task.

all-class task is not trivial, because verbs may be
assigned multiple classes.

Since our purpose is to obtain a probabilistic
model rather than to classify monosemous verbs,
the evaluation criterion should be sensitive to the
probabilistic distribution on the test data. In this
paper, we adopt two evaluation measures. One
is the top-N weighted accuracy; we count the
number of correct pairs〈c, v〉 in the N -best out-
puts from the model (whereN is the number of
gold classes for each lemma), where each count is
weighted by the relative frequency (i.e., the counts
in SemLink) of the pair in the test set. For exam-
ple, in the case for “blare” in Figure 4, if the model
states thatSound Emissionhas the largest prob-
ability, we get 0.7 points. IfManner Speaking
has the largest probability, we instead obtain 0.3
points. Intuitively, the score is higher when the
model presents larger probabilities to classes with
higher relative frequencies. This measure is simi-
lar to the top-N precision in information retrieval;
it evaluates the ranked output by the model. It
is intuitively interpretable, but is insufficient for
evaluating the quality of probability distributions.

The other measure isKL-divergence, which is
popularly used for measuring the dissimilarity be-
tween two probability distributions. This is de-
fined as follows:

KL(p||q) =
∑
x

p(x) log(p(x))− p(x) log(q(x)).

In the experiments, this measure is applied, with
the assumption thatp is the relative frequency
of 〈c, v〉 in the test set, and thatq is the esti-
mated probability distribution. Although the KL-
divergence is not a true distance metric, it is suf-
ficient for measuring the fitting of the estimated
model to the true distribution. We report the
KL-divergence averaged over all verbs in the test
set. Since this measure indicates a dissimilarity, a
smaller value is better. Whenp andq are equiva-
lent,KL(p||q) = 0.

5 Experimental results

Table 2 shows the accuracy obtained for the 14-
class task. The first column denotes the incorpo-
rated features (“Joanis et al.’s features” or “All fea-
tures”), and the sources of the features (“WSJ” or
“BNC”). The two baseline results are also given:
“Baseline (random)” indicates that classes are ran-
domly output, and “Baseline (majority)” indicates
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Accuracy
Baseline (random) 7.14
Baseline (majority) 26.47
Joanis et al.’s features/WSJ 56.86
Joanis et al.’s features/BNC 64.22
All features/WSJ 60.29
All features/BNC 68.14

Table 2: Accuracy for the 14-class task

Accuracy KL
Baseline (random) 0.37 —
Baseline (majority) 8.69 —
Joanis et al.’s features/WSJ 30.26 3.65
Joanis et al.’s features/BNC 35.66 3.32
All features/WSJ 34.07 3.37
All features/BNC 42.54 2.99

Table 3: Accuracy and KL-divergence for the all-
class task (the VerbNet+SemLink setting)

that the majority class (i.e., the class that has the
largest number of member verbs) is output to every
lemma. While these figures cannot be compared
directly to the previous works due to the difference
in the preprocessing, Joanis et al. (2008) achieved
58.4% accuracy for the 14-class task. Table 3 and
4 present the results for the all-class task. Table 3
gives the accuracy and KL-divergence achieved
by the model trained with the VerbNet+SemLink
training instances, while Table 4 presents the same
measures by the training instances created from
VerbNet only.

Our models performed substantially better on
both tasks than the baseline models. The results
also proved that the features we proposed in this
paper contributed to the further improvement of
the model from Joanis et al. (2008). In the all-class
task with the VerbNet+SemLink setting, our fea-
tures achieved 10.69% error reduction in the accu-
racy over Joanis et al. (2008)’s features. Another
interesting fact is that the model with BNC con-
sistently outperformed the model with WSJ. This
outcome is somewhat surprising, provided that the
relative frequencies in the training/test sets are cre-
ated from the WSJ portion of SemLink. The rea-
son for this is independent of the corpus size, as
will be shown below. When comparing Table 3
and 4, we can see that using SemLink statistics
resulted in a slightly better model. This result
is predictable, because the evaluation measures
are sensitive to the relative frequencies estimated
from SemLink. However, the difference remained
small. In both of the tasks and the evaluation mea-
sures, the best model was achieved when we use

Accuracy KL
Baseline (random) 0.37 —
Baseline (majority) 8.69 —
Joanis et al.’s features/WSJ 29.65 3.67
Joanis et al.’s features/BNC 35.78 3.34
All features/WSJ 34.53 3.40
All features/BNC 42.38 3.02

Table 4: Accuracy and KL-divergence for the all-
class task (the VerbNet only setting)
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Figure 6: Corpus size vs. accuracy

all the features extracted from BNC, and create
training instances from VerbNet+SemLink.

Figure 6 and 7 plot the accuracy and KL-
divergence against the size of the unannotated cor-
pus used for feature extraction. The result clearly
indicates that the learning curve still grows at the
corpus size with 100 million words (especially for
the all features + BNC setting), which indicates
that better models are obtained by increasing the
size of the unannotated corpora.

Therefore, we can claim that the differences be-
tween the domains and the size of the unannotated
corpora are more influential than the availability of
the annotated corpora. This indicates that learning
only from a lexicon would be a viable solution,
when a token-disambiguated corpus like SemLink
is unavailable.

Table 5 shows the contribution of each feature
group. BNC is used for feature extraction, and
VerbNet+SemLink is used for the creation of train-
ing instances. The results demonstrated the effec-
tiveness of the slot POS features, and in particular,
for the all-class task, most likely because Verb-
Net covers verbs that take non-nominal arguments.
Additionally, the similar word features contributed
equally or more in both of the tasks. This result
suggests that we were reasonable in hypothesizing
that distributionally similar words tend to be clas-
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14-classes All classes
Accuracy Accuracy KL

Baseline (random) 7.14 0.37 —
Baseline (majority) 26.47 8.69 —
Joanis et al.’s features 64.22 35.66 3.32

+ Slot POS 66.67 38.77 3.18
+ Syntactic frame 64.71 35.99 3.29
+ Similar word 68.14 37.88 3.10
+ Slot class 64.71 36.51 3.26

All features 68.14 42.54 2.99

Table 5: Contribution of features

sified into the same class. Slot classes also con-
tributed to a slight improvement, indicating that
selectional preferences are effective clues for pre-
dicting VerbNet classes. The result of the “All fea-
tures” model for the all-class task attests that these
features worked collaboratively, and using them
all resulted in a considerably better model.

From the analysis of the confusion matrix for
the outputs by our best model, we identified sev-
eral reasons for the remaining misclassification er-
rors. A major portion of the errors were caused by
confusing the classes that take the same preposi-
tions. Examples of these errors include:

• Other Change of Stateverbs were misclas-
sified into theButter class: “embalm,” “lam-
inate.” (they take “with” phrases)

• Judgementverbs were misclassified into the
Characterize class: “acclaim,” “hail.” (they
take “as” phrases)

Since prepositions are strong features for auto-
matic verb classification (Joanis et al., 2008), the
classes that take the same prepositions remained
confusing. The discovery of the features to dis-
criminate among these classes would be crucial for
further improvement.

Another major error is in classifying verbs into
Other Change of State. Examples include:

• Amuseverbs: “impair,” “recharge.”

• Herd verbs: “aggregate,” “mass.”

BecauseOther Change of State is one of the
biggest classes, supervised learning tends to place
a high probability to this class. Therefore, when
strong clues do not exist, verbs tend to be mis-
classified into this class. In addition, this class is
not syntactically/semantically homogeneous, and
is likely to introduce noise in the machine learn-
ing classifier. A possible solution to this problem
would be to exclude this class from the classifica-
tion, and to process the class separately.

6 Conclusions

We presented a method for the supervised learn-
ing of a probabilistic model for a lexicon of Verb-
Net classes. By combining verb-class associa-
tions from VerbNet and SemLink, and features ex-
tracted from a large unannotated corpus, we could
successfully train a log-linear model in a super-
vised way. The experimental results attested to
our success that features proposed in this paper
worked effectively in obtaining a better probabil-
ity distribution. Not only syntactic features, but
also semantic features were shown to be effective.
While each of these features could increase the ac-
curacy, they collaboratively contributed to a large
improvement. In the all-class task, we obtained
10.69% error reduction in the classification accu-
racy over Joanis et al. (2008)’s model. We also ob-
served the trend that a larger corpus for feature ex-
traction led to a better model, indicating that a bet-
ter model will be obtained by increasing the size of
an unannotated corpus.

We could identify the effective features and set-
tings for this problem, but the classification into
all VerbNet classes remained challenging. One
possible direction for this research topic would be
to use our model for the semi-automatic construc-
tion of verb lexicons, with the help of human cura-
tion. However, there is also a demand for explor-
ing other types of features that can discriminate
among confusing classes.
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