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Abstract

This paper describes an algorithm for unifying dis-
junctive feature structures. Unlike previous algo-
rithms, except Eisele & Dormre (1990), this algorithm
is as fast as an algorithm without disjunction when
disjunctions do not participatc in the unification, it is
also as fast as an algorithm handling only local dis-
junctions when there are only local disjunctions, and
expensive only in the case of unifying full disjunc-
tion. The description is given in the framcwork of
graph unification algorithms which makes it easy to
implement as an extension of such an algorithm.

1 Introduction

Disjunction is an important extension to feature
structure languages since it increases the compact-
ness of the descriptions, The matn probiem with in-
cluding disjunction in the structures is that the
unification operation becomes NP-complete. There-
fore there have been many proposals on how to uni-
fy disjunctive feature structures, the most important
being Karttunen’s (1984) unification with con-
straints, Kasper’s (1987) unification by successive
approximation, Eisele & Dorre’s (1988) value unifi-
cation and lately Eisele & Dorre’s (19904, b) unifi-
cation with named disjunctions. Since Kasper’s and
Fisele & Dorre's algorithms seem to be more gener-
al and efficient than Karttunen'’s algorithm 1 will re-
strict my discussion to them.

In Kasper’s algorithm the structures to be unified
are divided into two parts, one that does not contain
any disjunctions and one that is & conjunction of all
disjunctions in the structure. The idea is to unify the
non-disjunctive parts first and then unify the result
with the disjunctions, thus trying to exclude as many
alternatives as possible. The last step is to compare
all disjunctions with each other, making it possible
to discard further alternatives. It is this comparison
that is expensive. The algorithm is always expensive
for disjunctions, regardless of whether they contain
path equivalences or not and independent of wheth-
er they are affected by the unification or not. This is
due to the representation, where all disjunctions are
moved to the top level of the structure, which means
that larger parts of the structures are moved into the
disjunctions and must be compared by the algo-
rithm. Carter (1990) has made a development of this
algorithm which improves the efficiency when used
together with bottom-up parsing.
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Eiscle & Dorre’s (1988) approach is based on the
fact that unification of path equivalences should re-
turn not only a local value, but also a global value
that affects some other part of the structure. Their
solution is to compute the local value and save the
global value as a global result. The global results
will be unified with the result of the first unification.
This new unification can also generate a new global
disjunction so that the unification with global results
will be repeated until no new global result 1s gener-
ated. This solution generates at least one, but often
more than one, extra unification for each path equiv-
alence. Thus, the atgorithm is always expensive for
path equivalences, regardless of whether they are
contained inside disjunctions or not.

The approach taken by Eisele & Dorre (1990) is
similar to the approach taken in this paper. They use
‘named disjunction’ (Kaplan & Maxwell 1989) and
one of their central ideas i.¢. to use a disjunction as
the value of a variable to decide when the value is
dependent on the choice in some disjunction is simi-
lar to the way of unifying variables in the present
paper. However, they use feature terms for repre-
senung the structures and their algorithm is de-
scribed by a set of rewrite rules for feature terms.
This makes the algorithm different from algorithins
described for graph unification.

What is special with the algorithm in the present
paper is that it is

. Asefficient as an algorithm not handling disjunc-
tion when the participating structures do not con-
tain any disjunctions.

2. As efficient as an algorithm allowing only locat
disjunctions when the participating structures
only contain such disjunction.

3. Expensive only when non-local disjunction is in-
volved.

The description is given in a way that makes the
algorithin easy to implement as an extensron of a
graph unification algorithm.

2 The Formulas

Feature structures are represented by formulas. The
syntax of the formulas, especially the way of con-
structing complex graphs, is chosen so as to get a
close relation to feature structures. This also makes
1t easy to construct a unification procedure similar to
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graph unification and give the formulas a semantics
based on graph models. For disjunction a generali-
zation of Kaplan & Maxwell’s (1989) ‘named dis-
junction’ is used. Their idea is to give the
disjunctions names so that it is possible to restrict
the choices in them. Kaplan and Maxwell use only
binary disjunctious, and if the left alternative in one
disjunction is chosen the left alternative in all dis-
junctions with the same name has to be chosen. In
this paper I do not restrict the algorithm to binary
disjunctions. Instead of giving the disjunction a
name [ give each alternative a name. Alternatives
with the same name are then connected so that if
one of them is chosen we also have to choose all the
others.

We assume four basic sets A, £, X and X of atoms,
feature attributes, variables and disjunction switches
respectively. These sets contain symbols denoted by
strings. They are all assumed to be enumerable and
pairwise disjoint. From these basic sets we define
the set § of feature structures. S contains the follow-
ing structures:

* T :noinformation

* L failure

« aforalla€ A :atoms

» xforall x € X : variables

s [fyssy, . Susy) forany f; € F,5;€ §, n>0such
that fi#f; for i#: complex feature structure

* {o;5),..0,5,} forany o, € L, 5,€ §,n20
such that o #o; for i#f : disjunction

A formula is defined 10 be a pair (s, v) where s is a
feature structure and v.X—S a valuation function
that assigns structures to variables. We demand that
the formulas are acyclic.

An example of a formula is given in figure 1. Var-
iables are denoted by using the symbol # and a
number. The same formula is also given in matrix
format which will be used to make the examples
casier to read.

{la: [e:#1], b:3,c:#1], { (#1, [d:4])})

a: le: #l=[d; 4]]
b: 3
c: #]

Figure 1

We can observe that according to this definition
formulas are not unambiguously determined. The
same formula can for example be expressed with
different variables. There is also nothing said about
the value of the valuation function v for variables
not occurring in the formulas.
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3 Semantics

The semantics given for these formulas is similar to
the one given by Kasper & Rounds (1986) for their
logic of feature structures. This logic is modified in
the same way as in Reape (1991) to allow for the
use of variables instead of equational constraints as
used by Kasper and Rounds. As Kasper and Rounds
I will use a graph model for the formulas where
each formula is satisfied by a set of graphs. I will
use b to denote the transition function between
nodes in the graph. We also need to define a valua-
tion to describe the semantics of variables. Given a
graph a valuation is a function V:X—N. By this
function every variable is assigned a node in the
graph as its value.

Satisfaction is defined by the following rules. The
model M = (G, V, L) where G is a graph, V a valua-
tion and L a subset of the switches occurring in the
formula.satisfies a formula at node 7 iff it fulfils any
of these cases. [ will use the notion sa#(i) if node i in
the graph satisfies a formula.

o M sat(i){T, v) for all v

* Msat(i){L,v)fornov

+ M sat(i){a, v)iff node i in G is the leaf a € A

M sat(i) (x, v) iff V(x)=i and M sat(i) {v(x), v}

o Msa(i){[fi:s, o fpispl, v iffforallk =1 .. n
®if)=j and M sat(ji) sy, v)

M san(i){{o;s;, ..., 0,:5,}, v) iff precisely one of
0, ... opis in L and M sat(i) (s, v) for k such that
Oy €L

These rules correspond to the usual sabisfaction
definitions for feature structures. The subset of
switches L forces us to choose exactly one alterna-
tive in each disjunction and the model should satisfy
this alternative.

4 Unification

In this section I will define a set of rewrite rules for
computing the unification of two formulas. I will
start by introducing the operator A into our formu-
las. The syntax and semantics is given by the fol-
lowing rules:

* Msat(i) fs; Afs, iff fs; and f5, are formulas and M

sat(i) fs, and M sat(i) fs,

« M sal(i) (syAsy, v) iff M sat(i) {sy, v) and M sat(i)

{55, v)

The operator A can be viewed as the unification
operator. By the definition we can see that it is inter-
preted as a conjunction or intersection of the two
participating formuias, which is the normal interpre-
tation of unification. The task of unifying two for-
mulas is then the task of rewriting two formulas
containing A into a formula not containing A. Here
we can note that since a formula is not unambigu-
ously determined the unified formula is not unigue.
Actually there is a set of formulas that all have the
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same model as the unification of the formulas. The

aim here is to compute one of these formulas as a

representative for this set, and thus a representative

for the unification of fs; and fs,. The rewrite rules
given below correspond to the unification algorithm
for formulas not containing disjunction.

L (57, v NSy, v,) i {s A8, v) if vy and v, are dis-
joint and v(x)=v,(x) for all x in v;, v(x)=v,(x) for
allxinv,.

. s Asy vy s{s,As ;. v)

L ATAs, vy={s,v)

. {ana, v)={a, v) where ac A

. {anb, v)={L, v) where a#b and a,b€ A

. Aanlfyisyfisyl v = (L v) where a€ A

- s, vy =L W)

. {xas, vy =(x, vy)
where (v(x)Aas, vy = (s}, v;) and x€ X, v,(x)=s,
and v,=v; for all other variables

9. Vs 111081 A2 1521 SomiSoml, VY = s vp )

where s is the complex feature structure contain-
ing:

fyj:51; for any j such that f; #75, for all k

Jyys7; for any j such that f,#f;; for all £

f1js3; for any j.k such that f; =/, where {57574
Vit )) = (53, vi)

and / describes some enumeration of the result-
ing formulas vg=v and (s3,,, v,) is the last of the
formulas.

The first rule is a kind of entry rule and can be in-
terpreted as saying that it is possible to unify two
formulas if the variables occurring within them are
disjoint. The second rule says that unification is
commutative, and are used to avoid duplicating the
other rules. The next rule says that T unifies with
everything. Rules four to six says that an atom only
unifies with itself and becomes failure when unified
with some other atom or a complex structure. The
seventh rule says that unifying failure always yields
failure. The eighth rule deals with unification of var-
iables. Here we have to start with unifying the value
of the variable with the other structure. This unifica-
tion gives a new pair of feature structure and valua-
tion function as resuit where the new valuation
function contains the changes of variables that have
been made during this unification. The resuit of the
unification of a variable is the pair of the variable
and the new valuation function where the value of
the variable is replaced with the unified one. Rule
nine deals with the unification of two complex fea-
ture structures and says that the result is the struc-
ture obtained by unifying the values of the common
atributes of the two structures and then adding all
attributes that occurs in either of the structures to the
result.

Figure 2 gives an example that illustrates what
modifications that must be made to the rewrite rules
to be able to handle unification of disjunction. Uni-
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fying a disjunction is basically unifying each of its
alternatives. But the example also shows what must
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Figure 2

happen if a variable occurs within the disjunction.
The value of the variable is global since it can affect
parts of the structure outside the disjunction. There-
fore this value must be dependent on what alterna-
tive that is chosen in the disjunction. This is done by
representing the value ot the variable as a new dis-
junction where we only choose the unified value if
the alternative o, is chosen. To express this in the
rewrite rule we index all rules by the list of switches
that are traversed in the formula. This is expressed
by replacing the = with = in all rules wherc X is a
list of the switches passed to reach this point of the
unification. We also need to split rule 8 inio two
rules depending on if any disjunctions have been
passed to reach the variable. The new rules are giv-
en betow and we assume that the switches occurring
in each formula are unique.
8.a{xAs, v) =0 {x, v

where (v(x)as, v) = {5;, v)) x€ X, vy(x)=5; and

v>=v, for all other variables
8.bCuns, vy m (1 T ¢y, )

where (v(x)as, v) &S/ -0 (v x€X,

vy(x)={o{op: .. (0,18 Opewn:V(X)...}

Orew2:V(X)} Opew:V(X)}. v,=v, for all other vari-

ables and 0,,,,, is a switch name not used before.
10.{ 01181 .05} AS, v)_=jY Qo8 1.0y 52} vy)

where {sy;As, v =00 (5o v and vy =v

In Sudmbiick (1991, 1992) these rewrite rules are

proved to compute the unification of two formulas.

5 Discussion

The syntax and semantics of the formulas are very
similar to what is given in Reape (1991 pp 35)
which is a development of the semantics given in
Kasper & Rounds (1986) that allows the use of vari-
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ables to express equational constraints. The differ-
ence is that I use formulas of the form [fy:5)...f;:5,]
instead of an ordinary conjunction and that we use
named disjunction. This restricts the syntax of the
formulas somewhat and makes them closer to ordi-
nary feature structures. The restricted syntax is also
the reason why we need to include a valuation func-
tion in the formulas.

1t is easy to represent the formulas as ordinary di-
rected acyclic graphs where variables are represent-
ed as references to the same substructure in the
graphs. If we think of the formulas as graphs it is
also easy to compare the rewrite rules 1-9 above
with an ordinary graph unification algorithm. Doing
this we can conclude that each of the rewrite rules
three to nine corresponds to a case in the unification
algorithm. The only difference is that when varia-
bles are represented as reentrant subgraphs we never
have to look-up the variable to find its value. The
main advantage with defining unification by a set of
rewrite rules is that the procedure can be proved to
be correct.

6 Detection of failure and
improvements

The problem with the rewrite rules is that they
sometimes produces formulas which have no model.
Such formulas must be detected in order to know
when the unification fails. As long as the formulas
only contain local disjunction this is not a problem
and it is easy to change the rewrite rules in order to
propagate a failure to the top level in the formula.
The ninth rule is, for example, changed to return {1,
v, whenever any of the values of the attributes in
the resulting formula is fail.

When nonlocal disjunction is included we must
find some of keeping track of which choices of
switches in the disjunctions that represent a failure.
This can be done by building a tree where the paths
represents possible choices of switches and the leaf
nodes in the tree contains a value that is false if this
choice represents a subset of switches for which the
formula has no model and true otherwise. Figure 3
shows an example of a formula and its correspond-
ing choice tree. To reach the leaf b in the tree the
switches o1, 03, and on have been chosen and 52,
o4, and 03 have not. So 03 is both chosen and not
chosen and the value of this leaf must be false. Con-
tinuing this reasoning for the other paths in the tree
we could see that the leafs b, e, and f must have the
value false and the other leafs must have the value
true. If some value of an alternative is L the corre-
sponding leafs in the choice tree must be false. If
we, for example assume that the value of 04 is fail
we must assign false to the leafs c, f, and g.

Choice trees can be built ones for each formula
and merged during the unification of formulas. A
better solution is to only build the choice trees when
they are needed. i.e. when a disjunction alternative
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where the disjunction shares some switch name with
another disjunction fails. If this is done we only
have to do the expensive work when really needed
which is when we have failure in a non-local dis-
junction and achieves a better performance of the al-
gorithm for all other cases.

Strombick (1991, 1992) discusses how the choice
tree is best used. The papers also discuss how the
choice tree can be used to remove failed alternatives
from a formula without destroying the interpretation
of the formula. The main idea here is to see what
switches that must be chosen to reach each disjunc-
tion alternative in the formula. For this set of
switches we find all leafs in the choice tree that can
be reached if these switches are chosen. If all these
leafs are false the alternative should be removed.
For example, if we assume that the value of 4 in
figure 3 is fail and that we have assigned false to the
corresponding leafs in the choice tree, we can also
see that there is no way of reaching a leaf with the
value true if we have to choose on. In this case we
can as well remove both 04 and on from the feature
structure.

The two papers mentioned above also discuss
various improvements that can be made in order to
get a more efficient algorithm. Most important here
is that we can build only parts of the choice tree and
that the notion of switches for a disjunction can be
extended to allow sets of switches in order to avoid
creating too many new disjunctions.

7 Implementation

The algorithm has been implemented in Xerox
Common Lisp and is running on the Sun Sparcsta-
tions.
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8 Complexity

To analyze the complexity of this algorithm I will
ook at threc cases. If we assume that there are no
disjunctions in the formulas the procedure can be
implemented almost linearly. If we have local dis-
junction in the formulas, i.¢. disjunctions which do
not contain variables and which not are connected
by switch names, the total complexity becomes ex-
ponential on the maximum depth of disjunctions oc-
curring within each other. For the third case we have
to add the complexity for the removal strategies
when alternatives have failed. ‘The complexity for
this procedure is also exponential in the size of a“,
where a is the total number of alternatives occurring
in the formulas. For a more complete discussion of
the complexity see Strémbiick (1991, 1992)

When considering complexity one must remem-
ber that the second case will only be performed
when there are disjunctions in the formula and when
these disjunctions are actually affected by the unifi-
cation. Disjunctions in some subpart of the formula
not affected by the unification never affect the com-
plexity. 1t is also reasonable to assume that in most
cases when a disjunction really participates in the
unification, some of its alternatives will be removed
due to failure. The same thing holds for the last
case; it will only be performed when some global al-
ternative has failed. This means that this procedure
can at most be performed once for each ordinary al-
ternative in the initial formulas.

Comparing this to the other proposed alternatives
we can see that Kasper’s (1987) algorithm has a bet-
ter worst case complexity (2" “). On the other hand
this complexity holds for all disjunctions in the
structure regardless of whether they arc aftected by
the unification or not. The algorithm by Eisele &
Dorre (1988) has a similar worst case complexity.
The disadvantage here is that this algorithm is ex-
pensive even if the structures do not contain any dis-
junctions at all. The third algorithm (Eisele & Dorre
1990a, b) will also be NP-complete in the worst case
and will probably have a similar performance com-
pared to the algorithm described in this paper.

9 Conclusion

This paper describes an algorithm for unifying
disjunctions which calls for as little computation as
possible for each case. Disjunctions only affect the
complexity when they directly participate and are
affected by the unification, which is the only case
when we expand to disjunctive normal form. The
most expensive work is done only when there is a
failure in a disjunction which affects some other part
of the structure. The only algorithm that shows sim-
ilar complexity is the algorithm proposed by Eisele
& Dorre (1990). However the description given by
Eisele and Dorre is harder to relate and implement
as a graph unification algorithm, This paper shows
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that it is possible to use similar ideas together with
graph unification. The description given here is fair-
ly easy to implenient as an extension of a graph uni-
fication algorithm.
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