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Abstract 

We describe an approach for acquiring the 

domain-specific dialog knowledge required to 

configure a task-oriented dialog system that 

uses human-human interaction data. The key 

aspects of this problem are the design of a di-

alog information representation and a learning 

approach that supports capture of domain in-

formation from in-domain dialogs. To 

represent a dialog for a learning purpose, we 

based our representation, the form-based di-

alog structure representation, on an observa-

ble structure. We show that this representation 

is sufficient for modeling phenomena that oc-

cur regularly in several dissimilar task-

oriented domains, including information-

access and problem-solving. With the goal of 

ultimately reducing human annotation effort, 

we examine the use of unsupervised learning 

techniques in acquiring the components of the 

form-based representation (i.e. task, subtask, 

and concept). These techniques include statis-

tical word clustering based on mutual infor-

mation and Kullback-Liebler distance, 

TextTiling, HMM-based segmentation, and 

bisecting K-mean document clustering. With 

some modifications to make these algorithms 

more suitable for inferring the structure of a 

spoken dialog, the unsupervised learning algo-

rithms show promise. 

1 Introduction 

In recent dialog management frameworks, such as 

RavenClaw (Bohus and Rudnicky, 2003) and Col-

lagen (Rich et al., 2001), domain-dependent com-

ponents of a dialog manager are clearly separated 

from domain-independent components. This sepa-

ration allows rapid development of a dialog man-

agement module in a new task-oriented domain as 

dialog system developers can focus only on speci-

fying domain-specific dialog information (e.g. the 

Dialog Task Specification in RavenClaw and Task 

Models in Collagen) while general dialog beha-

viors (e.g. turn-taking, confirmation mechanism, 

and generic help) are provided by the framework. 

For task-oriented domains, the domain-specific 

dialog information is equivalent to task-specific 

information. Examples of the task-specific infor-

mation are steps in a task and domain keywords. 

Specifying task-specific knowledge by hand is 

still a time consuming process (Feng et al., 2003). 

Furthermore, the hand-crafted knowledge may not 

reflect users’ perceptions of a task (Yankelovich, 

1997). To reduce the subjectivity of system devel-

opers, recorded conversations of humans perform-

ing a similar task as a target dialog system have 

been used to help the developers design the task 

specification. Nevertheless, analyzing a corpus of 

dialogs by hand requires a great deal of human ef-

fort (Bangalore et al., 2006). This paper investi-

gates the feasibility of automating this dialog 

analysis process through a machine-learning ap-

proach. By inferring the task-specific dialog in-

formation automatically from human-human 

interaction data, the knowledge engineering effort 

could be reduced as the developers need to only 

revise learned information rather than analyzing a 

large amount of data.  

Acquiring the task-specific knowledge from a 

corpus of human-human dialogs is considered a 

knowledge acquisition process, where the target 

task structure has not yet been specified but will be 

explored from data before a dialog system is built. 

This is contrasted with a dialog structure recogni-

tion process (Alexandersson and Reithinger, 1997; 
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Bangalore et al., 2006; Hardy et al., 2004), where 

pre-specified dialog structure components are rec-

ognized as a dialog progresses. 

We use an unsupervised learning approach in 

our knowledge acquisition process as it can freely 

explore the structure in the data without any influ-

ence from human supervision. Woszczyna and 

Waibel (1994) showed that when modeling a di-

alog state transition diagram from data an unsuper-

vised approach outperformed a supervised one as it 

better reflects the characteristic of the data. It is 

also interesting to see how well a machine-learning 

approach can perform on the problem of task-

specific knowledge acquisition when no assump-

tion about the domain is made and no prior know-

ledge is used. 

Examination of task-oriented human-human di-

alogs show that task-specific information can be 

observed in dialog transcription; therefore, it 

should be feasible to be infer it through an unsu-

pervised learning approach. Figure 1 (a) shows a 

dialog in an air travel domain. This dialog is orga-

nized into three parts according to the three steps 

(i.e. reserve a flight, reserve a car, reserve a hotel) 

required to accomplish the task, creating a travel 

itinerary. Domain keywords (highlighted in bold) 

required to accomplish each step are clearly com-

municated.  

To infer task-specific knowledge from data us-

ing an unsupervised learning approach, two prob-

lems need to be addressed: 1) choosing an 

appropriate dialog representation that captures ob-

servable task-specific knowledge in a dialog, and 

2) developing an unsupervised learning approach 

that infers the task-specific knowledge modeled by 

this representation from in-domain human-human 

dialogs. The first problem is discussed in Section 3 

where a form-based dialog structure representa-

tion is proposed. After describing the definition of 

each component in the form-based dialog structure 

representation, examples of how a domain expert 

models the task-specific information in a dialog 

with the form-based representation are given Sec-

tion 3.1. Then the annotation experiment which 

was used to verify that the form-based representa-

tion can be understood and applied by other human 

annotators is discussed in Section 3.2. For the 

second problem, we modify existing unsupervised 

learning approaches to make them suitable for in-

ferring the structure of a spoken dialog. Section 4 

describes these modifications and their perfor-

mances when inferring the components of the 

form-based dialog structure representation from 

interaction data. 
 

 

Figure 1: An example of a dialog in the air travel domain and its corresponding form-based representation  

(d) 

(b) 

(c) 

Form: flight reservation 

FlightInfo: 

FlightInfo: 

Fare: 

PassengerName: 

PaymentMethod: 

Form: hotel reservation 

HotelInfo: 

PassengerName: 

PaymentMethod: 

 

Form: car reservation 

CarInfo: 

PassengerName: 

PaymentMethod: 

 

Client   1:  I’d like to fly to Houston Texas 

Agent  2:  And departing Pittsburgh on what date? 

Client:  3: Departing on February twentieth 

Agent  4: What time would you like to depart Pittsburgh? 

Client   5: Seven a.m. 

Agent  6: The only non-stop flight I have would be on Continental Air-

lines that’s at six thirty a.m. arrive Houston at eight fifty 

Client   7: That’s okay I will take that 

Agent  8: And what day would you be returning? 

Client   9: On Monday February twenty third 

  ... 

Agent  16:  Do you need a car? 

Client  17:  Yeah 

Agent  18: The least expensive rate I have is Thrifty rental car for twen-
ty three ninety a day 

Client  19:  Okay 

Agent  20:  Would you like me to book that car for you? 

Client   21:  Yes 

Agent  22:  Okay and would you need a hotel while you're in Houston? 

Client  23:  Yes 

Agent  24:  And where at in Houston? 

Client  25:  Downtown 

  ... 
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2 Related Work  

Automatic task-specific knowledge acquisition for 

configuring a dialog system is a relatively new re-

search area. Supervised learning approaches were 

used to acquire a task model for a collaborative 

agent (Garland et al., 2001) and task-specific in-

formation for a customer care service (Feng et al., 

2003). These supervised algorithms were trained 

on rich knowledge sources (examples described in 

a specific annotation language and a well-

organized website respectively) annotated by do-

main experts. In contrast, the unsupervised concep-

tual clustering algorithm in DIA-MOLE (Möller, 

1998) requires no additional human annotation to 

infer a set of domain-specific dialog acts from in-

domain dialogs. The motivation behind the use of 

an unsupervised approach is similar to ours, to re-

duce human effort in creating a new dialog system.  

3 Form-based Dialog Structure Represen-

tation 

Many models have been proposed to account for 

the structure of a human-human conversation. 

Many such models focus on other aspects of a di-

alog such as coordinated activities, i.e. turn-taking 

and grounding, (Traum and Hinkelman, 1992) and 

regular patterns in the dialog (Carletta et al., 1997) 

rather than the domain-specific information com-

municated by participants. More complicated di-

alog representations (Grosz and Sidner, 1986; 

Litman and Allen, 1987) model several aspects of 

a dialog including domain-specific information. 

However, additional components in these models, 

such as beliefs and intentions, are difficult to ob-

serve directly from a conversation and, as for the 

current technology, may not be learnable through 

an unsupervised learning approach. 

Since the task-specific information that we 

would like to model will be used for configuring a 

dialog system, we can view this information from a 

dialog system perspective. Our dialog representa-

tion is based on form, a data representation used in 

a form-based (or frame-based) dialog system. A 

form is a simple representation that captures neces-

sary task-specific information communicated 

through dialog. This information is observable 

from dialog transcription (see below) and thus 

could be inferred through an unsupervised learning 

approach.  

Typically, a form corresponds to a database 

query form while slots in the form represent search 

criteria. Nevertheless, a form can represent related 

pieces of information required to perform any do-

main action not just a database query action. With 

this more general definition of a form, a form-

based dialog structure representation can be ap-

plied to various types of task-oriented domains 

where dialog participants have to gather pieces of 

information, analogous to search criteria, through 

dialog in order to perform domain actions that ful-

fill a dialog goal. Chotimongkol (2008) provided 

examples of these domains, for instance, meeting 

(Banerjee and Rudnicky, 2006) and flight simula-

tion control (Gorman et al., 2003). 

In the form-based dialog structure representa-

tion, task-specific information in each dialog is 

organized into a three-level structure of concept, 

subtask and task. A concept is a word or a group of 

words which captures a piece of information re-

quired to perform a domain action. A subtask is a 

subset of a dialog which contains sufficient con-

cepts to execute a domain action that advances a 

dialog toward its goal. A task is a subset of a di-

alog (usually the entire dialog) which contains all 

the subtasks that belong to the same goal. A sub-

task can also be considered as a step in a task. In 

terms of representation, a task is represented by a 

set of forms, one for each of its subtasks. A con-

cept is a slot in a form.  

To model the structure of a dialog in a new do-

main with the form-based dialog structure repre-

sentation, a list of tasks, subtasks, and concepts in 

that domain has to be specified. This list is consi-

dered a domain-specific tagset. The form-based 

dialog structure framework only provides the defi-

nitions of these components (i.e. task, subtask, and 

concept), which can be regarded as meta-tags and 

are domain-independent. A list of tasks, subtasks, 

and concepts can be identified manually as shown 

in Section 3.1 or automatically through a machine-

learning approach as discussed in Section 4. Sec-

tion 3.1 illustrates how a domain expert models the 

task-specific information in two task-oriented do-

mains, air travel planning (information-accessing) 

and map reading (problem-solving), with the form-

based representation. These examples also show 

that the form-based dialog structure representation 
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is sufficient for modeling task-specific information 

in dissimilar domains. 

Nonetheless, by focusing on observable task-

specific information and describing this informa-

tion using a simple model, the form-based dialog 

structure representation cannot model the informa-

tion that is not clearly expressed in a dialog. Ex-

ample of such information in an air travel domain 

is the pickup date of a car rental which may not be 

discussed in a dialog as it can be inferred from the 

arrival date of the corresponding flight. Further-

more, the form-based representation is not well 

suited for modeling a complex dialog that has a 

dynamic structure such as a tutoring dialog. 

3.1 Dialog Structure Modeling Examples 

Figure 1 illustrates how a dialog in the air travel 

domain (Eskenazi et al., 1999) can be represented 

with the form-based dialog structure representa-

tion. A dialog in this domain usually has a single 

goal, to create an air-travel itinerary which may 

include hotel and car reservations. Thus, the entire 

dialog corresponds to one task. The dialog in Fig-

ure 1 (a) contains three subtasks, one for each 

make_•_reservation action. The forms that 

represent these subtasks are shown in Figure 1 (b) 

– (d). Each form contains a set of concepts neces-

sary for making the corresponding reservation. For 

a display purpose, the values of these slots are 

omitted. 

A subtask can be further decomposed. For ex-

ample, to reserve a round trip ticket, two database 

lookup actions, one for each leg, are required. A 

reserve_flight subtask in Figure 1 is decomposed 

into two query_flight_info subtasks. The corres-

ponding forms of these subtasks are illustrated in 

Figure 2. Each FlighInfo concept in the flight res-

ervation form is a result of a database lookup ac-

tion that corresponds to each flight query form. 

Figure 2: An example of subtask decomposition 

Figure 3 show a dialog in the map reading do-

main (Anderson et al., 1991) and its corresponding 

form-based dialog structure representation. The 

goal of a dialog in this domain is to have a route 

follower draw a route on his/her map according to 

a description given by a route giver. Since drawing 

an entire route involves several drawing strokes, a 

draw_a_route task is divided into several 

draw_a_segment subtasks, one for each drawing 

action. This action required a set of concepts that 

describe a segment as shown in a segment descrip-

tion form. Since the landmarks on the giver’s map 

can be different from those in the follower’s map, 

the participants have to explicitly define the Loca-

tion of a mismatched Landmark before using it in 

a segment description. In this case grounding be-

comes another subtask and can be represented by a 

form. This type of grounding is not necessary in 

the air travel domain. 
 

Figure 3: An example of a dialog in the map reading domain and its corresponding form-based representation 

  … 
Giver 3: right, below the start do you have 

a missionary camp? 
Follower 4: yeah.  
Giver 5: okay, well if you take it from the 

start just run horizontally. 
Follower 6: uh-huh. 
Giver 7: to the left for about an inch. 
Follower 8: right. 
Giver 9: then go down along the side of 

the missionary camp. 
  …. 

Form: grounding 

Landmark: missionary camp 
Location: below the start 

Form: segment description 

StartLocation: the start 
Direction: left 
Distance: an inch 
EndLocation:  
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Form: flight query 

DepartCity: Houston 
ArriveCity: Pittsburgh 
DepartDate: Monday   

February twenty third 
DepartTime: five p.m. 

Form: flight query 

DepartCity: Pittsburgh 
ArriveCity: Houston 
ArriveState: Texas 
DepartDate: February 

twentieth 

DepartTime: seven a.m. 

Form: flight reservation 

FlightInfo: 
 Airline: Continental 
 DepartTime: six thirty a.m. 
 ArriveCity: Houston 
 ArriveTime: eight fifty 

FlightInfo: 
 Airline: Continental 
 DepartCity: Houston 
 DepartTime: six forty p.m. 
 ArriveCity: Pittsburgh 
 ArriveTime: ten twenty p.m. 

Fare: four hundred dollars  

Name: 

PaymentMethod: 
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3.2 Annotation Experiment 

The goal of this annotation experiment is to verify 

that the form-based dialog structure framework can 

be understood by human annotators other than its 

developers, and that they can consistently apply the 

framework to model task-specific information in a 

dialog. In this experiment, each annotator had to 

design a form-based dialog structure representation 

for a given task-oriented domain by specifying a 

hierarchical structure of tasks, sub-tasks and con-

cepts in that domain. Note that we are interested in 

the process of designing a domain-specific tagset 

from the definitions of task, subtask, and concept 

provided by the framework, not in the process of 

using an existing tagset to annotate data (see for 

example (Carletta et al., 1997)). The description of 

the framework is provided in annotation guidelines 

along with examples from the domains that were 

not used in the experiment.  

The experimental procedure is as follows: the 

subjects first developed their own tagset according 

to the guidelines by analyzing a set of in-domain 

dialogs, and then annotate those dialogs with the 

tagset they had designed. To obtain enough anno-

tated instances for each dialog structure component 

and to make the annotation simple, the dialog 

structure annotation part of the experiment was 

divided into two sub-parts: concept annotation and 

task/sub-task annotation. Two domains were used 

in the experiment, air travel planning and map 

reading. Four subjects were assigned to each do-

main. None had used the scheme previously. The 

average number of tags that each subject annotated 

is shown in the first row of Table 1. 

Since some variations in tagset designs are ac-

ceptable as long as they conform to the guidelines, 

each subject’s annotation is judged against the 

guidelines rather than one specific reference anno-

tation. An annotation instance is marked as incor-

rect only when it does not conform to the 

guidelines. Each subject’s annotation was eva-

luated by both a coding scheme expert and by oth-

er subjects. Accuracy is computed from the 

expert’s judgment while acceptability is computed 

from peers’ judgments. Acceptability scores shown 

in Table 1 were averaged from all other subjects in 

the same group. Please note that the result pre-

sented in this table should not be compared to the 

results from machine-learning approaches pre-

sented in Table 2 and Table 3 as the evaluation 

procedures and data sets are different. 
 

Measure 
Air Travel Map Reading 

C T C T 

Number of tags 178.8 50.5 347.8 60.8 

Accuracy (%) 96.5 89.7 89.0 65.2 

Acceptability (%) 95.6 81.1 94.9 84.5 

Table 1: Accuracy and acceptability on concept annota-

tion (C), and task/subtask annotation (T) 

Both accuracy and acceptability are high for all 

annotation tasks except for the accuracy of 

task/subtask annotation in the map reading domain. 

Most of the errors come from the annotation of the 

grounding subtasks. Since its corresponding ac-

tion is quite difficult to observe, subjects may not 

have a concrete definition of grounding and were 

more likely to produce errors. In addition, they 

were less critical when judging other subjects’ an-

notations. Consistency in applying the form-based 

dialog structure representation shows that the re-

presentation is unambiguous and could potentially 

be identified through a machine-learning approach. 

When comparing among components, concepts 

were annotated more consistently than tasks and 

subtasks in terms of both accuracy and acceptabili-

ty. One possible reason is that, a concept is easier 

to observe as its unit is smaller than a task or a sub-

task. Moreover, dialog participants have to clearly 

communicate the concepts in order to execute a 

domain action. The subjects usually agreed on 

tasks and top-level subtasks, but did not quite 

agree on low-level subtasks. The low-level sub-

tasks are correlated with the implementation of a 

dialog system; hence, the designs of these subtasks 

are more subjective and likely to be different.  

4 Learning Approaches  

This section describes machine-learning approach-

es for inferring the task-specific information mod-

eled by the form-based dialog structure 

representation from human-human conversations. 

Specifically, the learning approach has to infer a 

list of tasks, sub-tasks and concepts in a given do-

main from in-domain dialogs similar to what a 

human does in Section 3. To make the problem 

tractable, components in the form-based represen-

tation are acquired separately. For most task-

oriented dialogs that we encountered, each dialog 

corresponds to one task. Hence, the learning effort 
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can be focused on identifying concept and subtask. 

Since we can only observe instances or values of 

these components in a dialog, we have to first iden-

tify these instances and then make a generalization 

for its type. For instant, to infer that there is a con-

cept City in the air travel domain, a set of city 

names has to be identified and grouped together. 

To identify a set of domain concepts from the 

transcription of in-domain dialogs, we follow the 

algorithm described in (Chotimongkol and Rud-

nicky, 2002). This algorithm utilizes an unsuper-

vised clustering algorithm which clusters words 

based on context similarity, e.g. mutual informa-

tion-based and Kullback-Liebler-based clustering, 

since the members of the same domain concept are 

usually used in similar contexts in a particular do-

main. Examples of the clusters obtained from the 

KL-based clustering algorithm are shown in Figure 

4. These clusters represent Hour, RentalCompa-

ny, and City respectively. Underlined cluster 

members belong to other concepts. The clustering 

algorithm can identify all 12 members of Hour and 

about half of RentalCompany.  In the third clus-

ter, some airport names got merged with city 

names because they occur in quite similar context. 

Figure 4: Learned concepts in the air travel domain 

The rest of this section describes an approach 

for identifying subtasks and their corresponding 

forms in a given domain. We decided to simplify 

the form-learning problem by first segmenting a 

dialog into form-filling episodes (which are equiv-

alent to sub-tasks), then grouping the ones that cor-

respond to the same form together so that we can 

determine a set of necessary slots in each form 

from the concepts present in its corresponding 

cluster. We further simplify the problem by con-

centrating on the domains that have only one top-

level task (though in principle the approach can be 

extended to the domains that have multiple top-

level tasks). Since we utilize well-known unsuper-

vised algorithms, only the modifications which are 

applied to make these algorithms suitable for infer-

ring the structure of a spoken dialog are discussed.  

Two unsupervised discourse segmentation algo-

rithms are investigated: TextTiling (Hearst, 1997) 

and Hidden Markov Modeling (Barzilay and Lee, 

2004). These algorithms only recover the sequence 

of subtasks but not the hierarchical structure of 

subtasks similar to Bangalore et al.’s (2006) 

chunk-based model. Nevertheless, this simplifica-

tion is sufficient when a subtask is embedded at the 

beginning or the end of the higher-level subtask 

which is the case for most embedded structures we 

have found. Both algorithms, while performing 

well with expository text, require modifications 

when applying to a fine-grained segmentation 

problem of spoken dialogs. In WSJ text, the aver-

age topic length is 428 words (Beeferman et al., 

1999) while in the air travel domain the average 

subtask length is 84 words (10 utterances). 

For TextTiling, the modifications include a dis-

tance weight and a data-driven stop word list. For 

the subtasks that are much shorter than the average 

length, distant words in the context window can be 

irrelevant. A distance weight demotes the impor-

tance of the context word that is far away from the 

considered boundary by giving it a lower weight. 

A manually prepared stop word list, containing 

common words, may not be suitable for every ap-

plication domain. We propose a novel approach 

that determines a list of stop words directly from 

word distribution in each data set. TextTiling as-

sumes that words that occur regularly throughout a 

dialog are not informative. However, the regularity 

of a particular word is determined from its distribu-

tion over the dialog rather than from its frequency. 

A high frequency word is useful if its instances 

occur only in a specific location. For example, the 

word “delta” which occurs many times in a re-

serve_flight subtask but does not occur in other 

subtasks is undoubtedly useful for determining 

subtask boundaries while the word “you” which 

can occur anywhere in a dialog is not useful. Spe-

cifically, a regularity count of word w is defined as 

the number of sliding context windows in the simi-

larity score calculation of TextTiling that contain 

the word w in each dialog. A data-driven stop 

word list contains words that have a regularity 

count greater than a pre-defined threshold. 

For HMM-based segmentation, we modified 

Barzilay and Lee’s (2004) content models by using 

larger text spans when inducing the HMM states. 

HMM states are created automatically by cluster-

ing similar text spans together. When using an ut-

 ONE, TWO, THREE, NINE, SIX, FOUR, SEVEN, FIVE, 
EIGHT, TEN, TWELVE, ELEVEN 

 HERTZ, BUDGET, THRIFTY 

 MIDWAY, LAGUARDIA, GATWICK, PHILADELPHIA, 
DALLAS, DENVER, MONTEREY, BOSTON, CHICAGO, 
AUSTIN, NEWARK, PITTSBURGH, SEATTLE, OTTAWA, 
SYRACUSE, BALTIMORE, HOUSTON, MADRID, L.A., 
ATLANTA, DULLES, HONOLULU 
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terance as a text span, it may not contain enough 

information to indicate its relevant subtask as some 

utterances in a task-oriented dialog are very short 

and can occur in any subtask (e.g. acknowledge-

ments and yes/no responses). Larger text spans, 

reference topics, were used in (Yamron et al., 

1998). Nevertheless, this approach requires true 

segment boundaries. To eliminate the need of an-

notated data in our algorithm, HMM states are in-

duced from predicted segments generated by 

TextTiling instead. 

After segmenting all dialogs into sequences of 

subtasks, the bisecting K-means clustering algo-

rithm (Steinbach et al., 2000) is used to group the 

segments that belong to the same type of subtask 

together as they represent the same form type. The 

clustering is done based on cosine similarity be-

tween segments. This unsupervised clustering al-

gorithm is also used to infer a set of HMM states in 

the HMM-based segmentation described above.  

Words are used as features for both segmenta-

tion and clustering algorithms. If a set of domain 

concepts has already been identified, we can use 

this information to enhance the features. When 

concept annotation is available, we can incorporate 

a concept label into a representation of a concept 

word. A Label+Word representation joins a word 

string and its label and can help disambiguate be-

tween similar words that belong to different con-

cepts. For instance, “one” in “that one” is not the 

same token as “[Hour]:one”. A Label representa-

tion, on the other hand, only represents a concept 

word by its label. This representation is based on 

the assumption that a list of concepts occurring in 

one subtask is distinguishable from a list of con-

cepts occurring in other subtasks regardless of the 

values of the concepts; hence, a concept label is 

more informative than its value. This representa-

tion provides an abstraction over all different val-

ues of the same concept type. For example, 

[Airline]:northwest and [Airline]:delta are 

represented with the same token [Airline]. In all 

experiments, concept labels are provided by a do-

main expert as we assume that a set of domain 

concepts has already been identified. 

4.1 Dialog Segmentation Results 

To evaluate dialog segmentation performance, we 

compare predicted boundaries against subtask 

boundaries annotated by a domain expert. Subtask 

boundaries could occur only at utterance bounda-

ries. Two metrics are used: Pk (Beeferman et al., 

1999) and concept-based f-measure (C. F-1). Pk 

measures the probability of misclassifying two ut-

terances that are k utterances apart as belonging to 

the same sub-task or different sub-tasks. k is set to 

half the average sub-task length. C. F-1 is a mod-

ification of the standard f-measure (a harmonic 

mean of precision and recall) that gives credit to 

some near misses. Since the segmented dialogs 

will later be used to identify a set of forms and 

their associated slots, the segment that contains the 

same set of concepts as the reference segment is 

acceptable even if its boundaries are slightly dif-

ferent from the reference. For this reason, a near-

miss counts as a match if there is no concept be-

tween the near-miss boundary and the reference 

boundary. 

We evaluated the proposed dialog segmentation 

algorithms with 24 dialogs from the air travel do-

main and 20 dialogs from the map reading domain. 

The window size for TextTiling was set to 4 utter-

ances. The cut-off threshold for choosing subtask 

boundaries was set to μ - σ/2; where μ is the mean 

of the depth scores (Hearst, 1997), the relative 

change in word co-occurrence similarities on both 

sides of a candidate boundary, in each dialog and σ 

is their standard deviation. We found that a small 

window size and a low cut-off threshold are more 

suitable for identifying fine-grained segments as in 

the case of subtasks. However, we also found that 

TextTiling is quite robust as varying these two pa-

rameters doesn’t severely degrade its performance 

(Chotimongkol, 2008). The threshold for selecting 

data-driven stop words was set to μ + 2*σ; where μ 

is the mean of the regularity counts of all the words 

in a given dialog and σ is their standard deviation. 

The performance of TextTiling and HMM-based 

segmentation algorithm is shown in Table 2. 

Augmented TextTiling, which uses a data-

driven stop word list, distance weights, and the 

Label+Word representation, performed significant-

ly better than the baseline in both domains. Each of 

these augmenting techniques can on their own im-

prove segmentation performance but not signifi-

cantly. Unsurprisingly, the proposed regularity 

counts discover stop words that are specific to spo-
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ken dialogs, but are absent from the hand-crafted 

list
1
, e.g. “okay” and “yeah”.  

 

Algorithm 
Air Travel Map Reading 

Pk C. F-1 Pk C. F-1 

TextTiling (baseline) 0.387 0.621 0.412 0.396 

TextTiling (augmented) 0.371 0.712 0.384 0.464 

HMM-based (utterance) 0.398 0.624 0.392 0.436 

HMM-based (segment) 0.385 0.698 0.355 0.507 

HMM-based (segment + 

Label representation) 

0.386 0.706 0.250 0.686 

Table 2: Dialog segmentation results 

For HMM-based segmentation, the segmenta-

tion result obtained when modeling the HMM 

states from predicted subtasks generated by Text-

Tiling (4
th
 row) is better than the result obtained 

when modeling the HMM states from utterances 

(3
rd

 row). Predicted segments provide more context 

to the clustering algorithm that induces the HMM 

states. As a result a more robust state representa-

tion is obtained. A more efficient clustering algo-

rithm can also improve the performance of the 

HMM-based segmentation algorithm since it pro-

vides a state representation that better differentiates 

among dialog segments which belong to dissimilar 

subtasks. When the Label representation which 

yielded a better subtask clustering result (see Sec-

tion 4.2) was used, HMM-based segmentation pro-

duced a better result (5
th
 row) especially in the map 

reading domain. These numbers may appear mod-

est compared to the numbers obtained when seg-

menting expository text. However, predicting the 

boundaries of fine-grained subtasks is more diffi-

cult even with a supervised learning approach (Ar-

guello and Rosé, 2006). Our results are comparable 

to Arguello and Rosé’s (2006) results. 

Between the two segmentation algorithms, the 

HMM-based algorithm performed slightly worse 

than TextTiling in the air travel domain but per-

formed significantly better in the map reading do-

main. The HMM-based algorithm can identify 

more boundaries between fine-grained subtasks, 

which occur more often in the map reading do-

main. TextTiling, which relies on local lexical co-

hesion, is unlikely to find two significant drops in 

lexical similarity that are only a couple of utter-

ances apart, and thus fails to detect boundaries of 

short segments. However, HMM-based segmenta-
                                                           
1 http://search.cpan.org/~creamyg/Lingua-StopWords-

0.08/lib/Lingua/StopWords.pm. 

tion misses more boundaries between two subtask 

occurrences of the same type, which occurs more 

often in the air travel domain, as they are usually 

represented by the same state. 

4.2 Subtask Clustering Results 

We evaluated the subtask clustering algorithm on 

the same data set used in the dialog segmentation 

evaluation. Table 3 presents the quality score (QS) 

for each clustering result. These QSs were obtained 

by comparing the output clusters against a set of 

reference subtasks. See (Chotimongkol and Rud-

nicky, 2002) for the definition of QS. 
 

Feature Representation Air Travel Map Reading 

Label+Word (oracle) 0.738 0.791 

Label+Word 0.577 0.675 

Label 0.601 0.823 

Table 3: Subtask clustering results 

When predicted segments were clustered, the 

quality of the output (2
nd

 row) is not as good as 

when the reference segments were used (1
st
 row) as 

inaccurate segment boundaries affected the per-

formance of the clustering algorithm. However, the 

qualities of subtasks that occur frequently are not 

much different. In terms of feature representation, 

the clustering algorithm that uses the Label repre-

sentation achieved better performance in both do-

mains. When the sets of concepts in all of the 

subtasks are disjoint, the clustering algorithm that 

uses the Label representation can achieve a very 

good result as in the map reading domain. This 

result is even better than the result obtained when 

the reference segments were clustered by the algo-

rithm that uses the Label+Word representation. 

These results demonstrate that an appropriate fea-

ture representation provides more useful informa-

tion to the clustering algorithm than accurate 

segment boundaries. However, when the subtasks 

contain overlapping sets of concepts as in the air 

travel domain, the performance gain obtained from 

the Label representation is quite small.  

Figure 5 shows four types of forms in the air 

travel domain that were acquired by the proposed 

form identification approach. The slot names are 

taken from concept labels. The number in paren-

theses is slot frequency in the corresponding clus-

ter. The underlined slots are the ones that belong to 

other forms. Some slots in the car query form are 
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missing as some instances of its corresponding 

subtask get merged into other clusters. 
 

Figure 5: Examples of forms obtained by the proposed 

unsupervised learning approach 

4.3 Discussions on Learning Approaches 

The results presented in the previous sections show 

that existing unsupervised learning algorithms are 

able to identify components of the form-based di-

alog structure representation.. However, some 

modifications are required to make these algo-

rithms more suitable for inferring the structure of a 

spoken dialog. The advantages of different learn-

ing algorithms can be combined to improve per-

formance. For example, TextTiling and HMM-

based segmentation are good at detecting different 

types of boundaries; therefore, combining the pre-

dictions made by both algorithms could improve 

segmentation performance. Additional features 

such as prosodic features could also be useful.  

Subsequent steps in the learning process are sub-

jected to propagation errors. However, the pro-

posed learning algorithms, which are based on 

generalization of recurring patterns, are able to 

learn from inaccurate information given that the 

number of errors is moderate, so that there are 

enough correct examples to learn from. Given re-

dundant information in dialog corpora, a domain 

knowledge acquisition process does not require 

high learning accuracy and an unsupervised learn-

ing approach is reasonable. The overall quality of 

the learning result is acceptable. The proposed un-

supervised learning approach can infer much use-

ful task-specific dialog information needed for 

automatically configuring a task-oriented dialog 

system from data. 

5 Conclusion and Future Directions 

To represent a dialog for a learning purpose, we 

based our representation, the form-based dialog 

structure representation, on observable informa-

tion. Components of the form-based representation 

can be acquired with acceptable accuracy from 

observable structures in dialogs without requiring 

human supervision. We show that this dialog re-

presentation can capture task-specific information 

in dissimilar domains. Additionally, it can be un-

derstood and applied by annotators other than the 

developers. 

Our investigation shows that it is feasible to au-

tomatically acquire the domain-specific dialog in-

formation necessary for configuring a task-oriented 

dialog system from a corpus of in-domain dialogs. 

This corpus-based approach could potentially re-

duce human effort in dialog system development. 

A limitation of this approach is that it can discover 

only information present in the data. For instance, 

the corpus-based approach cannot identify city 

names absent in the corpus while a human devel-

oper would know to include these. Revision may 

be required to make learned information more ac-

curate and complete before deployment; we expect 

that this effort would be less than the one required 

for manual analysis. A detailed evaluation of cor-

rection effort would be desirable. 

In this paper, task-specific knowledge was ac-

quired from in-domain dialogs without using any 

prior knowledge about the domain. In practice, 

existing knowledge sources about the world and 

the domain, such as WordNet, could be used to 

improve learning. Some human supervision can be 

valuable particularly in the form of semi-

supervised learning and active learning. In particu-

lar a process that integrates human input at appro-

priate times (for example seeding or correction) is 

likely to be part of a successful approach. 
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Form: flight query 

Airline  (79) 
ArriveTimeMin  (46) 
DepartTimeHour (40) 
DepartTimeMin  (39) 
ArriveTimeHour (36) 
ArriveCity (27) 
FlightNumber (15) 
ArriveAirport (13) 
DepartCity (13) 
 

Form: hotel query 

Fare  (75) 
City (36) 
HotelName (33) 
Area (28) 
ArriveDateMonth (14) 

Form: flight reservation 

Fare (257) 
City (27) 
RentalCompany (17) 
HotelName (15) 
ArriveCity (14) 
AirlineCompany (11) 

Form: car query 

CarType (13) 
City (3) 
State (1) 
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