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Abstract

We present an inexact search algorithm for

the problem of predicting a two-layered

dependency graph. The algorithm is based

on a k-best version of the standard cubic-

time search algorithm for projective de-

pendency parsing, which is used as the

backbone of a beam search procedure.

This allows us to handle the complex non-

local feature dependencies occurring in

bistratal parsing if we model the interde-

pendency between the two layers.

We apply the algorithm to the syntactic–

semantic dependency parsing task of the

CoNLL-2008 Shared Task, and we obtain

a competitive result equal to the highest

published for a system that jointly learns

syntactic and semantic structure.

1 Introduction

Numerous linguistic theories assume a multistratal

model of linguistic structure, such as a layer of

surface syntax, deep syntax, and shallow seman-

tics. Examples include Meaning–Text Theory

(Mel’čuk, 1988), Discontinuous Grammar (Buch-

Kromann, 2006), Extensible Dependency Gram-

mar (Debusmann et al., 2004), and the Functional

Generative Description (Sgall et al., 1986) which

forms the theoretical foundation of the Prague De-

pendency Treebank (Hajič, 1998).

In the statistical NLP community, the most

widely used grammatical resource is the Penn

Treebank (Marcus et al., 1993). This is a purely

syntactic resource, but we can also include this

treebank in the category of multistratal resources

since the PropBank (Palmer et al., 2005) and

NomBank (Meyers et al., 2004) projects have an-

notated shallow semantic structures on top of it.

Dependency-converted versions of the Penn Tree-

bank, PropBank and NomBank were used in the

CoNLL-2008 Shared Task (Surdeanu et al., 2008),

in which the task of the participants was to pro-

duce a bistratal dependency structure consisting of

surface syntax and shallow semantics.

Producing a consistent multistratal structure is

a conceptually and computationally complex task,

and most previous methods have employed a

purely pipeline-based decomposition of the task.

This includes the majority of work on shallow se-

mantic analysis (Gildea and Jurafsky, 2002, in-

ter alia). Nevertheless, since it is obvious that

syntax and semantics are highly interdependent, it

has repeatedly been suggested that the problems of

syntactic and semantic analysis should be carried

out simultaneously rather than in a pipeline, and

that modeling the interdependency between syn-

tax and semantics would improve the quality of all

the substructures.

The purpose of the CoNLL-2008 Shared Task

was to study the feasibility of a joint analysis

of syntax and semantics, and while most partici-

pating systems used a pipeline-based approach to

the problem, there were a number of contribu-

tions that attempted to take the interdependence

between syntax and semantics into account. The

top-performing system in the task (Johansson and

Nugues, 2008) applied a very simple reranking

scheme by means of a k-best syntactic output,

similar to previous attempts (Gildea and Juraf-

sky, 2002; Toutanova et al., 2005) to improve se-

mantic role labeling performance by using mul-
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tiple parses. The system by Henderson et al.

(2008) extended previous stack-based algorithms

for dependency parsing by using two separate

stacks to build the syntactic and semantic graphs.

Lluı́s and Màrquez (2008) proposed a model that

simultaneously predicts syntactic and semantic

links, but since its search algorithm could not take

the syntactic–semantic interdependencies into ac-

count, a pre-parsing step was still needed. In ad-

dition, before the CoNLL-2008 shared task there

have been a few attempts to jointly learn syntac-

tic and semantic structure; for instance, Merlo and

Musillo (2008) appended semantic role labels to

the phrase tags in a constituent treebank and ap-

plied a conventional constituent parser to predict

constituent structure and semantic roles.

In this paper, we propose a new approximate

search method for bistratal dependency analysis.

The search method is based on a beam search pro-

cedure that extends a k-best version of the stan-

dard cubic-time search algorithm for projective

dependency parsing. This is similar to the search

method for constituent parsing used by Huang

(2008), who referred to it as cube pruning, in-

spired by an idea from machine translation decod-

ing (Chiang, 2007). The cube pruning approach,

which is normally used to solve the arg max prob-

lem, was also recently extended to summing prob-

lems, which is needed in some learning algorithms

(Gimpel and Smith, 2009).

We apply the algorithm on the CoNLL-2008

Shared Task data, and obtain the same evalua-

tion score as the best previously published system

that simultaneously learns syntactic and semantic

structure (Titov et al., 2009).

2 Bistratal Dependency Parsing

In the tradition of dependency representation of

sentence structure, starting from Tesnière (1959),

the linguistic structure of the sentence is repre-

sented as a directed graph of relations between

words. In most theories, certain constraints are im-

posed on this graph; the most common constraint

on dependency graphs in syntax, for instance, is

that the graph should form a tree (i.e. it should be

connected, acyclic, and every node should have at

most one incoming edge). This assumption un-

derlies almost all dependency parsing, although

there are also a few parsers based on slightly more

general problem formulations (Sagae and Tsuji,

2008).

In this paper, we assume a different type of con-

straint: that the graph can be partitioned into two

subgraphs that we will refer to as strata or layers,

where the first of the layers forms a tree. For the

second layer, the only assumption we make is that

there is at most one link between any two words.

However, we believe that for any interesting lin-

guistic structure, the second layer will be highly

dependent on the structure of the first layer.

Figure 1 shows an example of a bistratal depen-

dency graph such as in the CoNLL-2008 Shared

Task on syntactic and semantic dependency pars-

ing. The figure shows the representation of the

sentence We were expecting prices to fall. The pri-

mary layer represents surface-syntactic relations,

shown above the sentence, and the secondary layer

consists of predicate–argument links (here, we

have two predicates expecting and fall).

SBJ

ROOT

We were expecting prices to fall

VC IM

OPRD

OBJ

C−A1

A1 A1

A0

Figure 1: Example of a bistratal dependency

graph.

We now give a formal model of the statistical

parsing problem of prediction of a bistratal depen-

dency graph. For a given input sentence x, the task

of our algorithm is to predict a structure ŷ consist-

ing of a primary layer ŷp and a secondary layer

ŷs. In a discriminative modeling framework, we

model this prediction problem as the search for the

highest-scoring output from the candidate space Y
under a scoring function F :

〈ŷp, ŷs〉 = arg max
〈yp,ys〉∈Y

F (x, yp, ys)

The learning problem consists of searching in the

model space for a scoring function F that mini-

mizes the cost of predictions on unseen examples

according to a given cost function ρ. In this work,

we consider linear scoring functions of the follow-

ing form:

F (x, yp, ys) = w ·Φ(x, yp, ys)

where Φ(x, y) is a numeric feature representation

of the tuple (x, yp, ys) and w a high-dimensional

vector of feature weights.
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Based on the structural assumptions made

above, we now decompose the feature represen-

tation into three parts:

Φ = Φp + Φi + Φs

Here, Φp represents the primary layer, assumed to

be a tree, Φs the secondary layer, and finally Φi

is the representation of the interdependency be-

tween the layers. For the feature representations

of the primary and secondary layers, we employ

edge factorization, a decomposition widely used

in statistical dependency parsing, and assume that

all edges can be scored independently:

Φp(x, yp) =
∑
f∈yp

φp(x, f)

The representation of the interdependency be-

tween the layers assumes that each secondary link

is dependent on the primary layer, but independent

of other secondary links.

Φi(x, yp, ys) =
∑
f∈ys

φi(x, f, yp)

The interdependency between layers is the bottle-

neck for the search algorithm that we will present

in Section 3. For semantic role analysis, this in-

volves all features that rely on a syntactic repre-

sentation, most importantly the PATH feature that

represents the grammatical relation between pred-

icate and argument words. For instance, in Fig-

ure 1, we can represent the surface-syntactic re-

lation between the tokens fall and prices as the

string IM↑OPRD↑OBJ↓. In this work, all interde-

pendency features will be based on paths in the

primary layer.

3 A Bistratal Search Algorithm

This section presents an algorithm to approxi-

mately solve the arg max problem for prediction

of bistratal dependency structures. We present the

algorithm in two steps: first, we review a k-best

version of the standard search algorithm for pro-

jective monostratal dependency parsing, based on

the work by Huang and Chiang (2005).1 In the

second step, starting from the k-best monostratal

search, we devise a search method for the bistratal

problem.

1Huang and Chiang (2005) described an even more effi-
cient k-best algorithm based on lazy evaluation, which we
will not use here since it is not obviously adaptable to the
situation where the search is inexact.

3.1 Review of k-Best Dependency Parsing

The search method commonly used in dependency

parsers is a chart-based dynamic programming al-

gorithm that finds the highest-scoring projective

dependency tree under an edge-factored scoring

function. It runs in cubic time with respect to the

sentence length. In a slightly more general for-

mulation, it was first published by Eisner (1996).

Starting from McDonald et al. (2005), it has been

widely used in recent statistical dependency pars-

ing frameworks.

The algorithm works by creating open struc-

tures, which consist of a dependency link and the

set of links that it spans, and closed structures,

consisting of the left or right half of a complete

subtree. An open structure is created by a proce-

dure LINK that adds a dependency link to connect

a right-pointing and a left-pointing closed struc-

ture, and a closed structure by a procedure JOIN

that joins an open structure with a closed structure.

Figure 2 shows schematic illustrations: a LINK

operation connects the right-pointing closed struc-

ture between s and j with the left-pointing closed

structure between j + 1 and e, and a JOIN oper-

ation connects an open structure between s and j
with a closed structure between j and e.

es j j+1 es j

Figure 2: Illustrations of the LINK and JOIN oper-

ations.

The search algorithm can easily be extended to

find the k best parses, not only the best one. In

k-best parsing, we maintain a k-best list in every

cell in the dynamic programming table. To create

the k-best list of derivations for an open structure

between the positions s and e, for instance, there

are up to |L| · (e − s) · k2 possible combinations

to consider if the set of allowed labels is L. The

key observation by Huang and Chiang (2005) is to

make use of the fact that the lists are sorted. For

every position between s and e, we add the best

combination to a priority queue, from which we

then repeatedly remove the front item. For every

item we remove, we add three successors: an item

with a next-best left part, an item with a next-best

right part, and finally an item with a next-best edge
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label.

The pseudocode of the search algorithm for

k-best dependency parsing is given in Algo-

rithms 1 and 2. For brevity, we omitted the

code for ADVANCE-LEFT and ADVANCE-RIGHT,

which are similar to ADVANCE-EDGE, as well as

ADVANCE-LOWER, which resembles ADVANCE-

UPPER. The FST function used in the pseudocode

returns the first element of a tuple.

The algorithm uses a priority queue with stan-

dard operations ENQUEUE, which enqueues an

element, and DEQUEUE, which removes the

highest-scoring item from the queue. With a stan-

dard binary heap implementation of the priority

queue, these two operations execute in logarithmic

time. To build the queue, we use a constant-time

TOSS operation, which appends an item to the

queue without enforcing the priority queue con-

straint, and a HEAPIFY operation that constructs a

consistent priority queue in linear time.

3.2 Extension to Bistratal Dependency

Parsing

The k-best algorithm forms the core of the inexact

bistratal search algorithm. Our method is similar

to the forest reranking method by Huang (2008),

although there is no forest pruning or reranking in-

volved here. Crucially, we divide the features into

local features, which can be computed “offline”,

and nonlocal features, which must be computed

during search. In our case, the local features are

Φp and Φs, while the nonlocal features are the in-

terdependent features Φi.

Algorithm 3 shows pseudocode for the main

part of the bistratal search algorithm, and Algo-

rithm 4 for its support functions. The algorithm

works as follows: for every span 〈s, e〉, the algo-

rithm first uses the LINK procedure from the k-

best monostratal search to construct a k-best list of

open structures without semantic links. In the next

step, secondary links are added in the procedure

LINK-SECONDARY. For brevity, we show only

the procedures that create open structures; they are

very similar to their closed-structure counterparts.

The LINK-SECONDARY procedure starts by

creating an initial candidate (FIRST-SEC-OPEN)

based on the best open structure for the primary

layer. FIRST-SEC-OPEN creates the candidate

space for secondary links for a single primary

open structure. To reduce search complexity, it

makes use of a problem-specific function SCOPE

Algorithm 1 k-best search algorithm for depen-

dency parsing.

function k-BEST-SEARCH(k)
n← length of the sentence
initialize the table O of open structures
initialize the table C of closed structures
for m ∈ [1, . . . , n]

for s ∈ [0, . . . , n−m]
LINK(s, s + m,→, k)
LINK(s, s + m,←, k)
JOIN(s, s + m,→, k)
JOIN(s, s + m,←, k)

return C[0, n,→]

procedure LINK(s, e, dir, k)
E ← CREATE-EDGES(s,e, dir, k)
q ← empty priority queue
for j ∈ [s, . . . , e− 1]

l ← C[s, j,→]
r ← C[j + 1, e,←]
o← CREATE-OPEN(E,l, r, 1, 1, 1)
TOSS(q, o)

HEAPIFY(q)
while |O[s, e, dir]| < k and |q| > 0

o← DEQUEUE(q)
if o /∈ O[s, e, dir]

APPEND(O[s, e, dir], o)
ENQUEUE(q, ADVANCE-EDGE(o))
ENQUEUE(q, ADVANCE-LEFT(o))
ENQUEUE(q, ADVANCE-RIGHT(o))

procedure JOIN(s, e, dir, k)
q ← empty priority queue
if dir =→

for j ∈ [s + 1, . . . , e]
u← O[s, j,→]
l← C[j, e,→]
c← CREATE-CLOSED(u, l, 1, 1)
TOSS(q, c)

else
for j ∈ [s, . . . , e− 1]

u← O[j, e,←]
l← C[s, j,←]
c← CREATE-CLOSED(u, l, 1, 1)
TOSS(q, c)

HEAPIFY(q)
while |C[s, e, dir]| < k and |q| > 0

c← DEQUEUE(q)
if c /∈ C[s, e, dir]

APPEND(C[s, e, dir], c)
ENQUEUE(q, ADVANCE-UPPER(c))
ENQUEUE(q, ADVANCE-LOWER(c))

that defines which secondary links are possible

from a given token, given a primary-layer context.

An important insight by Huang (2008) is that

nonlocal features should be computed as early as

possible during search. In our case, we assume

that the interdependency features are based on tree

paths in the primary layer. This means that sec-

ondary links between two tokens can be added

when there is a complete path in the primary layer

between the tokens. When we create an open
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Algorithm 2 Support operations for the k-best

search.
function CREATE-EDGES(s,e, dir, k)

E ← ∅
for l ∈ ALLOWED-LABELS(s,e, dir)

scoreL ← w · φp(s, e, dir, l)
edge← 〈scoreL, s, e, dir, l〉
APPEND(E, edge)

return the top k edges in E

function CREATE-OPEN(E,l, r, ie, il, ir)
scoreL ← FST(E[ie]) + FST(l[il]) + FST(r[ir])
return 〈scoreL + scoreN , E, l, r, ie, il, ir〉

function CREATE-CLOSED(u,l, iu, ir)
scoreL ← FST(u[iu]) + FST(l[il])
return 〈scoreL + scoreN , u, l, iu, il〉

function ADVANCE-EDGE(o)
where o = (score, E, l, r, ie, il, ir)

if ie = LENGTH(E)
return ∅

else
return CREATE-OPEN(E,l, r, ie + 1, il, ir)

function ADVANCE-UPPER(c)
where c = (u, l, iu, il)

if iu = LENGTH(u)
return ∅

else
return CREATE-CLOSED(u,l, iu + 1, il)

structure by adding a link between two substruc-

tures, a complete path is created between the to-

kens in the substructures. We thus search for pos-

sible secondary links only between the two sub-

structures that are joined.

Figure 3 illustrates this process. A primary open

structure between s and e has been created by

adding a link from the right-pointing closed struc-

ture between s and j to the left-pointing closed

structure between j + 1 and e. We now try to

add secondary links between the two substruc-

tures. For instance, in the semantic role parsing

task described in subsection 3.3, if we know that

there is a predicate between s and j, then we look

for arguments between j + 1 and e, i.e. we apply

the SCOPE function to the right substructure.

When computing the scores for secondary links,

note that for efficiency only the interdependent

part Φi should be computed in CREATE-SEC-

EDGES; the part of the score that does not depend

on the primary layer can be computed before en-

tering the search procedure.

es j j+1
p a

Figure 3: Illustration of the secondary linking pro-

cess: When two substructures are connected, we

can compute the path between a predicate in the

left substructure and an argument in the right sub-

structure.

Algorithm 3 Search algorithm for bistratal depen-

dency parsing.

function BISTRATAL-SEARCH(k)
n← length of the sentence
initialize the table O of open structures
initialize the table C of closed structures
using φs, compute a table scoress for all

possible secondary edges 〈h, d, l〉
for m ∈ [1, . . . , n]

for s ∈ [0, . . . , n−m]
LINK(s, s + m,→, k)
LINK-SECONDARY(s,s + m,→, k)
LINK(s, s + m,←, k)
LINK-SECONDARY(s,s + m,←, k)
JOIN(s, s + m,→, k)
JOIN-SECONDARY(s,s + m,→, k)
JOIN(s, s + m,←, k)
JOIN-SECONDARY(s,s + m,←, k)

return FIRST(C[0, n,→])

procedure LINK-SECONDARY(s,e, dir, k)
q ← empty priority queue
o← FIRST-SEC-OPEN(O[s,e, dir], 1, k)
ENQUEUE(q, o)
buf ← empty list
while |buf | < k and |q| > 0

o← DEQUEUE(q)
if o /∈ buf

APPEND(buf, o)
for o′ ∈ ADVANCE-SEC-OPEN(o, k)

ENQUEUE(q,o′)
SORT(buf) to O[s, e, dir]

3.3 Application on the CoNLL-2008 Shared

Task Treebank

We applied the bistratal search method in Algo-

rithm 3 on the data from the CoNLL-2008 Shared

Task (Surdeanu et al., 2008). Here, the primary

layer is the tree of surface-syntactic relations such

as subject and object, and the secondary layer con-

tains the links between the predicate words in the

sentence and their respective logical arguments,

such as agent and patient. The training corpus con-

sists of sections 02 – 21 of the Penn Treebank, and

contains roughly 1 million words.
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Algorithm 4 Support operations in bistratal

search.
function FIRST-SEC-OPEN(L,iL, k)

if i = LENGTH(L)
return ∅

l←GET-LEFT(L[iL]), r ←GET-RIGHT(L[iL])
for h ∈ [START(l), . . . , END(l)]
for d ∈ SCOPE(r, h)]

E[h][d]← CREATE-SEC-EDGES(h, d, L[iL], k)]
IE[h][d]← 1

for h ∈ [START(r), . . . , END(r)]
for d ∈ SCOPE(l, h)]

E[h][d]← CREATE-SEC-EDGES(h, d, L[iL], k)]
IE[h][d]← 1

return CREATE-SEC-OPEN(L, iL, E, I)

function CREATE-SEC-EDGES(h,d, o, k)
E ← ∅
for l ∈ ALLOWED-SEC-LABELS(h,d)

score← w · φi(h, d, l, o) + scoress[h, d, l]
edge← 〈score, h, d, l〉
APPEND(E, edge)

return the top k edges in E

function CREATE-SEC-OPEN(L,iL, E, I)
score← FST(L[iL]) +

∑
h,d

FST(E[h, d, IE[h, d]])

return 〈score, L, iL, E, IE〉

function ADVANCE-SEC-OPEN(o,k)
where o = 〈score, L, iL, E, IE〉

buf ← ∅
if iL < LENGTH(L) and IE = [1, . . . , 1]

APPEND(buf, FIRST-SEC-OPEN(L, iL + 1, k))
for h, d
if IE[h, d] < LENGTH(E[h, d])

I ′
E ← COPY(IE)

I ′
E[h, d]← I ′

E[h, d] + 1
APPEND(buf, CREATE-SEC-OPEN(L, iL, E, I ′

E))
return buf

To apply the bistratal search algorithm to

the problem of syntactic–semantic parsing, a

problem-specific implementation of the SCOPE

function is needed. In this case, we made two as-

sumptions. First, we assumed that the identities

of the predicate words are known a priori2. Sec-

ondly, we assumed that every argument of a given

predicate word is either a direct dependent of the

predicate, one of its ancestors, or a direct depen-

dent of one of its ancestors. This assumption is a

simple adaptation of the pruning algorithm by Xue

and Palmer (2004), and it holds for the vast major-

ity of arguments in the CoNLL-2008 data; in the

training set, we measured that this covers 99.04%

of the arguments of verbs and 97.55% of the argu-

2Since our algorithm needs to know the positions of the
predicates, we trained a separate classifier using the LIBLIN-
EAR toolkit (Fan et al., 2008) to identify the predicate words.
As features for the classifier, we used the words and part-of-
speech tags in a ±3 window around the word under consid-
eration.

ments of nouns.

Figure 4 shows an example of how the SCOPE

function works in our case. If a predicate is con-

tained in the right substructure, we find two po-

tential arguments: one at the start of the left sub-

structure, and one more by recursively searching

the left structure.

pa a21

Figure 4: Illustration of the SCOPE function for

predicate–argument links. If the right substructure

contains a predicate, we can find potential argu-

ments in the left substructure.

While the primary layer is assumed to be pro-

jective in Algorithm 3, the syntactic trees in the

CoNLL-2008 data have a small number of nonpro-

jective links. We used a pseudo-projective edge la-

bel encoding to handle nonprojectivity (Nivre and

Nilsson, 2005).

To implement the model, we constructed fea-

ture representations Φp, Φs, and Φi. The surface-

syntactic representation Φp was a standard first-

order edge factorization using the same features

as McDonald et al. (2005). The features in Φs and

Φi are shown in Table 1 and are standard features

in statistical semantic role classification.

Φs Φi

Predicate word Path
Predicate POS Path + arg. POS
Argument word Path + pred. POS
Argument POS Path + arg. word
Pred. + arg. words Path + pred. word
Predicate word + label Path + label
Predicate POS + label Path + arg. POS + label
Argument word + label Path + pred. POS + label
Argument POS + label Path + arg. word + label
Pred. + arg. words + label Path + pred. word + label

Table 1: Feature representation for secondary

links.

We trained the discriminative model using

the Online Passive–aggressive algorithm (Cram-

mer et al., 2006), which is an efficient online

learning method that can be used to train mod-

els for learning problems with structured out-

put spaces. A cost function ρ is needed in the

learning algorithm; we decomposed it into a pri-
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mary part ρp and a secondary part ρs. We com-

puted the primary part as the sum of link errors:

ρp(yp, ŷp) =
∑

l∈ŷp
cp(l, yp), where

cp(l, yp) =
0 if l ∈ yp and its label is correct

0.5 if l ∈ yp but its label is incorrect

1 if l /∈ yp

In a similar vein, we computed the secondary part

ρs of the cost function as #fp+#fn+0.5 ·#fl,
where #fp is the number of false positive sec-

ondary links, #fn the number of false negative

links, and #fl the number of links with correct

endpoints but incorrect label.

The training procedure took roughly 24 hours

on an 2.3 GHz AMD Athlon processor. The mem-

ory consumption was about 1 GB during training.

4 Experiments

We evaluated the performance of our system on

the test set from the CoNLL-2008 shared task,

which consists of section 23 of the WSJ part of

the Penn Treebank, as well as a small part of the

Brown corpus. A beam width k of 4 was used

in this experiment. Table 2 shows the results of

the evaluation. The table shows the three most

important scores computed by the official evalua-

tion script: labeled syntactic dependency accuracy

(LAS), labeled semantic dependency F1-measure

(Sem. F1), and the macro-averaged F1-measure, a

weighted combination of the syntactic and seman-

tic scores (M. F1). Our result is competitive; we

obtain the same macro F1 as the newly published

result by Titov et al. (2009), which is the high-

est published figure for a joint syntactic–semantic

parser so far. Importantly, our system clearly out-

performs the system by Lluı́s and Màrquez (2008),

which is the most similar system in problem mod-

eling, but which uses a different search strategy.

System LAS Sem. F1 M. F1

This paper 86.6 77.1 81.8

Titov et al. (2009) 87.5 76.1 81.8

H. et al (2008) 87.6 73.1 80.5

L. & M. (2008) 85.8 70.3 78.1

Table 2: Results of published joint syntactic–

semantic parsers on the CoNLL-2008 test set.

Since the search procedure is inexact, it is im-

portant to quantify roughly how much of a detri-

mental impact the approximation has on the pars-

ing quality. We studied the influence of the beam

width parameter k on the performance of the

parser. The results on the development set can be

seen in Table 3. As can be seen, a modest increase

in performance can be obtained by increasing the

beam width, at the cost of increased parsing time.

k LAS Sem. F1 M. F1 Time

1 85.14 77.05 81.10 242

2 85.43 77.17 81.30 369

4 85.49 77.20 81.35 625

8 85.58 77.20 81.40 1178

Table 3: Influence of beam width on parsing accu-

racy.

In addition, to have a rough indication of the im-

pact of search errors on the quality of the parses,

we computed the fraction of sentences where the

gold-standard parse had a higher score accord-

ing to the model than the parse returned by the

search3. Table 4 shows the results of this exper-

iment. This suggests that the search errors, al-

though they clearly have an impact, are not the ma-

jor source of errors, even with small beam widths.

k Fraction

1 0.121

2 0.104

4 0.096

8 0.090

Table 4: Fraction of sentences in the development

set where the gold-standard parse has a higher

score than the parse returned by the search pro-

cedure.

To investigate where future optimization efforts

should be spent, we used the built-in hprof pro-

filing tool of Java to locate the bottlenecks. Once

again, we ran the program on the development

set with a beam width of 4, and Table 5 shows

the three types of operations where the algorithm

spent most of its time. It turns out that 74% of the

time was spent on the computation and scoring of

interdependency features. To make our algorithm

truly useful in practice, we thus need to devise a

way to speed up or cache these computations.

3To be able to compare the scores of the gold-standard
and predicted parses, we disabled the automatic classifier for
predicate identification and provided the parser with gold-
standard predicates in this experiment.
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Operation Fraction

w · Φi 0.64

Queue operations 0.15

Computation of Φi 0.10

Table 5: The three most significant bottlenecks

and their fraction of the total runtime.

5 Discussion

In this paper, we have presented a new approxi-

mate search method to solve the problem of jointly

predicting the two layers in a bistratal dependency

graph. The algorithm shows competitive perfor-

mance on the treebank used in the CoNLL-2008

Shared Task, a bistratal treebank consisting of a

surface-syntactic and a shallow semantic layer. In

addition to the syntactic–semantic task that we

have described in this paper, we believe that our

method can be used in other types of multistratal

syntactic frameworks, such as a representation of

surface and deep syntax as in Meaning–Text The-

ory (Mel’čuk, 1988).

The optimization problem that we set out to

solve is intractable, but we have shown that rea-

sonable performance can be achieved with an in-

exact, beam search-based search method. This is

not obvious: it has previously been shown that us-

ing an inexact search procedure when the learn-

ing algorithm assumes that the search is exact

may lead to slow convergence or even divergence

(Kulesza and Pereira, 2008), but this does not

seem to be a problem in our case.

While we used a beam search method as the

method of approximation, other methods are cer-

tainly possible. An interesting example is the re-

cent system by Smith and Eisner (2008), which

used loopy belief propagation in a dependency

parser using highly complex features, while still

maintaining cubic-time search complexity.

An obvious drawback of our approach com-

pared to traditional pipeline-based semantic role

labeling methods is that the speed of the algo-

rithm is highly dependent on the size of the in-

terdependency feature representation Φi. Also,

extracting these features is fairly complex, and it

is of critical importance to implement the feature

extraction procedure efficiently since it is one of

the bottlenecks of the algorithm. It is plausible

that our performance suffers from the absence of

other frequently used syntax-based features such

as dependent-of-dependent and voice.

It is thus highly dubious that a joint modeling

of syntactic and semantic structure is worth the

additional implementational effort. So far, no sys-

tem using tightly integrated syntactic and semantic

processing has been competitive with the best sys-

tems, which have been either completely pipeline-

based (Che et al., 2008; Ciaramita et al., 2008)

or employed only a loose syntactic–semantic cou-

pling (Johansson and Nugues, 2008). It has been

conjectured that modeling the semantics of the

sentence would also help in syntactic disambigua-

tion; however, it is likely that this is already im-

plicitly taken into account by the lexical features

present in virtually all modern parsers.

In addition, a problem that our beam search

method has in common with the constituent pars-

ing method by Huang (2008) is that highly non-

local features must be computed late. In our case,

this means that if there is a long distance between a

predicate and an argument, the secondary link be-

tween them will be unlikely to influence the final

search result.
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