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Abstract 
With the rapid growth of real world 
applications for NLP systems, there 
is a genuine demand for a general 
toolkit from which programmers 
with no linguistic knowledge can 
build specific NLP systems. Such a 
toolkit should have a parser that is 
general enough to be used across 
domains, and yet accurate enough for 
each specific application. In this 
paper, we describe a parser that 
extends a broad-coverage parser, 
Minipar (Lin, 2001), with an 
adaptable shallow parser so as to 
achieve both generality and accuracy 
in handling domain specific NL 
problems. We test this parser on our 
corpus and the results show that the 
accuracy is significantly higher than 
a system that uses Minipar alone. 

1 Introduction 

With the improvement of natural language 
processing (NLP) techniques, domains for 
NLP systems, especially those handling speech 
input, are rapidly growing. However, most 
computer programmers do not have enough 
linguistic knowledge to develop NLP systems. 
There is a genuine demand for a general toolkit 
from which programmers with no linguistic 
knowledge can rapidly build NLP systems that 
handle domain specific problems more 
accurately (Alam, 2000). The toolkit will allow 
programmers to generate natural language 
front ends for new and existing applications 
using, for example, a program-through-
example method. In this methodology, the 
programmer will specify a set of sample input 
sentences or a domain corpus for each task. 
The toolkit will then organize the sentences by 

similarity and generate a large set of syntactic 
variations of a given sentence. It will also 
generate the code that takes a user’s natural 
language request and executes a command on 
an application. Currently this is an active 
research area, and the Advanced Technology 
Program (ATP) of the National Institute of 
Standards and Technology (NIST) is funding 
part of the work.  

In order to handle natural language input, 
an NLP toolkit must have a parser that maps a 
sentence string to a syntactic structure. The 
parser must be both general and accurate. It 
has to be general because programmers from 
different domains will use the toolkit to 
generate their specific parsers. It has to be 
accurate because the toolkit targets commercial 
domains, which usually require high accuracy.  
The accuracy of the parser directly affects the 
accuracy of the generated NL interface. In the 
program-through-example approach, the 
toolkit should convert the example sentences 
into semantic representations so as to capture 
their meanings. In a real world application, this 
process will involve a large quantity of data. If 
the programmers have to check each syntactic 
or semantic form by hand in order to decide if 
the corresponding sentence is parsed correctly, 
they are likely to be overwhelmed by the 
workload imposed by the large number of 
sentences, not to mention that they do not have 
the necessary linguistic knowledge to do this. 
Therefore the toolkit should have a broad-
coverage parser that has the accuracy of a 
parser designed specifically for a domain. 

One solution is to use an existing parser 
with relatively high accuracy.  Using existing 
parsers such as (Charniak, 2000; Collins, 
1999) would eliminate the need to build a 
parser from scratch. However, there are two 
problems with such an approach. First, many 
parsers claim high precision in terms of the 
number of correctly parsed syntactic relations 



rather than sentences, whereas in commercial 
applications, the users are often concerned 
with the number of complete sentences that are 
parsed correctly. The precision might drop 
considerably using this standard. In addition, 
although many parsers are domain 
independent, they actually perform much 
better in the domains they are trained on or 
implemented in. Therefore, relying solely on a 
general parser would not satisfy the accuracy 
needs for a particular domain.  

Second, since each domain has its own 
problems, which cannot be foreseen in the 
design of the toolkit, customization of the 
parser might be needed. Unfortunately, using 
an existing parser does not normally allow this 
option. One solution is to build another parser 
on top of the general parser that can be 
customized to address domain specific parsing 
problems such as ungrammatical sentences. 
This domain specific parser can be built 
relatively fast because it only needs to handle a 
small set of natural language phenomena. In 
this way, the toolkit will have a parser that 
covers wider applications and in the mean time 
can be customized to handle domain specific 
phenomena with high accuracy. In this paper 
we adopt this methodology. 

The paper is organized into 6 sections. In 
Section 2, we briefly describe the NLP toolkit 
for which the parser is proposed and 
implemented. Section 3 introduces Minipar, 
the broad-coverage parser we choose for our 
toolkit, and the problems this parser has when 
parsing a corpus we collected in an IT domain. 
In Section 4, we present the design of the 
shallow parser and its disadvantages. We 
describe how we combine the strength of the 
two parsers and the testing result in Section 5. 
Finally, in Section 6, we draw conclusions and 
propose some future work. 

2 NLP Toolkit 

In the previous section, we mentioned a 
Natural Language Processing Toolkit 
(NLPTK) that allows programmers with no 
linguistic knowledge to rapidly develop natural 
language user interfaces for their applications. 
The toolkit should incorporate the major 
components of an NLP system, such as a spell 
checker, a parser and a semantic representation 
generator. Using the toolkit, a software 

engineer will be able to create a system that 
incorporates complex NLP techniques such as 
syntactic parsing and semantic understanding.  

In order to provide NL control to an 
application, the NLPTK needs to generate 
semantic representations for input sentences. 
We refer to each of these semantic forms as a 
frame, which is basically a predicate-argument 
representation of a sentence.  

The NLPTK is implemented using the 
following steps: 
 
1. NLPTK begins to create an NLP front end 

by generating semantic representations of 
sample input sentences provided by the 
programmer. 

2. These representations are expanded using 
synonym sets and stored in a Semantic 
Frame Table (SFT), which becomes a 
comprehensive database of all the 
possible commands a user could request 
the system to do.  

3. The toolkit then creates methods for 
attaching the NLP front end to the back 
end applications. 

4. When the NLP front end is released, a user 
may enter an NL sentence, which is 
translated into a semantic frame by the 
system. The SFT is then searched for an 
equivalent frame. If a match is found, the 
action or command linked to this frame is 
executed. 

In order to generate semantic 
representations in Step 1, the parser has to 
parse the input sentences into syntactic trees. 
During the process of building an NLP system, 
the programmer needs to customize the parser 
of the toolkit for their specific domain. For 
example, the toolkit provides an interface to 
highlight the domain specific words that are 
not in the lexicon.  The toolkit then asks the 
programmer for information that helps the 
system insert the correct lexical item into the 
lexicon. The NLPTK development team must 
handle complicated customizations for the 
programmer. For example, we might need to 
change the rules behind the domain specific 
parser to handle certain natural language input. 
In Step 4, when the programmer finishes 
building an NLP application, the system will 
implement a domain specific parser. The 
toolkit has been completely implemented and 
tested.  



We use a corpus of email messages from 
our customers for developing the system. 
These emails contain questions, comments and 
general inquiries regarding our document-
conversion products. We modified the raw 
email programmatically to delete the 
attachments, HTML tags, headers and sender 
information. In addition, we manually deleted 
salutations, greetings and any information not 
directly related to customer support. The 
corpus contains around 34,640 lines and 
170,000 words. We constantly update it with 
new emails from our customers.  

From this corpus, we created a test corpus 
of 1000 inquiries to test existing broad-
coverage parsers and the parser of the toolkit. 

3 Minipar in NLPTK 

We choose to use Minipar (Lin, 2001), a 
widely known parser in commercial domains, 
as the general parser of NLPTK. It is worth 
pointing out that our methodology does not 
depend on any individual parser, and we can 
use any other available parser.  

3.1 Introduction to Minipar 
Minipar is a principle-based, broad-coverage 
parser for English (Lin, 2001). It represents its 
grammar as a network of nodes and links, 
where the nodes represent grammatical 
categories and the links represent types of 
dependency relationships. The grammar is 
manually constructed, based on the Minimalist 
Program (Chomsky, 1995). 

Minipar constructs all possible parses of an 
input sentence. It makes use of the frequency 
counts of the grammatical dependency 
relationships extracted by a collocation 
extractor (Lin, 1998b) from a 1GB corpus 
parsed with Minipar to resolve syntactic 
ambiguities and rank candidate parse trees. 
The dependency tree with the highest ranking 
is returned as the parse of the sentence.  

The Minipar lexicon contains about 
130,000 entries, derived from WordNet 
(Fellbaum, 1998) with additional proper 
names. The lexicon entry of a word lists all 
possible parts of speech of the word and its 
subcategorization frames (if any).  

Minipar achieves about 88% precision and 
80% recall with respect to dependency 
relationships (Lin, 1998a), evaluated on the 

SUSANNE corpus (Sampson, 1995), a subset 
of the Brown Corpus of American English. 

3.2 Disadvantages of Minipar 
In order to see how well Minipar performs in 
our domain, we tested it on 584 sentences from 
our corpus. Instead of checking the parse trees, 
we checked the frames corresponding to the 
sentences, since the accuracy of the frames is 
what we are most concerned with. If any part 
of a frame was wrong, we treated it as an error 
of the module that contributed to the error. We 
counted all the errors caused by Minipar and 
its accuracy in terms of correctly parsed 
sentences is 77.6%. Note that the accuracy is 
actually lower because later processes fix some 
errors in order to generate correct frames. 

The majority of Minipar errors fall in the 
following categories: 
 
1. Tagging errors: some nouns are mis-

tagged as verbs. For example, in Can I get 
a copy of the batch product guide?, guide 
is tagged as a verb. 

2. Attachment errors: some prepositional 
phrases (PP) that should be attached to 
their immediate preceding nouns are 
attached to the verbs. For example, in Can 
Drake convert the PDF documents in 
Japanese?, in Japanese is attached to 
convert. 

3. Missing lexical entries: some domain 
specific words such as download and their 
usages are not in the Minipar lexicon. 
This introduces parsing errors because 
such words are tagged as nouns by 
default.  

4. Inability to handle ungrammatical 
sentences: in a real world application, it is 
unrealistic to expect the user to enter only 
grammatical sentences. Although Minipar 
still produces a syntactic tree for an 
ungrammatical sentence, the tree is ill 
formed and cannot be used to extract the 
semantic information being expressed. 

 
In addition, Minipar, like other broad-

coverage parsers, cannot be adapted to specific 
applications. Its accuracy does not satisfy the 
needs of our toolkit. We have to build another 
parser on top of Minipar to enable domain 
specific customizations to increase the parsing 
accuracy. 



4 The Shallow Parser 

Our NLPTK maps input sentences to action 
requests. In order to perform an accurate 
mapping the toolkit needs to get information 
such as the sentence type, the main predicate, 
the arguments of the predicate, and the 
modifications of the predicate and arguments 
from a sentence. In other words, it mostly 
needs local dependency relationships. 
Therefore we decided to build a shallow parser 
instead of a full parser. A parser that captures 
the most frequent verb argument structures in a 
domain can be built relatively fast. It takes less 
space, which can be an important issue for 
certain applications. For example, when 
building an NLP system for a handheld 
platform, a light parser is needed because the 
memory cannot accommodate a full parser. 

4.1 Introduction 
We built a KWIC (keyword in context) verb 
shallow parser. It captures only verb predicates 
with their arguments, verb argument modifiers 
and verb adjuncts in a sentence. The resulting 
trees contain local and subjacent dependencies 
between these elements. 

The shallow parser depends on three levels 
of information processing: the verb list, 
subcategorization (in short, subcat) and 
syntactic rules. The verb subcat system is 
derived from Levin’s taxonomy of verbs and 
their classes (Levin, 1993). We have 24 verb 
files containing 3200 verbs, which include all 
the Levin verbs and the most frequent verbs in 
our corpus. A verb is indexed to one or more 
subcat files and each file represents a particular 
alternation semantico-syntactic sense. We have 
272 syntactic subcat files derived from the 
Levin verb semantic classes. The syntactic 
rules are marked for argument types and 
constituency, using the Penn Treebank tagset 
(Marcus, 1993). They contain both generalized 
rules, e.g.,  .../NN, and specified rules, e.g., 
purchase/VBP. An example subcat rule for the 
verb purchase looks like this: .../DT .../JJ 
.../NN, .../DT .../NN from/RP .../NN for/RP 
.../NN. The first element says that purchase 
takes an NP argument, and the second says that 
it takes an NP argument and two PP adjuncts. 

We also encoded specific PP head class 
information based on the WordNet concepts in 
the rules for some attachment disambiguation. 

The shallow parser works like this: it first 
tags an incoming sentence with Brill tagger 
(Brill, 1995) and matches verbs in the tagged 
sentence with the verb list. If a match is found, 
the parser will open the subcat files indexed to 
that verb and gather all the syntactic rules in 
these specific subcat files. It then matches the 
verb arguments with these syntactic rules and 
outputs the results into a tree. The parser can 
control over-generation for any verb because 
the syntactic structures are limited to that 
particular verb's syntactic structure set from 
the Levin classes. 

4.2 Disadvantages of Shallow Parser 
The disadvantages of the shallow parser are 
mainly due to its simplified design, including: 
1. It cannot handle sentences whose main 

verb is be or phrasal sentences without a 
verb because the shallow parser mainly 
targets command-and-control verb 
argument structures.  

2. It cannot handle structures that appear 
before the verb. Subjects will not appear 
in the parse tree even though it might 
contain important information. 

3. It cannot detect sentence type, for 
example, whether a sentence is a question 
or a request. 

4. It cannot handle negative or passive 
sentences. 

We tested the shallow parser on 500 
sentences from our corpus and compared the 
results with the output of Minipar. We 
separated the sentences into five sets of 100 
sentences. After running the parser on each set, 
we fixed the problems that we could identify.  
This was our process of training the parser. 
Table 1 shows the data obtained from one such 
cycle. Since the shallow parser cannot handle 
sentences with the main verb be, these 
sentences are excluded from the statistics. So 
the test set actually contains 85 sentences. 

In Table 1, the first column and the first 
row show the statistics for the shallow parser 
and Minipar respectively. The upper half of the 
table is for the unseen data, where 55.3% of 
the sentences are parsed correctly and 11.8% 
incorrectly (judged by humans) by both 
parsers. 18.9% of the sentences are parsed 
correctly by Minipar, but incorrectly by the 
shallow parser, and 14.1% vise versa. The 
lower half of the table shows the result after 



fixing some shallow parser problems, for 
example, adding a new syntactic rule. The 
accuracy of the parser is significantly 
improved, from 69.4% to 81.2%. This shows 
the importance of adaptation to specific 
domain needs, and that in our domain, the 
shallow parser outperforms Minipar. 
 

SP/MP Correct 
(74.1%) 

Wrong 
(25.9%) 

Correct (69.4%) 47 (55.3%) 12 (14.1%) 
Wrong (30.6%) 16 (18.9%) 10 (11.8%) 

SP/MP Correct 
(74.1%) 

Wrong 
(25.9%) 

Correct (81.2%) 53 (62.4%) 16 (18.8%) 
Wrong (18.8%) 10 (11.8%) 6 (7.1%) 

Table 1: Comparison of the shallow 
parser with Minipar on 85 sentences 

The parsers do not perform equally well on 
all sets of sentences. For some sets, the 
accuracies of Minipar and the shallow parser 
drop to 60.9% and 67.8% respectively. 

5 Extending Minipar with the 
Shallow Parser 

Each parser has pros and cons. The advantage 
of Minipar is that it is a broad-coverage parser 
with relatively high accuracy, and the 
advantage of the shallow parser is that it is 
adaptable. For this reason, we intend to use 
Minipar as our primary parser and the shallow 
parser a backup. Table 1 shows only a small 
percentage of sentences parsed incorrectly by 
both parsers (about 7%). If we always choose 
the correct tree between the two outputs, we 
will have a parser with much higher accuracy. 
Therefore, combining the advantages of the 
two parsers will achieve better performance in 
both coverage and accuracy. Now the question 
is how to decide if a tree is correct or not.  

5.1 Detecting Parsing Errors 
In an ideal situation, each parser should 
provide a confidence level for a tree that is 
comparable to each other. We would choose 
the tree with higher confidence. However, this 
is not possible in our case because weightings 
of the Minipar trees are not publicly available, 
and the shallow parser is a rule-based system 
without confidence information.  

Instead, we use a few simple heuristics to 
decide if a tree is right or wrong, based on an 
analysis of the trees generated for our test 
sentences. For example, given a sentence, the 
Minipar tree is incorrect if it has more than one 
subtree connected by a top-level node whose 
syntactic category is U (unknown).  A shallow 
parser tree is wrong if there are unparsed 
words at the end of the sentence after the main 
verb (except for interjections). We have three 
heuristics identifying a wrong Minipar tree and 
two identifying a wrong shallow parser tree. If 
a tree passes these heuristics, we must label the 
tree as a good parse.  This may not be true, but 
we will compensate for this simplification 
later. The module implementing these 
heuristics is called the error detector. 

We tested the three heuristics for Minipar 
trees on a combination of 84 requestive, 
interrogative and declarative sentences. The 
results are given in the upper part of Table 2. 
The table shows that 45 correct Minipar trees 
(judged by humans) are identified as correct by 
the error detector and 18 wrong trees are 
identified as wrong, so the accuracy is 75%. 
Tagging errors and some attachment errors 
cannot be detected. 

 
MP/ED Correct 

(76.2%) 
Wrong 

(23.8%) 
Correct (56%) 45 (53.6%) 2 (2.4%) 
Wrong (44%) 19 (22.6%) 18 (21.4%) 

SP/ED Correct 
(73%) 

Wrong 
(26%) 

Correct (59%) 58 (58%) 1 (1%) 
Wrong (40%) 15 (15%) 25 (25%) 

Table 2: The performance of the parse 
tree error detector 

We tested the two heuristics for shallow 
parser trees on 100 sentences from our corpus 
and the result is given in the lower part of 
Table 2. The accuracy is about 83%. We did 
not use the same set of sentences to test the 
two sets of heuristics because the coverage of 
the two parsers is different. 

5.2 Choosing the Better Parse Trees 
We run the two parsers in parallel to generate 
two parse trees for an input sentence, but we 
cannot depend only on the error detector to 
decide which tree to choose because it is not 
accurate enough. Table 2 shows that the error 



detector mistakenly judges some wrong trees 
as correct, but not the other way round. In 
other words, when the detector says a tree is 
wrong, we have high confidence that it is 
indeed wrong, but when it says a tree is 
correct, there is some chance that the tree is 
actually wrong. This motivates us to 
distinguish three cases: 
1. When only one of the two parse trees is 

detected as wrong, we choose the correct 
tree, because no matter what the correct 
tree actually is, the other tree is definitely 
wrong so we cannot choose it. 

2. When both trees are detected as wrong, we 
choose the Minipar tree because it handles 
more syntactic structures. 

3. When both trees are detected as correct, 
we need more analysis because either 
might be wrong. 

We have mentioned in the previous sections 
the problems with both parsers. By comparing 
their pros and cons, we come up with 
heuristics for determining which tree is better 
for the third case above.  

The decision flow for selecting the better 
parse is given in Figure 1. Since the shallow 
parser cannot handle negative and passive 
sentences as well as sentences with the main 
verb be, we choose the Minipar trees for such 
sentences. The shallow parser outperforms 
Minipar on tagging and some PP attachment 
because it checks the WordNet concepts. So, 
when we detect differences concerning part-of-
speech tags and PP attachment in the parse 
trees, we choose the shallow parser tree as the 
output. In addition, we prefer the parse with 
bigger NP chunks.  

We tested these heuristics on 200 sentences 
and the result is shown in Table 3. The first 
row specifies whether a Minipar tree or a 
shallow parser tree is chosen as the final 
output. The first column gives whether the 
final tree is correct or incorrect according to 
human judgment. 88% of the time, Minipar 
trees are chosen and they are 82.5% accurate. 
The overall contribution of Minipar to the 
accuracy is 73.5%. The improvement from just 
using Minipar is about 7%, from about 75.5% 
to 82.5%. This is a significant improvement. 

The main computational expense of 
running two parsers in parallel is time. Since 
our shallow parser has not been optimized, the 
extended parser is about 2.5 times slower than 

Minipar alone. We hope that with some 
optimization, the speed of the system will 
increase considerably. Even in the current time 
frame, it takes less than 0.6 second to parse a 
15 word sentence. 

 
Final tree MP tree 

(88%) 
SP tree 
(11%) 

Correct (82.5%) 73.5% 9% 
Wrong (16.5%) 14.5% 2% 

Table 3: Results for the extended parser 

6 Conclusions and Future Work 

In this paper we described a parser that extends 
a broad-coverage parser, Minipar, with a 
domain adaptable shallow parser in order to 
achieve generality and higher accuracy at the 
same time. This parser is an important 
component of a general NLP Toolkit, which 
helps programmers quickly develop an NLP 
front end that handles natural language input 
from their end users. We tested the parser on 
200 sentences from our corpus and the result 
shows significant improvement over using 
Minipar alone. 

Future work includes improving the 
efficiency and accuracy of the shallow parser. 
Also, we will test the parser on a different 
domain to see how much work is required to 
switch to a new domain. 
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