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Abstract

Retrospective event detection is an important task for discovering previously unidentified events
in a text stream. In this paper, we propose two fast centroid-aware event detection models based
on a novel text stream representation – Burst Information Networks (BINets) for addressing
the challenge, following the D2N2K (Data-to-Network-to-Knowledge) paradigm. The BINets
are time-aware, efficient and can be easily analyzed for identifying key information (centroids).
These advantages allow the BINet-based approaches to achieve the state-of-the-art performance
on multiple datasets, demonstrating the efficacy of BINets for the task of event detection.

1 Introduction

Retrospective Event Detection (RED) (sometimes called topic detection) is a core task for text stream
analysis, which aims to detect events that are previously unknown to the system (Wayne, 1998; Ra-
jaraman and Tan, 2001) and is useful for many applications such as text stream summarization and
evolutionary analysis of events in both news and social streams.

docid time text
d1 Jan 12, 2010 A 7.0 magnitude quake hits the impoverished Caribbean nation of Haiti,

killing more than 200,000 people, injuring an estimated 300,000.
d2 Feb 27, 2010 A huge magnitude 8.8 earthquake strikes near the coast of south-central

Chile, shaking buildings, causing blackouts and killing at least 147 people.
d3 Apr 14, 2010 A 7.1-magnitude earthquake struck Tibetan Autonomous Prefecture of

Yushu in southern Qinghai Province on April 14, 2010, killing at least 400
people and injuring more than 10,000.

Table 1: Documents discussing different earthquake events.

Most previous event detection approaches tend to use document- or keyword-based clustering models.
Another solution proposed in recent years is to build a keyword graph to model the co-occurrence of
keywords for detecting keyword communities as events (Sayyadi and Raschid, 2013). Even though these
methods can achieve fair performance in small datasets, they have either of the following limitations:

• No time-awareness: many event detection models do not take into account time information. As
a result, it is very likely that the documents that talk about different events (as Table 1 shows) are
grouped into one cluster just because their lexical similarity is high.
• Inefficient: clustering-based methods tend to be time-consuming. For example, the time complexity

of GAC (group average clustering) – the most commonly used clustering method in event detection
– is O(n2 log n). The computational challenge makes them difficult to work on a large dataset.
∗This work was done when the first author was visiting Microsoft Research Asia
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• Deviation of cluster centroids: it is likely that the clusters obtained by the methods are not event-
centric, which has an adverse effect on the result, as illustrated in Figure 1.

Figure 1: Deviation of cluster centroids: If clusters are not constructed around the centroid of the events
(e.g., the dashline cluster is constructed around non-centroids such as people, kill and injure instead of
earthquake or bombing), the performance will be adversely affected.

To offer a better solution to event detection without the above limitations, we propose to use a novel
text stream representation: Burst Information Networks (BINets) (Ge et al., 2016a; Ge et al., 2016b). In
contrast to the keyword graph which is based on word co-occurrence, a BINet is constructed based on
burst co-occurrence. In a BINet (Fig. 2), a node is a burst of one word, which can be represented by the
word with one of its burst periods, and an edge between two nodes indicates how strongly they are related
(i.e., how frequently they co-occur). Since the nodes in a BINet contains temporal information (e.g.,
burst period), a BINet is time-aware in which nodes in a community are both topically and temporally
coherent. Hence, we can say each community in a BINet corresponds to an event. Based on the BINet
representation, we propose two fast centroid-aware event detection models. We show that the BINet-
based models are efficient, allowing it to work on a large dataset, and the clusters obtained by the models
center around the key information of events. Experiments on multiple datasets show that the BINet-based
approaches achieve the state-of-the-art performance in terms of both accuracy and efficiency.

The contributions of this paper are:

• We propose to use BINets – a novel text stream representation for event detection, which is time-
aware, can be efficiently built and support event-centric clustering, addressing the typical limitations
of previous models.
• We propose two fast centroid-aware algorithms for event detection based on the BINet representa-

tion, which not only solve the centroid deviation problem but also are more efficient than traditional
approaches.
• We construct and release a dataset for evaluating event detection models on a large text stream

during a long time span.

2 Burst Information Networks

2.1 Burst Detection

A word’s burst refers to a sharp increase of word frequency during a period. It usually indicates key
information, important events or trending topics in a text stream as Figure 3 shows and is useful for
many applications. In this paper, we detect a word’s burst using the method of Zhao et al. (2012) which
is a variant of (Kleinberg, 2003) and models burst detection as a burst state sequence decoding problem
where a word w’s burst state st(w) at time t could be 1 or 0 to indicate if the word bursts or not at t.
Specially, if a word w bursts at every time epoch during a period, we call this period a burst period of w
and w has a burst during this period. In Figure 3, earthquake has 2 burst periods (i.e., Jan 12 - Jan 31,
and Feb 27 - Mar 7), which correspond to two famous earthquake events (i.e., 2010 Haiti earthquake and
2010 Chile earthquake).
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Figure 2: An example of Burst Information Network.
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Figure 3: The frequency of earthquake during the first 100 days in 2010. There are two burst periods
(red) for earthquake during the period, corresponding to two strong earthquake events happening in Haiti
and Chile respectively.

Formally, we define Pi(w) as the ith burst period of the word w. It is a time interval, during which the
word w bursts at every time epoch:

Pi(w) = [tsi (w), tei (w)]
∀t ∈ Pi(w) st(w) = 1

where tsi (w) and tei (w) denotes the starting and ending time of the ith burst period of w, and st(w)
denotes the burst state of w at time t.

2.2 Burst Information Network Construction

A BINet represents associations between key facts in a text stream, which has been proven to be effective
in multiple knowledge mining tasks (Ge et al., 2016a; Ge et al., 2016b). The basic component of a BINet
is burst elements which are nodes of the information network:

A Burst Element is a burst of a word. It can be represented by a tuple: 〈w,Pi(w)〉 where w denotes
the word and Pi(w) denotes one burst period of w. Though a word may have multiple burst periods, a
burst element has only one burst period. A word during its different burst periods will be regarded as
different burst elements.

There are two main advantages using burst elements as nodes to build the information network:

• A burst element not only includes semantic information but also incorporates the temporal dimen-
sion. Nodes in a community are topically and temporally coherent while nodes that are topically
or temporally distant cannot be adjacent, which makes it reasonable to consider a community in a
BINet corresponds to an event.
• Since a burst element denotes a burst word during one of its burst period, its sense is likely to be

consistent. Multiple bursts of a word will be considered as different burst elements. Therefore,
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Figure 4: Node based detection model. Shaded nodes denote key nodes.
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Figure 5: Area based detection model. Shaded areas denote key areas.

nodes in a BINet tends to be less ambiguous.

Formally, a BINet is defined as G = 〈V,E〉. Each node v ∈ V is a burst element and each edge e ∈ E
denotes the association between burst elements. Intuitively, if two burst elements frequently co-occur,
then they should be highly weighted. We define ωi,j as the weight of an edge between vi and vj , which
is equal to the number of documents where vi and vj co-occur.

3 Event detection based on the BINet

3.1 Motivation

The goal of event detection is to organize a text stream into multiple document sets, in each of which the
documents coherently discuss the same event. The traditional clustering methods are usually inefficient
and not time-aware. Moreover, they tend to suffer from the problem of deviation of cluster centroids, as
illustrated in Figure 1. In Figure 1, earthquake and bombing are centroids (i.e., key information) of an
earthquake event and a bombing event respectively. If clusters are constructed around the centroids (e.g.,
solid line clusters), the performance will be good; while if clusters center around non-centroid nodes
(e.g., the dashline cluster centers around kill and people), the results will be poor.

To address the limitations above, we propose to model event detection problem as community detec-
tion on the BINet in which each community is both topically and temporally coherent, corresponding to
one event. Instead of using popular community detection algorithms in social network analysis whose
time complexity is high, we propose two fast centroid-aware event detection model: node-based detec-
tion model (NDM) and area-based detection model (ADM). Both of the approaches first identify the key
nodes (or key areas) on the BINet, which indicate the centroid (i.e., key information) of events in the text
stream, and then construct clusters that center around the key nodes (or key areas). The difference of the
models is that NDM attempts to detect a bunch of node communities as clusters while ADM detects the
overlapping document areas to form document clusters, as Figure 4 and Figure 5 depict. In some sense,
NDM and ADM correspond to the keyword- and document-based clustering model respectively. In the
following sections, we will present the details of NDM and ADM.
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Community The word of nodes with top PageRank value Event
1 Iraq, war, Iraqi, US-led, Baghdad Iraq war in 2003
2 flu, a/h1n1, health, virus, influenza 2009 A/H1N1 flu pandemic
3 earthquake, quake, Sichuan Province, Sichuan, quake-hit Sichuan earthquake in 2008
4 Beijing, Olympic Games, gold, medal, team 2008 Beijing Olympics
5 financial, crisis, global, economy, economic financial crisis in 2008

Table 2: Example of the communities detected by our approach. Each community corresponds to one
event and nodes with the top PageRank values tend to be keywords that are the most situable to describe
the events.

3.2 Centroid-aware event detection models
3.2.1 Node-based detection model
The goal of node-based detection model (NDM) is to detect node communities on the BINet each of
which corresponds to one event. To guarantee that detected communities center around the key nodes
that correspond to key information (i.e,. centroid) of events in the text stream, we first identify the key
nodes on the BINet.

Owing to the BINet representation, it is easy to identify the key nodes through the analysis of the
network. Among a variety of ways to identify the influential nodes in a network, we simply adopt the
Pagerank algorithm (Page et al., 1997). For a node v, its PageRank value pr(v) is computed as follows:

pr(v) = d
∑

v′∈N(v)

ω̂v,v′ × pr(v′) +
1− d
|V |

where |V | is the number of nodes in the BINet, N(v) denotes the set of nodes adjacent to v, d is the
damping factor and is set to 0.85, ω̂v,v′ =

ωv,v′
ωv′,∗

, which is the normalized weight of the edge between v

and v′.
Intuitively, a node with a high PageRank value is usually important and likely to be the key node that

indicates the key information of an event. Therefore, we rank nodes in the BINet by their PageRank
value and choose the node which has the highest PageRank value and does not belong to any community
as a key node to construct a community E around it with its closely related nodes:

E = {v} ∪ {u|ω̂v,u > σN}
where v is the node with the highest PageRank value and does not belong to any community, ω̂v,u is the
normalized weight of the edge between v and u, and σN is the threshold for selecting closely related
nodes.

By repeating the process, we can detect multiple communities on the BINet efficiently, each of which
centers around a key node. Table 2 shows some communities detected by this approach from 1995-2010
Xinhua news in English Gigaword. One can observe that each community corresponds to one event
and nodes with the top PageRank values in a community tend to be key information of the events. We
summarize the algorithm in Algorithm 1.

For NDM, we need to infer a document’s event after community detection. For a document d, we infer
the probability that d discusses the event ek as follows:

P (ek|d) =

∑
vk∈Vk(d) pr(vk)∑

v∈V (d) pr(v)
(1)

where V (d) denotes the set of nodes that the words of d corresponds to in the BINet, Vk(d) ⊂ V (d)
denotes a subset of V (d) that are in the community of the event ek, and pr(v) is the PageRank value of
a node v. In Eq (1), the PageRank values of nodes in V (d) can be considered as weights. The nodes
with high PageRank values are highly weighted because they tend to indicate important topical and event
information.
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Algorithm 1 Node-based detection model
1: Input: Ranked list of nodes by PageRank value: L, BINet: G = 〈V,E〉;
2: Output: A list of event communities: C = [E1, E2, ..., Ek]
3: while ‖L‖ > 0 do
4: v ← L[0] (the first element in L)
5: E ← {v} ∪ {u|ω̂v,u > σN}
6: L ← L− E
7: C.append(E)
8: end while

3.2.2 Area-based Detection Model

A document area is the area (i.e., a set of nodes) on the BINet a document corresponds to. For example,
A3 in Figure 5 is the area that the document written during the Haiti earthquake about Haiti, government
and police corresponds to on the BINet. The idea of area-based detection model (ADM) is discovering
the document areas that massively overlap on the BINet to construct clusters so that the documents whose
areas are in the same cluster are about the same event. In contrast to NDM in which each item in a cluster
is a node, the items in a cluster obtained by ADM is document areas on the BINet.

To guarantee that the clusters center around the centroids of events, we first identify key nodes on
the BINet, as NDM does. In ADM, however, we treat a key area as the centroid of an event, which is
different from NDM that treats a key node as an event centroid. To identify the key areas on the BINet,
we first define the PageRank score of an area A as the normalized sum of the PageRank value of the
nodes in it:

pr(A) =
∑

v∈A pr(v)√|A|
Then, we repeatedly choose the area which has the highest PageRank score and does not belong to any
cluster as a key area to construct a cluster with the areas that massively overlap it:

E = {A} ∪ {A′|f(A,A′) > σA} (2)

where σA is the threshold to construct cluster, f(A,A′) is a score to indicate how much A overlaps A′

and it is computed as follows:

f(A,A′) =
|A ∩A′|
|A ∪A′| (3)

We summarize the algorithm of ADM in Algorithm 2. As NDM, ADM detects events in a greedy
manner; hence, the detection process is fast. However, in contrast to NDM, ADM allows one area to
belong to multiple communities, which means that one document could belong to multiple events.

Algorithm 2 Area-based detection model
1: Input: Ranked list of documents areas: L, BINet: G = 〈V,E〉;
2: Output: A list of event communities: C = [E1, E2, ..., Ek]
3: while ‖L‖ > 0 do
4: A← L[0] (the first element in L)
5: E ← {A} ∪ {A′|f(A,A′) > σA}
6: L ← L− E
7: C.append(E)
8: end while
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4 Experiments and Evaluation

We conduct experiments to evaluate the performance of our approach. We first evaluate our approach on
the TDT4 dataset to compare other event detection approaches. Then, we apply our approach on a larger
corpus (2009 – 2010 news corpus) to test its scalability and performance.

For preprocessing, we remove stopwords and conduct lemmatization and name tagging using Stanford
CoreNLP toolkit (Manning et al., 2014) before the construction of a BINet.

4.1 Evaluation on TDT4
The TDT4 collection is a well known dataset for comparing methods for event detection. The English
part of the dataset includes approximately 29,000 news documents from news agencies such as CNN
and BBC from October 2000 to Janurary 2001 (spanning 4 months), while only 1,884 documents1 are
annotated to be related to 71 human identified events (topics). As the setting adopted by previous work
(Li et al., 2005; Sayyadi and Raschid, 2013), we use the annotated subset as gold standard for evaluating
the performance of our models.

As most of the previous work (Yang et al., 1998; Li et al., 2005) addressing the event detection chal-
lenge, we use Micro-Precision, Micro-Recall, Micro-F1 as well as Macro-F1 to evaluate the performance.
We compare our approach to the following models whose effectiveness on the TDT4 corpus has been
verified by previous work:

• Allan2 (Allan et al., 1998): A popular online event detection model, which is often used as a baseline
to compare event detection models.
• GAC (Yang et al., 1998): A classical but effective approach for event detection using group average

clustering.
• KeyGraph (Sayyadi and Raschid, 2013): Betweenness score based community detection approach

on KeyGraph. It is notable that the evaluation measures used in Sayyadi and Raschid (2013) are
somewhat different from those in this paper and other work – they used Macro-precision, Macro-
recall3 and Macro-F1. We only report its Macro-F1 in Table 3.
• Probabilistic model (Li et al., 2005): A time-aware probabilistic graphical model for event detection.

It is the state-of-the-art approach on TDT4 dataset.

Models Micro-P Micro-R Micro-F1 Macro-F1
Allan 0.64 0.57 0.60 0.62
GAC 0.83 0.63 0.72 0.75

KeyGraph - - - 0.69
Probabilistic Model 0.85 0.67 0.75 0.78

BINet-NDM 0.79 0.69 0.74 0.75
BINet-ADM 0.81 0.70 0.75 0.77

Table 3: Performance of various event detection approaches on TDT4.

Table 3 shows the results4 on the TDT4 dataset. The BINet approaches perform well on the dataset:
Both NDM and ADM outperform the classical baselines (i.e., Allan, GAC and Keygraph). The ADM
performs better than NDM and even achieves the comparable performance to the state-of-the-art ap-
proach by (Li et al., 2005) because the centroid in ADM is a key area that contains more information
than a key node in NDM. The reasons for the good performance are two-fold: First, the BINet-based
approach is time-aware, which avoid many unnecessary mistakes made by the baseline models that only
take into account text content; Second, the BINet-based models are centroid-aware, which guarantee that

1Among these 1,884 documents, there are 38 documents belonging to more than one event.
2This baseline is often referred as kNN in literature (Li et al., 2005; Sayyadi and Raschid, 2013). However, to avoid the

ambiguity with the popular kNN classification model, we simply refer it as Allan.
3For reference, the Macro Precision and Recall reported in Sayyadi and Raschid (2013) are 0.82 and 0.59 respectively.
4The results of Allan, GAC and Probabilistic Model are from Li et al. (2005) while the results of KeyGraph come from

Sayyadi and Raschid (2013).
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Model Micro-P Micro-R Micro-F1 Macro-F1 Running time
GAC - - - - >2 hours

KeyGraph - - - - >2 hours
Probabilistic model - - - - >2 hours

B-GAC 0.81 0.65 0.72 0.67 7189s (896s)
BINet-NDM 0.85 0.68 0.76 0.69 3591.98 (1350.08s)
BINet-ADM 0.84 0.71 0.77 0.71 3610.03s (1368.13s)

Table 4: Performance and running time of various event detection models on the 2-year news stream.
We do not report the precision, recall and f-score for the models that cannot get results within 2 hours.
The number in the round bracket is the running time of the model when it is run in 8-way parallel. The
running time is measured on a workstation with Intel Xeon 3.5 GHz CPU and 64GB RAM.

the generated clusters center around centroids of events and avoid the problem of deviation of cluster
centroids.

4.2 Evaluation on a 2-year news stream

Even though TDT4 is a widely used dataset for event detection, it has several limitations: First, the
period of TDT4 dataset is short (only 4 months) as Li et al. (2005) claimed. In TDT4 dataset, hardly can
we see multiple events of the same type in the TDT4 dataset (e.g., there is only one flood event in TDT4
dataset). Therefore, even if we just use content-based clustering methods regardless of time information,
the performance is not bad. Second, the data size of the TDT4 corpus is so small compared with a real
text stream that many stream-based features such as burst cannot function as well as in a real stream. To
test the performance of our detection models on a real text stream, we construct a dataset using 2009 –
2010 news from English Gigaword (APW and XIN sections) as a text stream where there are 584,414
news articles in total. We construct a BINet on this dataset, which contains 46,254 nodes and 514,682
edges. For evaluation, we select 83 events that happened during 2009 – 2010 and annotate their relevant
documents in the text stream. The selected events are all important events and have their corresponding
Wikipedia pages. The annotation process is similar to (Li et al., 2005): we use the Wikipedia title of
the events to search the candidate documents using Lucene and then manually identify if the returned
documents are actually relevant to the events. Since this annotation process does not guarantee finding
all the relevant documents to an event, we call the annotations silver standard5. In total, there are 2,584
documents that are annotated as relevant to those 83 events.

Table 4 shows the results of various approaches on the 2-year news stream. Due to the size of the
dataset, most traditional event models cannot finish the detection task within two hours since their time
complexity is too high. The B-GAC model proposed by (Zhao et al., 2012) is the only one that can
finish the task within 2 hours because it adopts the split-merge-clustering strategy that splits6 the data
into multiple small pieces by time for clustering and then merges the clusters. Though such a strategy
can alleviate the issue of the scalability, the split of data will affect the global overview of the text stream
and have an adverse effect on finding the centroids of events. In contrast, our BINet-based approaches
can finish detecting events within 1 hour without splitting the stream and achieve the best result owing
to their awareness of both time7 and event centroids.

We compare the time complexity of our centroid-aware event detection models to other commonly
used event detection approaches, as shown in Table 5 where n is the number of documents, K is the
event number (K in our BINet-based approaches depends on the selection of σN and σA), |W | is the size
of vocabulary, and |V | and |E| are the number of nodes and edges on the BINet respectively. The running
time of NDM and ADM consist of four parts: burst detection, BINet construction, PageRank analysis,

5The annotation data can found at http://getao.github.io
6We split the 2-year news stream into 8 small pieces, each of which is a 3-month news stream so that it can get the result

within 2 hours.
7For our BINet-based approaches, only burst detection part is run in parallel in 8-way parallel setting, which is different

from B-HAC that splits the stream and clusters documents in parallel.
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Models Time complexity
GAC O(n2 log n)

B-GAC O(n2 log n)
Keygraph O(nK + |W |3)

NDM O(nK + |V | log |V |+ |E|+ |W |T )
ADM O(n(log n+ L) + |V |+ |E|+ |W |T )

Table 5: Time complexity of various event detection models.

and event detection. The first three parts are the same for NDM and ADM, which are preliminary steps
for event detection. The time complexity of burst detection algorithm is O(T ) for one word where T
is the time span of the stream and it can be conducted in parallel for different words because the burst
detection processes for different words are independent. The time complexity of the BINet construction
and PageRank analysis is O(n) and O(|V | + |E|) respectively. For the event detection part, the time
complexity of community detection of NDM is O(|V | log |V |+ |E|+nK). The former term is the time
cost for sorting nodes by PageRank value, and the second and the third term are the cost for constructing
node communities and assigning events to documents respectively. The time complexity of the detection
part in ADM is somewhat different. Its time complexity is O(n log n + nL). As NDM, the first term is
the time for sorting document areas by PageRank value. The second term is the time cost for computing
Eq (3) in which L is the average number of times that a document (area) is taken for computing Eq (3)
and is affected by the selection of threshold parameter σA. In the worst case, L = K; while in the best
case, L = 1, meaning that a document is taken for computing Eq (3) only once. In most cases, L is a
small number. The running time of those parts of NDM and ADM is shown in Table 6. Note that, for the
part of the PageRank computation, the time is measured by running the PageRank algorithm for 1,000
iterations.

BINet-NDM BINet-ADM
Burst detection 2,562.17s (320.27s) 2,562.17s (320.27s)

BINet construction 304.56s 304.56s
PageRank computation 716s 716s

Event detection 9.25s 27.3s
Total 3591.98s (1350.08s) 3610.03s (1368.13s)

Table 6: The running time of 4 parts of our BINet-based event detection approaches. The number in the
round bracket is the running time of the model when it is run in 8-way parallel.

5 Related Work

Event detection is one of the most popular research topics in recent years and has been extensively
studied for the decades (Yang et al., 1998; Swan and Allan, 2000; Allan, 2002; Fung et al., 2005; He et
al., 2007; Sayyadi et al., 2009; Zhao et al., 2012; Sayyadi and Raschid, 2013; Ge et al., 2015). They are
based on either document- or keyword-based clustering, which usually suffer from either unawareness
of time, high expensive computation cost or deviation of cluster centroids. In contrast, our approach is
time-aware, centroid-aware and so efficient that it can be run on a large text stream.

In addition, there is much work (Sakaki et al., 2010; Lee et al., 2011; Diao et al., 2012; Aggarwal and
Subbian, 2012; Wang et al., 2013; Dong et al., 2015) studying event detection problem in social media.
They usually use more or less social media features such as spatio-temporal information, which are not
in the same setting with our task.

6 Conclusion and Future Work

This paper proposes to use a novel text stream representation – Burst Information Networks to address the
retrospective event detection challenge. Based on the BINet, we propose two fast centroid-aware event
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detection models that can effectively overcome the limitations of the previous event detection models
and achieve the state-of-the-art performance on both TDT4 and a long-span text stream.

In the future, we plan to study events in a text stream more deeply based on the BINet representation.
Since a BINet can offer a global overview of events in the stream level, we plan to use the BINets to
derive an event’s type, extract its schema and even fill its slots after we detect its corresponding regions
on the BINet. Hopefully, this framework could work for endless event knowledge mining if it could be
used for monitoring the massive text streams.
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