
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 1370–1381, Dublin, Ireland, August 23-29 2014.

Hybrid Grammars for Discontinuous Parsing

Mark-Jan Nederhof
School of Computer Science

University of St Andrews
KY16 9SX, UK

Heiko Vogler
Department of Computer Science
Technische Universität Dresden

D-01062 Dresden, Germany

Abstract

We introduce the concept of hybrid grammars, which are extensions of synchronous grammars,
obtained by coupling of lexical elements. One part of a hybrid grammar generates linear struc-
tures, another generates hierarchical structures, and together they generate discontinuous struc-
tures. This formalizes and generalizes some existing mechanisms for dealing with discontinuous
phrase structures and non-projective dependency structures. Moreover, it allows us to separate
the degree of discontinuity from the time complexity of parsing.

1 Introduction

Discontinuous phrases occur frequently in languages with relatively free word order, and adequate de-
scription of their structure requires special care (Kathol and Pollard, 1995; Müller, 2004). Even for
languages such as English, with a relatively rigid word order, there is a clear need for discontinuous
structures (McCawley, 1982; Stucky, 1987).

Early treebanks for English (Marcus et al., 1993) have often represented discontinuity in a way that
makes it tempting to ignore it altogether, certainly for the purposes of parsing, whereas recent approaches
tend to represent discontinuity in a more overt form, sometimes after transformation of existing treebanks
(Choi and Palmer, 2010; Evang and Kallmeyer, 2011). In many modern treebanks, discontinuous struc-
tures have been given a prominent status (Böhmová et al., 2000).

Classes of trees without discontinuity can be specified as the sets of parse trees of context-free gram-
mars (CFGs). Somewhat larger classes can be specified by tree substitution grammars (Sima’an et al.,
1994) and regular tree grammars (Brainerd, 1969; Gécseg and Steinby, 1997). Practical parsers for these
three formalisms have running time O(n3), where n is the length of the input sentence. Discontinuous
structures go beyond their strong generative capacity however. Similarly, non-projective dependency
structures cannot be obtained by traditional dependency grammars. See (Rambow, 2010) for discussion
of the relation between constituent and dependency structures and see (Maier and Lichte, 2009) for a
comparison of discontinuity and non-projectivity.

One way to solve the above problems has been referred to as pseudo-projectivity, i.e. a parser produces
a projective structure, which in a second phase is transformed into a non-projective structure (Kahane
et al., 1998; McDonald and Pereira, 2006; Nivre and Nilsson, 2005). In particular, this may involve
lifting, whereby one end point of a dependency link moves across a path of nodes. A related idea for
discontinuous phrase structure is the reversible splitting conversion of (Boyd, 2007). See also (Johnson,
2002; Campbell, 2004; Gabbard et al., 2006).

As shown by (Nivre, 2009), the second phase of pseudo-projective dependency parsing can be inter-
leaved with the first, by replacing the usual one-way input tape by an additional stack, or buffer. Where

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1370



non-topmost positions from the parsing stack are moved back to the buffer, input positions are effectively
swapped and non-projective dependency structures arise.

Tree adjoining grammars (TAGs) can describe strictly larger classes of word order phenomena than
CFGs (Rambow and Joshi, 1997). TAG parsers have a time complexity of O(n6) (Vijay-Shankar and
Joshi, 1985). However, the derived trees they generate are still continuous. Although their derivation
trees may be argued to be discontinuous, these by themselves are not normally the desired syntactic
structures. It was argued by (Becker et al., 1991) that further additions to TAGs are needed to obtain
adequate descriptions of scrambling phenomena.

An alternative is proposed by (Kallmeyer and Kuhlmann, 2012): a transformation is added that turns a
derivation tree of a (lexicalized) TAG into a non-projective dependency structure. A very similar mech-
anism is used to obtain non-projective dependency structures using linear context-free rewriting systems
(LCFRSs) (Kuhlmann, 2013) that are lexicalized. In a LCFRS the synthesis of strings is normally spec-
ified by yield functions associated with rules. By an additional interpretation of the templates of these
yield functions in the algebra of dependency trees (with the overt lexical items as roots), the LCFRS
generates both strings and (possibly non-projective) dependency structures.

However, the running time of LCFRS parsers is generally very high, still polynomial in the sentence
length, but with a degree determined by properties of the grammar; difficulties involved in running
LCFRS parsers for natural languages are described by (Kallmeyer and Maier, 2013).

It follows from the above that there is considerable freedom in the design of parsers that produce
discontinuous structures for given input sentences. One can distinguish between two main issues. The
first is the formalism that guides the parsing of the input. This determines a class of input (string)
languages, which can be that of the context-free languages, or tree adjoining languages, etc. We assume
parsing with any of these formalisms results in derivations of some sort. The second main issue is the
mechanism that translates such derivations into discontinuous structures.

This leads to a number of open questions that are all related. First, what is, or should be, the division
of labor between the parser producing the derivations and the mechanism turning those derivations into
discontinuous structures? If we want to achieve high degrees of discontinuity in the output structures,
should the formalism for the input language be much more powerful than, say, context-free? Or can
highly discontinuous structures be obtained equally well through ordinary CFGs in combination with an
advanced mechanism producing discontinuous structures out of derivations?

Second, how should one approach the problem of finding the grammar (and grammar class) for the
input language and the mapping from derivations to structures if the only thing that is given is a treebank?
A third question is which formalisms are suitable to formally describe mappings from derivations to
discontinuous structures. Lastly, can we characterize the classes of output (tree-)languages for various
combinations of input grammars and derivation-to-structure mappings?

In this paper we provide one possible answer to these questions by a new type of formalism, which we
call hybrid grammars. Such a grammar consists of a string grammar and a tree grammar. Derivations are
coupled so as to achieve synchronous rewriting. The input string language and the output tree language
are thereby straightforwardly defined. Different from synchronous grammars (Shieber and Schabes,
1990; Satta and Peserico, 2005) is that occurrences of terminal symbols are also coupled. Thereby
the linear order of the symbols in a derived string imposes an order on the coupled symbols in the
synchronously derived tree; this allows a straightforward specification of a discontinuous structure.

One can define a hybrid grammar consisting of a simple macro grammar (Fischer, 1968) and a simple
context-free tree grammar (Rounds, 1970), but various other combinations of a string grammar and a tree
grammar are possible as well. Due to lack of space we will here concentrate on only one kind of hybrid
grammar, namely that consisting of a LCFRS as string grammar and a form of definite clause program as
tree grammar. We will show that hybrid grammars that induce (finite) sets of hybrid trees can always be
constructed, even if the allowable derivations are severely restricted, and we discuss experiments. Lastly,
a negative result will be given, which shows that a certain linguistic phenomenon cannot be handled if
the string grammar is too restricted.

We cast our definitions in terms of hybrid trees, of which discontinuous phrase structures and non-

1371



projective dependency structures are special cases.1 Thereby the generality of the framework is demon-
strated.

2 Preliminaries

Let N = {0, 1, 2, . . .} and N+ = N \ {0}. For each n ∈ N+, we let [n] stand for the set {1, . . . , n}, and
we let [0] stand for ∅. We write [n]0 to denote [n] ∪ {0}. We fix an infinite list x1, x2, . . . of pairwise
distinct variables. We let X = {x1, x2, x3, . . .} and Xk = {x1, . . . , xk} for each k ∈ N.

A ranked set ∆ is a set of symbols, associated with a rank function assigning a number rk∆(δ) ∈ N
to each symbol δ ∈ ∆. A ranked alphabet is a ranked set with a finite number of symbols. We let ∆(k)

denote {δ ∈ ∆ | rk∆(δ) = k}.
The following definitions were inspired by (Seki and Kato, 2008). The sets of terms and sequence-

terms (s-terms) over ranked set ∆, with variables in some set Y ⊆ X , are denoted by T∆(Y ) and T ∗∆(Y ),
respectively, and defined inductively as follows:
(i) Y ⊆ T∆(Y ),
(ii) if k ∈ N, δ ∈ ∆(k) and si ∈ T ∗∆(Y ) for each i ∈ [k], then δ(s1, . . . , sk) ∈ T∆(Y ), and
(iii) if n ∈ N and ti ∈ T∆(Y ) for each i ∈ [n], then 〈t1, . . . , tn〉 ∈ T ∗∆(Y ).
We let T ∗∆ and T∆ stand for T ∗∆(∅) and T∆(∅) respectively. Throughout this paper, we use variables such
as s and si for s-terms and variables such as t and ti for terms. The justification for using s-terms as
defined here is that they provide the required flexibility for dealing with both strings (∆ = ∆(0)) and
unranked trees (∆ = ∆(1)), in combination with derivational nonterminals.

Concatenation of s-terms is given by 〈t1, . . . , tn〉 · 〈tn+1, . . . , tn+m〉 = 〈t1, . . . , tn+m〉. Sequences
such as s1, . . . , sk or x1, . . . , xk will typically be abbreviated to s1,k or x1,k, respectively. For δ ∈ ∆(0)

we sometimes abbreviate δ() to δ.
In examples we also abbreviate 〈t1, . . . , tn〉 to t1 · · · tn, that is, omitting the angle brackets and com-

mas. Moreover, we sometimes abbreviate δ(〈〉) to δ. Whether δ then stands for δ(〈〉) or for δ() depends
on whether δ ∈ ∆(1) or δ ∈ ∆(0), which will be clear from the context.

Subterms in terms or s-terms are identified by positions; these can be formalized by a suitable refine-
ment of the familiar notion of Gorn address. The set of all positions in term t or in s-term s is denoted
by pos(t) or pos(s), respectively. The subset of pos(t) consisting of all positions where the label is in
some set Γ ⊆ ∆ is denoted by posΓ(t).

3 Hybrid trees

The purpose of this section is to unify existing notions of non-projective dependency structures and
discontinuous phrase structures, formalized using s-terms.

We fix an alphabet ∆ = ∆(1) and a subset Γ ⊆ ∆. A hybrid tree over (Γ,∆) is a pair h = (s,≤s),
where s ∈ T ∗∆ and≤s is a total order on posΓ(s). In words, a hybrid tree combines hierarchical structure,
in the form of an s-term over the full alphabet ∆, with a linear structure, which can be seen as a string
over Γ ⊆ ∆. This string will be denoted by str(h).

For discontinuous phrase structures, the elements of Γ would typically represent lexical items, and
the elements of ∆ \ Γ would typically represent syntactic categories. For non-projective dependency
structures, ∆ would be equal to Γ. Simple examples of discontinuous phrase structures are presented in
Figures 1 and 2.

4 Basic grammatical formalisms

The concept of hybrid grammars is illustrated in Section 5, by coupling a class of string grammars and a
class of tree grammars.

1Moreover, we need to avoid any confusion with the term “discontinuous tree” from (Bunt, 1996), which is characterized
by the notion of “context daughter”, which is absent from our framework. The term “hybrid tree” was used before by (Lu et
al., 2008), also for a mixture of a tree structure and a linear structure, generated by a probabilistic model. However, the linear
‘surface’ structure was obtained by a simple left-to-right tree traversal, whereas a meaning representation was obtained by a
slightly more flexible traversal of the same tree. The emphasis in the current paper is rather on separating the linear structure
from the tree structure.

1372



VP

V

hat gearbeitet

ADV

schnell

hat schnell gearbeitet

Figure 1: Hybrid tree for German “[...]
hat schnell gearbeitet” (“[...] has worked
quickly”), after (Seifert and Fischer, 2004).
The bottom line indicates the word order in
German. (Alternative analyses exist that do not
require discontinuity; we make no claim the
structure above is the most adequate.)

S

a S

a S

a b

b

b

aaa bb b

Figure 2: Abstract representation of cross-
serial dependencies in Dutch (Bresnan et al.,
1982).

4.1 Linear context-free rewriting systems

Much as in (Vijay-Shanker et al., 1987), we define a linear context-free rewriting system (LCFRS) as a
tuple G = (N,S,Σ, P ), where N is a ranked alphabet of nonterminals, S ∈ N (1) is the start symbol,
Σ = Σ(0) is a ranked alphabet of terminals (Σ ∩N = ∅), and P is a finite set of rules, each of the form:

A0(s1,k0)→ 〈A1(x1,m1), A2(xm1+1,m2), . . . , An(xmn−1+1,mn)〉 (1)

where n ∈ N, Ai ∈ N (ki) for each i ∈ [n]0, and mi =
∑

j:1≤j≤i kj for each i ∈ [n], and sj ∈ T ∗Σ(Xmn)
for each j ∈ [k0]. In words, the right-hand side is an s-term consisting of nonterminals Ai (i ∈ [n]), with
distinct variables as arguments; there are mn variables altogether, which is the sum of the ranks ki of all
Ai (i ∈ [n]). The left-hand side is an occurrence of A0 with each argument being a string of variables
and terminals. Furthermore, we demand that each xj (j ∈ [mn]) occurs exactly once in the left-hand
side. The largest rank of any nonterminal is called the fanout of the grammar.

A rule instance is obtained by choosing a rule of the above form, and consistently substituting variables
with s-terms in T ∗Σ (which are strings due to the terminals having rank 0). The language induced is the
set of s-terms s such that 〈S(s)〉 ⇒∗G 〈〉, where⇒G is the ‘derives’ relation that uses rule instances. For
given s, the set of all LCFRS derivations 〈S(s)〉 ⇒∗G 〈〉 (in compact tabular form) can be obtained in
polynomial time in the length of s (Seki et al., 1991).

Example 1
An example of a LCFRS is presented on the S(x1x3x2x4) → A(x1, x2) B(x3, x4)

A(ax1,bx2) → A(x1, x2)
A(〈〉, 〈〉) → 〈〉

B(cx1,dx2) → B(x1, x2)
B(〈〉, 〈〉) → 〈〉

right. Terminals are lower case bold letters and
nonterminals are upper-case italic letters. All
derived strings are of the form amcnbmdn with
m,n ∈ N. The linguistic relevance lies in cross-
serial dependencies in Swiss German (Shieber,
1985).

4.2 Definite clause programs

In this section we describe a particular kind of definite clause programs. Our definition is inspired by
(Deransart and Małuszynski, 1985), which investigated the relation between logic programs and attribute
grammars, together with the “syntactic single use requirement” from (Giegerich, 1988). The values
produced are trees (or to be more precise s-terms).

1373



A simple definite clause program (sDCP) is a tuple G = (N,S,Σ, P ), where N is a ranked alphabet
of nonterminals and Σ = Σ(1) is a ranked alphabet of terminals.2 Moreover, each nonterminal A ∈ N
has a fixed i-rank (the number of inherited arguments) and a fixed s-rank (the number of synthesized
arguments), denoted by i-rk(A) and s-rk(A), respectively, satisfying i-rk(A) + s-rk(A) = rkN (A). In
our notation, the inherited arguments precede the synthesized arguments. The start symbol S has only
one argument, which is synthesized, i.e. rkN (S) = s-rk(S) = 1 and i-rk(S) = 0.

A rule is of the form:

A0(x(0)
1,k0

, s
(0)
1,k′0

)→ 〈A1(s(1)
1,k1

, x
(1)
1,k′1

), . . . , An(s(n)
1,kn

, x
(n)
1,k′n

)〉 (2)

where n ∈ N, ki = i-rk(Ai) and k′i = s-rk(Ai), for i ∈ [n]0. The set of variables occurring in the lists
x

(0)
1,k0

and x(i)
1,k′i

(i ∈ [n]) equals Xm, where m = k0 +
∑

i∈[n] k
′
i. In other words, every variable from Xm

occurs exactly once in all these lists together. This is where values ‘enter’ the rule. Further, the s-terms
in s(0)

1,k′0
and s(i)

1,ki
(i ∈ [n]) are in T ∗Σ(Xm) and together contain each variable in Xm exactly once. This

is where values are combined and ‘exit’ the rule.
The ‘derives’ relation⇒G and other relevant notation are defined as for LCFRSs (where the s-terms

in arguments are now trees due to the terminals having rank 1). If the rules in a derivation are given, then
the relevant rule instances are uniquely determined, and can be computed in linear time in the size of
the derivation, provided the sDCP contains no cycles. The existence of cycles is decidable, as we know
from the literature on attribute grammars. There are sufficient conditions for absence of cycles, such as
the grammar being L-attributed (Bochmann, 1976). In this article, we will assume that sDCPs contain
no cycles.

Example 2
An example of a sDCP is presented S(x2) → A(x1) B(x1, x2)

A(a A(x1) b) → A(x1)
A(〈〉) → 〈〉

B(x1, c B(x2) d) → B(x1, x2)
B(x1, x1) → 〈〉

on the right, where the first argument of
B is inherited and all other arguments
are synthesized. A derived s-term is
e.g. c B(c B(a A(〈〉) b) d) d.

5 Hybrid grammars

We couple derivations in two grammars in a way similar to how this is commonly done for synchronous
grammars, namely by indexed symbols. However, we apply the mechanism not only to derivational
nonterminals but also to terminals.

Let Γ be a ranked alphabet. We define the ranked set I(Γ) = {γ u | γ ∈ Γ, u ∈ N+}, with rkI(Γ)(γ
u )

= rkΓ(γ). Let ∆ be another ranked alphabet (∆ ∩ Γ = ∅) and Y ⊆ X , with X as in Section 2. We let
I∗Γ,∆(Y ) be the set of all s-terms s ∈ T ∗I(Γ)∪∆(Y ) in which each index occurs at most once.

For an s-term s, let ind(s) be the set of all indices occurring in s. The deindexing function D removes
all indices from an s-term s ∈ I∗Γ,∆(Y ) to obtain D(s) ∈ T ∗Γ∪∆(Y ). The set IΓ,∆(Y ) ⊆ TI(Γ)∪∆(Y ) of
terms with indexed symbols is defined much as above. We let I∗Γ,∆ = I∗Γ,∆(∅) and IΓ,∆ = IΓ,∆(∅).

A LCFRS/sDCP hybrid grammar (HG) is a tuple G = ((N1, S1,Γ), (N2, S2,Σ), P ), subject to the
following restrictions. The objects Γ and Σ are ranked alphabets with Γ = Γ(0) and Σ = Σ(1). As mere
sets of symbols, we demand Γ ⊆ Σ but the rank functions associated with Γ and Σ differ. Let ∆ be the
ranked alphabet Σ \ Γ, with rk∆(δ) = 1 for δ ∈ ∆.

The hybrid rules in P are of the form [ρ1, ρ2] where ρ1 has the form in Equation (1) of an LCFRS
rule except that si ∈ I∗Γ,∅(Xmn) (i ∈ [k0]) and Ai ∈ I(N1) (i ∈ [n]) and each index in ρ1 occurs

exactly once, and ρ2 has the form in Equation (2) of a sDCP rule except that the s-terms in s(0)
1,k′0

and

s
(i)
1,ki

(i ∈ [n]) are in I∗Γ,∆(Xm) and Ai ∈ I(N2) (i ∈ [n]) and each index in ρ2 occurs exactly once. We
require that ind(ρ1) = ind(ρ2) and each index either couples a pair of identical terminals or couples a
pair of (possibly distinct) nonterminals.

2The term ‘simple’ here has a more restrictive meaning than the term with the same name in (Deransart and Małuszynski,
1985).

1374



Let P1 and P2 be the sets of all D(ρ1) and D(ρ2), respectively, of some hybrid rule [ρ1, ρ2]. Then we
refer to the LCFRS (N1, S1,Γ, P1) and the sDCP (N2, S2,Σ, P2) as the first and second components,
respectively, of G.

In order to define the ‘derives’ relation⇒G, we need rule instantiation as before, in combination with
reindexing, which is a common notion for synchronous grammars. This allows specification of a set of
pairs [s1, s2] ∈ I∗Γ,∅ × I∗Γ,∆ which are such that [〈S 1

1 (s1)〉, 〈S 1
2 (s2)〉] ⇒∗G [〈〉, 〈〉]. For each such pair

we can construct a hybrid tree (s,≤s) over (Γ,Σ), where s = D(s2), and ≤s is defined as follows. If
there is a combination of positions p1, p′1, p2, p′2 such that at p1 in s1 we find the same label as at p2 in
s2 (this label must then be in I(Γ)), and at p′1 in s1 we find the same label as at p′2 in s2, and p1 occurs
to the left of p′1, then p2 ≤s p

′
2. The language induced by G is defined as the set of all such hybrid trees.

Given an input string, the desired hybrid trees can be effectively enumerated. To be exact, after
construction of the parse table by a LCFRS parser, which takes polynomial time in the length of the
string, synchronous derivations can be enumerated. Extracting a single derivation from the table requires
linear time in the size of that derivation. Given a derivation, an s-term can be constructed in linear time
in the size of that derivation, applying sDCP rules in the second component. This s-term, in combination
with the input string and the indices linking the two is then easily extended to a hybrid tree as outlined
above.

Example 3
The hybrid tree [VP(x1x2x3)→ V 1 (x1, x3) ADV 2 (x2),VP(VP(x1x2))→ V 1 (x1) ADV 2 (x2)]

[V(h 1 , g 2 )→ 〈〉,V(V(h 1 g 2 ))→ 〈〉]
[ADV(s 1 )→ 〈〉,ADV(ADV(s 1 ))→ 〈〉]

in Figure 1 is ob-
tained by the HG
on the right. (All
arguments in the
second component are synthesized.) We derive:

[VP 1 (h 2 s 3 g 4 ),VP 1 (VP(V(h 2 g 4 ) ADV(s 3 )))]⇒
[V 1 (h 2 , g 4 ) ADV 5 (s 3 ),V 1 (V(h 2 g 4 )) ADV 5 (ADV(s 3 ))]⇒
[ADV 5 (s 3 ), ADV 5 (ADV(s 3 ))]⇒ [〈〉, 〈〉]

Note that in the LCFRS that [VP(x1)→ V 1 (x1), VP(VP(x1))→ V 1 (x1)]
[V(h 1 x1g 2 )→ ADV 3 (x1), V(V(h 1 g 2 ) x1)→ ADV 3 (x1)]

[ADV(s 1 )→ 〈〉, ADV(ADV(s 1 ))→ 〈〉]
is the first component of the HG
above, nonterminal V has rank 2.
On the right is an alternative HG
deriving the same hybrid tree, but
now with all LCFRS nonterminals having rank 1, by which we obtain a syntactic variant of a CFG. Yet
another HG for the same hybrid tree will be discussed in the next section, where we will see that the first
and second components can be disconnected even further, departing from the traditional way of LCFRS
parsing.

Example 4
Hybrid trees as in Figure 2 [A(x1x2)→ S 1 (x1, x2), A(x1)→ S 1 (x1)]

[S(a 1 x1,b 2 x2)→ S 3 (x1, x2), S(S(a 1 x1b 2 )→ S 3 (x1)]
[S(〈〉, 〈〉)→ 〈〉, S(〈〉)→ 〈〉]

can be obtained by the HG on
the right.

6 Grammar induction

We define a recursive partitioning of a string s = α1 · · ·αn as a tree whose nodes are labeled with
subsets of [n]. The root is labeled with [n]. Each leaf is labeled with a single element of [n]. Each
internal node is labeled with the union of the labels of its children, which furthermore must be disjoint.
We say a subset of [n] has fanout k if k is the smallest number such that it can be written as the union of
k sets of consecutive numbers.

1375



A derivation of an LCFRS relates straightforwardly to a recursive partitioning. Consider for example
the derivation of string h s g by the LCFRS that is the first component of the first HG in Example 3.
The root would be labeled {1, 2, 3}, with children labeled {1, 3} and {2}. The node labeled {1, 3} has
children labeled {1} and {3}. The fanout of {1, 3} is 2, whereas it is 1 for all other node labels. One
may also extract a recursive partitioning directly from a hybrid tree, by associating each node with the
set of positions of terminals that it dominates. For example, Figure 1 gives rise to the same recursive
partitioning as the one mentioned above.

One central observation of this paper is that for any hybrid tree h = (s,≤s) and any recursive par-
titioning of str(h), not necessarily extracted from h, we can construct a hybrid grammar G allowing a
derivation of h, and moreover, the first (LCFRS) component of that derivation parses str(h) according to
the given recursive partitioning. This observation holds for both dependency structures and constituent
structures. The proof for dependency structures is quite technical however, and requires that the second
(sDCP) component of a hybrid grammar has rules with inherited arguments. For lack of space, we can
only give an outline for constituent structures, or in other words, we consider only input hybrid trees over
(Γ,∆) where labels from Γ occur exclusively at the leaves. In the resulting hybrid grammars, all sDCP
rules will have only synthesized arguments.

The intuition is the following. For each node of the given recursive partitioning, the numbers in its
label correspond to leaves of s, for the given hybrid tree h = (s,≤s). There is a smallest number of
maximal disjoint subtrees in s that together contain all those leaves and no others. If we now relate a
parent node of the recursive partitioning to its child nodes, then we see that the relevant disjoint subtrees
in s for the children can be combined to give the relevant disjoint subtrees for the parent, possibly adding
further internal nodes. This process can be expressed in terms of a hybrid rule. Each pair consisting of
a hybrid tree and a recursive partitioning gives rise to a number of hybrid rules. For a collection of such
pairs, we can combine all the rules into a hybrid grammar.

Example 5 Consider again the hybrid tree in Figure 1, in combination with a recursive partitioning
whose root has children labeled {1, 2} and {3}. The relevant disjoint subtrees for {1, 2} are hat and
ADV(schnell) and for {3} there is the subtree gearbeitet. (In a real-world grammar we would have
parts of speech occurring above all the words.) An appropriate hybrid rule that both respects the recursive
partitioning (by the first component LCFRS rule) and puts together relevant parts of the hybrid tree (by
the second component sDCP rule) would be of the form:

[A(x1x2)→ B
1 (x1) C 2 (x2), A(VP(V(x1x3)x2))→ B

1 (x1, x2) C 2 (x3)]

Here A, B and C should to be chosen to be consistent with neighboring nodes in the recursive partition-
ing, to be discussed next. An alternative recursive partitioning whose root has children labeled {1, 3}
and {2} leads to the first hybrid rule in Example 3 (apart from nonterminal names).

We have experimented with two ways of naming nonterminals in the derived hybrid rules. The first
encodes the list of labels of the roots of the relevant disjoint subtrees. In the above example, we would
have a name such as 〈hat,ADV〉 for A. For fanout greater than 1, the locations of the ‘gaps’ are ex-
plicitly indicated. For example, we might have 〈hat, gap, gearbeitet〉. We will call this strict labeling.
The second, and less precise, way is to replace lists of labels of siblings by a single name of the form
children-of(X), where X is the label of the parent. We will call this child labeling.

Because our construction of hybrid grammars works for all recursive partitionings, there is no need to
limit ourselves to those extracted directly from the hybrid trees. Moreover, a given recursive partitioning
can be transformed into a similar but different one in which fanout is restricted to some given value
k ≥ 1. One possible procedure is to start at the root. If the label J of the present node is a singleton,
then we stop. Otherwise, we search breadth-first through the subtree of the present node to identify a
descendant such that both its label J ′ and J \J ′ have fanout not exceeding k. (It is easy to see such a node
always exists: ultimately breadth-first search will reach the leaves, which are labeled with singletons.)
The present node is now given two children, the first is the node labeled J ′ that we identified above, and
the second is a copy of the present subtree, but with J ′ subtracted from the label of every node. (Nodes

1376



labeled with the empty set are removed, and if a node has the same label as its parent then the two are
collapsed.) We repeat the procedure for both children recursively. Note that with k = 1, we can induce
a ‘CFG/sDCP’ hybrid grammar, that is, with the first component having fanout 1.

Example 6
The recursive partition- {1, 2, 3, 5, 6, 7}

{1, 3, 6, 7}

{1, 6}

{1} {6}

{3, 7}

{3} {7}

{2, 5}

{2} {5}

=⇒
{1, 2, 3, 5, 6, 7}

{3, 7}

{3} {7}

{1, 2, 5, 6}

{1, 6}

{1} {6}

{2, 5}

{2} {5}

Figure 3: Transformation of recursive partitioning to restrict fanout to 2.

ing in the left half of Fig-
ure 3 has a node labeled
{1, 3, 6, 7}, with fanout 3.
With J = {1, 2, 3, 5, 6, 7}
and k = 2, one possible
choice for J ′ is {3, 7}, as
then both J ′ and J \ J ′ =
{1, 2, 5, 6} have fanout not
exceeding 2. This leads to
the partitioning in the right
half of the figure. Because now all node labels have fanout not exceeding 2, recursive traversal will make
no further changes. Other valid choices for J ′ would be {2} and {5}. Not a valid choice for J ′ would be
{1, 6}, as J \ {1, 6} = {2, 3, 5, 7}, which has fanout 3.

Our procedure ensures that subsequent grammar induction leads to binary grammars. Note that this
contrasts with binarization algorithms (Gómez-Rodrı́guez and Satta, 2009; Gómez-Rodrı́guez et al.,
2009) that are applied after a grammar is obtained. Unlike (van Cranenburgh, 2012), our objective is
not to obtain a ‘coarse’ grammar for the purpose of coarse-to-fine parsing.

In experiments we also considered the right-branching partitioning, whose internal node labels are
{m,m+ 1, . . . , n}, with children labeled {m} and {m+ 1, . . . , n}. Similarly, there is a left-branching
recursive partitioning. In this way, we can induce a ‘FA/sDCP’ hybrid grammar, with the first component
having finite-state power, which means we can parse in linear time.

7 Experiments

The theory developed above shows that hybrid grammars allow considerable flexibility in the first com-
ponent, leading to a wide range of different time complexities of parsing while, at least potentially, the
same kinds of discontinuous structures can be obtained. We have run experiments to measure what
impact different choices of the first component have on recall/precision and the degree of discontinuity.

The training data consisted of the first 7000 trees of the TIGER treebank (Brants et al., 2004). From
these, recursive partitionings were straightforwardly obtained, and transformed for different values of k.
Also the left-branching and right-branching recursive partitionings were considered. Hybrid grammars
were then extracted using strict or child labeling. Probabilities of rules were determined by relative
frequency estimation, without any smoothing techniques.

Test sentences were taken from the next 500 trees, excluding sentences of length greater than 20 and
those where a single tree did not span the entire sentence, leaving 324 sentences. Parsing was on (gold
standard) parts of speech rather than words. All punctuation was ignored. Labeled recall, precision and
F-measure were computed on objects each consisting of the label of a node and a sequence of pairs of
input positions delimiting substrings covered by that node. The algorithms were implemented in Python
and the experiments were carried out on a desktop with four 3.1GHz Intel Core i5 CPUs.

Results are reported in Table 1. The choice of k = 1 can be seen as a baseline, the first component
then being restricted to context-free power. Note that k = 1, 2, 3 imply parsing complexities O(n3),
O(n6), O(n9), respectively.

In the case of strict labeling, the change from k = 1 to k = 2 leads to significant changes in running
time, but that from k = 2 to k = 3 less so, which can be explained by the smaller number of constituents
that have two gaps, compared to those with zero or one gap. There was no significant change, neither in
running time nor in F-measure, for values of k greater than 4, and therefore these values were omitted

1377



here. Note that for k = ∞ one would obtain the conventional technique of discontinuous parsing using
LCFRSs. For the right-branching recursive partitionings, the running time is significantly higher than
that for the left-branching ones, although it is linear-time in both cases. This is due to the directional bias
of the implemented parsing strategy. In order to allow a straightforward comparison we have taken the
same parsing strategy in all cases. Note the large number of parse failures for the right-branching and
left-branching partitionings, which is explained by the large number of very specific nonterminals.

Child labeling leads to much smaller fail R P F1 # gaps secs
strict labeling
k = 1 16 73.0 70.4 71.2 0.0075 442
k = 2 12 73.1 70.7 71.4 0.0111 2,580
k = 3 12 73.1 70.7 71.4 0.0121 2,942
k = 4 12 73.1 70.7 71.4 0.0127 2,828
r-branch 151 65.6 62.4 63.2 0.0118 775
l-branch 266 82.0 78.9 79.5 0.0124 24
child labeling
k = 1 4 74.3 74.2 73.9 0.0120 939
k = 2 4 75.0 75.1 74.7 0.0125 58,164
r-branch 15 73.1 73.0 72.6 0.0117 319
l-branch 56 75.7 76.6 75.7 0.0114 183

Table 1: Number of parse failures, recall, precision, F-
measure, average number of gaps per constituent, and run-
ning time.

numbers of nonterminals, and thereby
also to more ambiguity, and as a re-
sult the increase from time complexity
O(n3) to O(n6) is more noticeable in
terms of the actual running time. There-
fore carrying out the experiment for k ≥
3 was outside our reach. Surprisingly,
the right-branching partitioning performed
very well in this case, with a relatively low
number of parse failures, F-measure com-
peting with k = 1, 2, 3, 4 and strict label-
ing, although it is clearly worse than that
with k = 1, 2 and child labeling, and run-
ning time smaller than in the case of any of
the hybrid grammars where the first com-
ponent has power beyond that of finite au-
tomata.

Child labeling generally gave better F-measure than strict labeling (ignoring strict labeling and left-
branching partitioning, where the many parse failures distort the recall and precision). This seems to be
due to the more accurate parameter estimation that was possible for the smaller numbers of rules obtained
with child labeling.

The differences in F-measure are relatively small for varying k. This can be explained by the relatively
small portion of discontinuous structures in the test set. We have looked closer at discontinuity in the
test set in two ways. First, we measured the average number of gaps per constituent, which in the gold
standard was 0.0171. None of the hybrid grammars came close to achieving this, but we do observe
that more discontinuity is obtained for higher values of k. Secondly, we reran the experiments for only
the 75 sentences out of the aforementioned 324 where the gold structure had at least one discontinuous
phrase. For this smaller set, F1 increases from 59.5 (k = 1) to 61.9 (k = 2, 3, 4) for strict labeling, and
it increases from 64.4 (k = 1) to 66.5 (k = 2) for child labeling. This suggests that with higher k, the
additional discontinuous structures found have at least some overlap with those of the gold standard. Note
again that there is no a priori bound on the fanout of produced hybrid trees, even when the first component
has finite-state power, but the ability to abstract away from discontinuous structures in the training set
seems to be enhanced if the first component is more powerful. This is consistent with observations made
by (van Cranenburgh, 2012).

8 Limitations

The theory from Section 6 does not necessarily mean that any language of hybrid trees can be induced
by a HG whose first-component LCFRS has arbitrarily low fanout. We illustrate this by means of the
language of hybrid trees generated by the HG of Example 4, in which the LCFRS has fanout 2. No
CFG/sDCP grammar in fact exists for the same language, or in other words, the fanout of the first-
component LCFRS cannot be reduced to 1, regardless of how we choose the second-component sDCP.

For a proof, assume that a CFG/sDCP grammar does exist. Letm be the maximum number of members
in the right-hand side of any CFG rule. Let k be the maximum rank of any nonterminal in the second-
component sDCP. Now consider a CFG/sDCP derivation for a hybrid tree with yield anbn, where n ≥

1378



2 · k ·m. In a top-down traversal, identify the first CFG nonterminal occurrence that covers a substring
of the input string that has a length smaller than or equal to n/2 and greater than k. This substring
may contain occurrences of a and of b, but because its length is at most n/2, there will not be any pair
consisting of an occurrence of a and an occurrence of b that are both part of that substring, and that
have a common parent labeled S in the hybrid tree. This means that more than k tree fragments or tree
nodes with missing child nodes are involved, which translate to more than k synthesized or inherited
arguments, contradicting the assumptions.

9 Conclusions

We have presented hybrid grammars as a novel framework for describing languages of discontinuous
syntactic structures. This framework sheds light on the relation between various existing techniques, but
it also offers potential for development of novel techniques. Much of what we have shown is merely
an illustration of particular instances of this framework. For example, next to the hybrid grammars
discussed here, we can consider those with macro grammars as first component, or simple context-
free tree grammars as second component. Many variations exist on the illustrated grammar induction
technique. For example, next to our strict labeling and child labeling, one can consider approaches using
latent variables, combined with expectation-maximization.

Acknowledgments

We thank the anonymous reviewers for many helpful comments.

References
T. Becker, A.K. Joshi, and O. Rambow. 1991. Long-distance scrambling and Tree Adjoining Grammars. In Fifth

EACL, pages 21–26.

G.V. Bochmann. 1976. Semantic evaluation from left to right. Communications of the ACM, 19(2):55–62.

A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká. 2000. The Prague dependency treebank: A tree-level anno-
tation scenario. In A. Abeillé, editor, Treebanks: Building and using syntactically annotated corpora, pages
103–127. Kluwer, Dordrecht.

A. Boyd. 2007. Discontinuity revisited: An improved conversion to context-free representations. In Linguistic
Annotation Workshop, at ACL 2007, pages 41–44.

W.S. Brainerd. 1969. Tree generating regular systems. Information and Control, 14:217–231.

S. Brants, S. Dipper, P. Eisenberg, S. Hansen-Schirra, E. König, W. Lezius, C. Rohrer, G. Smith, and H. Uszkoreit.
2004. TIGER: Linguistic interpretation of a German corpus. Research on Language and Computation, 2:597–
620.

J. Bresnan, R.M. Kaplan, S. Peters, and A. Zaenen. 1982. Cross-serial dependencies in Dutch. Linguistic Inquiry,
13(4):613–635.

H. Bunt. 1996. Formal tools for describing and processing discontinuous constituency structure. In H. Bunt and
A. van Horck, editors, Discontinuous Constituency, pages 63–84. Mouton de Gruyter.

R. Campbell. 2004. Using linguistic principles to recover empty categories. In 42nd Annual Meeting of the ACL,
pages 645–652.

J.D. Choi and M. Palmer. 2010. Robust constituent-to-dependency conversion for English. In Ninth International
Workshop on Treebanks and Linguistic Theories, pages 55–66.

P. Deransart and J. Małuszynski. 1985. Relating logic programs and attribute grammars. Journal of Logic Pro-
gramming, 2:119–155.

K. Evang and L. Kallmeyer. 2011. PLCFRS parsing of English discontinuous constituents. In 12th International
Conference on Parsing Technologies, pages 104–116.

1379



M.J. Fischer. 1968. Grammars with macro-like productions. In IEEE Conference Record of 9th Annual Sympo-
sium on Switching and Automata Theory, pages 131–142.

R. Gabbard, S. Kulick, and M. Marcus. 2006. Fully parsing the Penn Treebank. In Human Language Technology
Conference of the NAACL, Main Conference, pages 184–191.

F. Gécseg and M. Steinby. 1997. Tree languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal
Languages, Vol. 3, chapter 1, pages 1–68. Springer, Berlin.

R. Giegerich. 1988. Composition and evaluation of attribute coupled grammars. Acta Informatica, 25:355–423.

C. Gómez-Rodrı́guez and G. Satta. 2009. An optimal-time binarization algorithm for linear context-free rewriting
systems with fan-out two. In 47th ACL and 4th International Joint Conference on Natural Language Processing
of the AFNLP, pages 985–993.

C. Gómez-Rodrı́guez, M. Kuhlmann, G. Satta, and D. Weir. 2009. Optimal reduction of rule length in linear
context-free rewriting systems. In Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the ACL, pages 539–547.

M. Johnson. 2002. A simple pattern-matching algorithm for recovering empty nodes and their antecedents. In
40th ACL, pages 136–143.

S. Kahane, A. Nasr, and O. Rambow. 1998. Pseudo-projectivity, a polynomially parsable non-projective depen-
dency grammar. In 36th ACL and 17th International Conference on Computational Linguistics, volume 1, pages
646–652.

K. Kallmeyer and M. Kuhlmann. 2012. A formal model for plausible dependencies in lexicalized tree adjoining
grammar. In Eleventh International Workshop on Tree Adjoining Grammar and Related Formalisms, pages
108–116.

L. Kallmeyer and W. Maier. 2013. Data-driven parsing using probabilistic linear context-free rewriting systems.
Computational Linguistics, 39(1):87–119.

A. Kathol and C. Pollard. 1995. Extraposition via complex domain formation. In 33rd ACL, pages 174–180.

M. Kuhlmann. 2013. Mildly non-projective dependency grammar. Computational Linguistics, 39(2):355–387.

W. Lu, H.T. Ng, W.S. Lee, and L.S. Zettlemoyer. 2008. A generative model for parsing natural language to
meaning representations. In Conference on Empirical Methods in Natural Language Processing, pages 783–
792.

W. Maier and T. Lichte. 2009. Characterizing discontinuity in constituent treebanks. In P. de Groote, M. Egg,
and L. Kallmeyer, editors, 14th Conference on Formal Grammar, volume 5591 of Lecture Notes in Artificial
Intelligence, Bordeaux, France.

M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz. 1993. Building a large annotated corpus of English: The
Penn treebank. Computational Linguistics, 19(2):313–330.

J.D. McCawley. 1982. Parentheticals and discontinuous constituent structure. Linguistic Inquiry, 13(1):91–106.

R. McDonald and F. Pereira. 2006. Online learning of approximate dependency parsing algorithms. In 11th
EACL, pages 81–88.

S. Müller. 2004. Continuous or discontinuous constituents? a comparison between syntactic analyses for con-
stituent order and their processing systems. Research on Language and Computation, 2:209–257.

J. Nivre and J. Nilsson. 2005. Pseudo-projective dependency parsing. In 43rd ACL, pages 99–106.

J. Nivre. 2009. Non-projective dependency parsing in expected linear time. In Joint Conference of the 47th ACL
and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pages 351–359.

O. Rambow and A.K. Joshi. 1997. A formal look at dependency grammars and phrase structure grammars with
special consideration of word-order phenomena. In L. Wenner, editor, Recent Trends in Meaning-Text Theory.
John Benjamin.

O. Rambow. 2010. The simple truth about dependency and phrase structure representations: An opinion piece.
In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL,
Main Conference, pages 337–340.

1380



W.C. Rounds. 1970. Mappings and grammars on trees. Mathematical Systems Theory, 4:257–287.

G. Satta and E. Peserico. 2005. Some computational complexity results for synchronous context-free grammars.
In Human Language Technology Conference and Conference on Empirical Methods in Natural Language Pro-
cessing, pages 803–810.

S. Seifert and I. Fischer. 2004. Parsing string generating hypergraph grammars. In H. Ehrig, G. Engels, F. Parisi-
Presicce, and G. Rozenberg, editors, 2nd International Conference on Graph Transformations, volume 3256 of
Lecture Notes in Computer Science, pages 352–267. Springer-Verlag.

H. Seki and Y. Kato. 2008. On the generative power of multiple context-free grammars and macro grammars.
IEICE Transactions on Information and Systems, E91-D:209–221.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. 1991. On multiple context-free grammars. Theoretical Computer
Science, 88:191–229.

S.M. Shieber and Y. Schabes. 1990. Synchronous tree-adjoining grammars. In Papers presented to the 13th
International Conference on Computational Linguistics, volume 3, pages 253–258.

S.M. Shieber. 1985. Evidence against the context-freeness of natural language. Linguistics and Philosophy,
8(3):333–343.

K. Sima’an, R. Bod, S. Krauwer, and R. Scha. 1994. Efficient disambiguation by means of stochastic tree
substitution grammars. In International Conference on New Methods in Language Processing, pages 50–58.

S. Stucky. 1987. Configurational variation in English. In G.J. Huck and A.E. Ojeda, editors, Discontinuous
Constituency, volume 20 of Syntax and Semantics, pages 377–404. Academic Press.

A. van Cranenburgh. 2012. Efficient parsing with linear context-free rewriting systems. In 13th EACL, pages
460–470.

K. Vijay-Shankar and A.K. Joshi. 1985. Some computational properties of tree adjoining grammars. In 23rd ACL,
pages 82–93.

K. Vijay-Shanker, D.J. Weir, and A.K. Joshi. 1987. Characterizing structural descriptions produced by various
grammatical formalisms. In 25th ACL, pages 104–111.

1381


