
Directional Constraint Evaluation in Optimality Theory�

Jason Eisner

Department of Computer Science / University of Rochester
Rochester, NY 14607-0226 (U.S.A.) / jason@cs.rochester.edu

Weighted �nite-state constraints that can count un-

boundedly many violations make Optimality Theory

more powerful than �nite-state transduction (Frank

and Satta, 1998). This result is empirically and com-

putationally awkward. We propose replacing these

unbounded constraints, as well as non-�nite-state

Generalized Alignment constraints, with a new class

of �nite-state directional constraints. We give lin-

guistic applications, results on generative power, and

algorithms to compile grammars into transducers.

1 Introduction

Optimality Theory is a grammar framework
that directly expresses constraints on phonolog-
ical forms. Roughly, the grammar prefers forms
that violate each constraint as little as possible.
Most constraints used in practice describe

disfavored local con�gurations in the phonolog-
ical form (Eisner, 1997a). It is therefore possi-
ble for a given form to o�end a single constraint
at several locations in the form. (For example,
a constraint against syllable codas will be of-
fended by every syllable that has a coda.)
When comparing forms, then, how do we ag-

gregate a form's multiple local o�enses into an
overall violation level?
A constraint could answer this question in at

least three ways, the third being our proposal:

� Unbounded evaluation (Prince and
Smolensky, 1993). A form's violation level
is given by the number of o�enses. Forms
with fewer o�enses are preferred.

� Bounded evaluation (Frank and Satta,
1998; Karttunen, 1998). A form's viola-
tion level is min(k;number of o�enses) for
some k. This is like unbounded evaluation
except that the constraint does not distin-
guish among forms with � k o�enses.1

� Directional evaluation. A form's vio-
lation level considers the location of of-
fenses, not their total number. Under left-

� I am grateful to the 3 anonymous referees for feedback.
1Note that k = 1 gives \binary" constraints that can

be described simply as languages. Any k-bounded con-
straint can easily be simulated by k binary constraints.

to-right evaluation, the constraint prefers
forms whose o�enses are as late as possible.
To compare two forms, it aligns them (ac-
cording to their common underlying repre-
sentation), and scans them in parallel from
left to right, stopping at the �rst location
where one form has an o�ense and the other
does not (\sudden death"); it prefers the
latter. Right-to-left evaluation is similar.

x2 of this paper gives linguistic and computa-
tional motivation for the proposal. x3 formalizes
the idea and shows that composing a transducer
with a directional constraint yields a transducer.
Thus directional constraints, like bounded ones,
keep OT within the class of regular relations.
(But we also show them to be more expressive.)

2 Motivation

2.1 Intuitions

Recall that OT's constraint ranking mechanism
is an answer to the question: How can a gram-
mar evaluate a form by aggregating its viola-
tions of several constraints? Above we asked
the same question at a �ner scale: How can a
constraint evaluate a form by aggregating its of-
fenses at several locations? Figure 1 illustrates
that our answer is just constraint ranking redux.

Directional evaluation strictly ranks the im-
portance of the locations within a form, e.g.,
from left to right. This exempli�es OT's \do
only when necessary" strategy: the constraint
prefers to postpone o�enses until they become
strictly necessary toward the right of the form,
even at the cost of having more of them.

One might think from Figure 1 that each di-
rectional constraint could be decomposed into
several binary or other bounded constraints,
yielding a grammar using only bounded con-
straints. However, no single such grammar is
general enough to handle all inputs: the num-
ber of constraints needed for the decomposition
corresponds to the length (i.e., the number of
locations) of the underlying representation.

ban.to.di.bo
ban.ton.di.bo
ban.to.dim.bon
ban.ton.dim.bon

(a) C1 NoCoda

*! *

☞ **

***!

***!*

(b) C1 �1 �2 �3 �4

*! *

* *!

☞ * * *

* *! * *

(c) C1 �4 �3 �2 �1

*! *

☞ * *

*! * *

*! * * *

Figure 1: Directional evaluation as subconstraint ranking. All candidates have 4 syllables; we simplify here
by regarding these as the locations. C1 is some high-ranked constraint that eliminates ban.to.di.bo; NoCoda
is o�ended by syllable codas. (a) Traditional unbounded evaluation of NoCoda. (b) Left-to-right evaluation
of NoCoda, shown as if it were split into 4 constraints evaluating the syllables separately. (c) Right-to-left.

2.2 Iterative and oating phenomena

The main empirical motivation for direction-
ally evaluated constraints is the existence of \it-
erative" phenomena such as metrical footing.
(Derivational theories described these with pro-
cedures that scanned a form from one end to
the other and modi�ed it; see (Johnson, 1972).)
For most other phenomena, directional con-

straints are indistinguishable from traditional
unbounded constraints. Usually, the candidates
with the fewest o�enses are still the ones that
survive. (Since their competitors o�end at ex-
actly the same locations, and more.) This is
precisely because most phonology is local: sat-
isfying a constraint at one location does not usu-
ally block satisfying it at another.
Distinguishing cases, like the arti�cial Fig.

1|where the constraint can only trade o�enses
at one location for o�enses at another|arise
only under special conditions involving non-
local phenomena. Just as directional evaluation
would predict, such a forced tradeo� is always
resolved (to our knowledge) by placing o�enses
as late, or as early, as higher constraints allow:

� Prosodic groupings force each segment or
syllable to choose which constituent (if
any) to associate with. So-called left-to-
right directional syllabi�cation (Mester and
Padgett, 1994) will syllabify /CVCCCV/
greedily as CVC.CV.CV rather than
CV.CVC.CV, postponing epenthetic ma-
terial until as late as possible. Simi-
larly, left-to-right binary footing (Hayes,
1995) prefers (��)(��)� over �(��)(��) or
(��)�(��), postponing unfooted syllables.

� Floating lexical material must surface
somewhere in the form. Floating features
(e.g., tone) tend to dock at the leftmost
or rightmost available site, postponing the
appearance of these marked features. In-
�xed morphemes tend to be in�xed as little

as possible (McCarthy and Prince, 1995),
postponing the appearance of an aÆx edge
or other aÆx material within the stem.2

� Floating non-lexical material must also ap-
pear somewhere. If a high-ranked con-
straint, Culminativity, requires that a
primary stress mark appear on each word,
then a directional constraint against pri-
mary stress will not only prevent additional
marks but also push the single mark to the
�rst or last available syllable|the tradi-
tional \End Rule" (Prince, 1983).

� Harmony must decide how far to spread
features, and OCP e�ects such as Grass-
man's Law must decide which copies of
a feature to eliminate. Again, directional
evaluation seems to capture the facts.

2.3 Why not Generalized Alignment?

In OT, following a remark by Robert Kirch-
ner, it has been traditional to analyze such phe-
nomena using highly non-local Generalized
Alignment (GA) constraints (McCarthy and
Prince, 1993). For example, left-to-right foot-
ing is favored by Align-Left�(Foot, Stem),
which requires every foot to be left-aligned
with a morphological stem. Not only does
each misaligned foot o�end the constraint, but
the seriousness of its o�ense is given by the

2\Available site" and \possible" amount of in�xation
are de�ned here by higher-ranked constraints. These
might restrict the allowed tone-bearing units and the
allowed CV shape after in�xation, but do not fully de-
termine where the oating material will surface.
A referee asks why codas do not also oat (to postpone

NoCoda o�enses). Answer: Flotation requires unusual,
non-local mechanisms. Gen or a constraint must ensure
that an anchored tone sequence resembles the underlying
oating tone sequence, which may be represented on an
auxiliary input tape or (if bounded) as an input pre�x.
But ordinary faithfulness constraints check only whether
underlying material surfaces locally; they would penalize
coda otation as a local deletion plus a local insertion.

number of syllables by which it is misaligned.
These numbers are summed over all o�ending
feet to obtain the violation level. For exam-
ple, [�(��)(��)�(��)]Stem has 1+3+6=10 vio-
lations, and [����(��)(��)]Stem is equally bad
at 4+6=10 violations. Shifting feet leftward or
eliminating them reduces the violation level.
(Stemberger, 1996) argued that GA con-

straints were too powerful. (Ellison, 1995)
showed that no single �nite-state unbounded
constraint could de�ne the same violation lev-
els as a GA constraint. (Eisner, 1997a) showed
more strongly that since GA can be made to
center a oating tone on a phrase,3 no hierar-

chy of �nite-state unbounded constraints could
even de�ne the same optimal candidates as a
GA constraint. Thus GA cannot be simulated
in Ellison's (1994) �nite-state framework (x3.2).
For this reason, as well as the awkwardness

and non-locality of evaluating GA o�enses, we
propose to replace GA with directional con-
straints. Directional constraints appear to more
directly capture the observed phenomena.
We do note that another, trickier possibility is

to eliminate GA in favor of ordinary unbounded
constraints that are indi�erent to the location
of o�enses. (Ellison, 1994) noted that GA con-
straints that evaluated the placement of only
one element (e.g., primary stress) could be re-
placed by simplerNoIntervening constraints.
(Eisner, 1997b) gives a GA-free treatment of the
metrical stress typology of (Hayes, 1995).

2.4 Generative power

It has recently been proposed that for compu-
tational reasons, OT should eliminate not only
GA but all unbounded constraints (Frank and
Satta, 1998; Karttunen, 1998). As with GA,
we o�er the less extreme approach of replacing
them with directional constraints instead.
Recall that a phonological grammar, as usu-

ally conceived, is a description of permissible
(UR, SR) pairs.4 It has long been believed
that naturally occurring phonological grammars
are regular relations (Johnson, 1972; Kaplan
and Kay, 1994). This means that they can
be implemented as �nite-state transducers
(FSTs) that accept exactly the grammatical
pairs. FSTs are immensely useful in perform-

3This is indeed too powerful: centering is unattested.
4UR = underlying representation, SR = surface repn.

ing many relevant tasks rapidly: generation (ob-
taining all possible SRs for a UR), comprehen-
sion (conversely), characterizing the set of forms
on which two grammars (perhaps from di�erent
descriptive frameworks) would di�er, etc. More-
over, FSTs can be applied in parallel to regular
sets of forms. For example, one can obtain a
weighted set of possible SRs (a phoneme lat-
tice) from a speech recognizer, pass it through
the inverse transducer, intersect the resulting
weighted set of URs with the lexicon, and then
extract the best surviving URs.
(Ellison, 1994; Eisner, 1997a) frame OT

within this tradition, by modeling Gen and the
constraints as weighted �nite-state machines
(see x3.2). But although those papers showed
how to generate the set of SRs for a single given
UR, they did not compile the OT grammar into
an FST, or obtain the other bene�ts thereof.
In fact, (Frank and Satta, 1998) showed

that such compilation is impossible in the gen-
eral case of unbounded constraints. To see
why, consider the grammar Max, Dep, Har-
mony[height]� Ident-IO[height]. This gram-
mar insists on height harmony among surface
vowels, but dislikes changes from the UR. The
result is the unattested phenomenon of \ma-
jority assimilation" (Bakovi�c, 1999; Lombardi,
1999): a UR with more high vowels than low
will surface with all vowels high, and vice-versa.
So OT may compare unbounded counts in a way
that an FST cannot and phonology does not.
This suggests that OT with unbounded con-

straints is too powerful. Hence (Frank and
Satta, 1998; Karttunen, 1998) propose using
only bounded constraints. They show this re-
duces OT's power to �nite-state transduction.
The worry is that bounded constraints may

not be expressive enough. A 2-bounded version
of NoCoda would not distinguish among the
�nal three forms in Figure 1: it is agnostic when
the input forces multiple codas in all candidates.
To be sure, a k-bounded approximation may

work well for large k.5 But its automaton (x3.2)
will typically have k times as many states as the
unbounded original, since it unrolls loops: the

5Using the approximate grammar for generation, an
output is guaranteed correct unless it achieves k vio-
lations for some k-bounded constraint. One can then
raise k, recompile the grammar, and try again. But k
may grow quite large for long inputs like phonological
phrases.

state must keep track of the o�ense count. In-
tersecting many such large constraints can pro-
duce very large FSTs|while still failing to cap-
ture simple generalizations, e.g., that all codas
are dispreferred.
In x3, we will show that directional con-

straints are more powerful than bounded
constraints, as they can express such
generalizations|yet they keep us within
the world of regular relations and FSTs.

2.5 Related Work

Walther (1999), working with intersective con-
straints, de�nes a similar notion of Bounded
Local Optimization (BLO). Trommer (1998;
1999) applies a variant of Walther's idea to OT.
The motivation in both cases is linguistic.
We sketch how our idea di�ers via 3 examples:

UR uuuuu uu uuu uuuuu
candidate X vvvbb vv vbb vvvbb
candidate Y vvbaa vvvvbaa vzbaa

Consider �b, a left-to-right constraint that is of-
fended by each instance of b. On our proposal,
candidate X wins in each column, because Y
always o�ends �b �rst, at position 3 in the UR.
But under BLO, this o�ense is not fatal. Y

can survive �b by inserting epenthetic material
(column 2: Y wins by postponing b relative to

the SR), or by changing v to z (column 3: Y ties
X, since vv 6= vz and BLO merely requires the
cheapest choice given the surface output so far).
In the same way, NoCoda under BLO would
trigger many changes unrelated to codas. Our
de�nition avoids these apparent inconveniences.
Walther and Trommer do not consider the ex-

pressive power of BLO (cf. x3.3) or whether
grammars can be compiled into UR-to-SR FSTs
(our main result; see discussion in x3.4).

3 Formal Results

3.1 De�nition of OT

An OT grammar is a pair (Gen; ~C) where

� the candidate generator Gen is a relation
that maps each input to a nonempty set of
candidate outputs;

� the hierarchy ~C = (C1; C2; : : :) is a �nite
tuple of constraint functions that evaluate
outputs.

We write ~C(Æ) for the tuple (C1(Æ); C2(Æ); : : :).

Given a UR, �, as input, the grammar admits

as its SRs all the outputs Æ such that ~C(Æ) is lex-

icographically minimal in f ~C(Æ) : Æ 2 Gen(�)g.
The values taken by Ci are called its viola-

tion levels. Conventionally these are natural
numbers, but any ordered set will do.
Our directional constraints require the fol-

lowing innovations. Each input � is a string as
usual, but the outputs are not strings. Rather,
each candidate Æ 2 Gen(�) is a tuple of j�j + 1
strings. We write Æ for the concatenation of
these strings (the \real" SR). So Æ speci�es an
alignment of Æ with �. The directional con-
straint Ci maps the tuple Æ to a tuple of nat-
ural numbers (\o�ense levels") also of length
j�j+ 1. Its violation levels fCi(Æ) : Æ 2 Gen(�)g
are compared lexicographically.

3.2 Finite-state assumptions

We now con�ne our attention to �nite-state OT
grammars, following (Ellison, 1994; Tesar, 1995;
Eisner, 1997a; Frank and Satta, 1998; Kart-
tunen, 1998). Gen � �� � �� is a regular
relation,6 and may be implemented as an un-
weighted FST. Each constraint is implemented7

as a possibly nondeterministic, weighted �nite-
state automaton (WFSA) that accepts �� and
whose arcs are weighted with natural numbers.
An FST, T , is a �nite-state automaton in

which each arc is labeled with a string pair � :.
Without loss of generality, we require j�j � 1.
This lets us de�ne an aligned transduction
that maps strings to tuples: If � = a1 � � � an,
we de�ne T (�) as the set of (n + 1)-tuples
Æ = (Æ0; Æ1; : : : Æn) such that T has a path trans-
ducing � : Æ along which Æ0 � � � Æi�1 is the com-
plete output before ai is read from the input.
We now describe how to evaluate C(Æ) where

C is a WFSA. Consider the path in C that ac-
cepts Æ.8 In (un)bounded evaluation, C(Æ) is
the total weight of this path. In left-to-right
evaluation, C(Æ) is the n+1 tuple giving the re-
spective total weights of the subpaths that con-
sume Æ0; : : : Æn. In right-to-left evaluation, C(Æ)
is the reverse of the previous tuple.9

6Ellison required only that Gen(�) be regular (8�).
7Space prevents giving the equivalent characteriza-

tion as a locally weighted language (Walther, 1999).
8If there are multiple accepting paths (nondetermin-

ism), take the one that gives the least value of C(Æ).
9This is equivalent to CR(ÆRn ; : : : ; Æ

R

0) where R de-
notes reversal of the automaton or string as appropriate.

3.3 Expressive power

Thanks to Gen, �nite-state OT can trivially im-
plement any regular input-output relation with
no constraints at all! And x3.4 below shows that
whether we allow directional or bounded con-
straints does not a�ect this generative power.
But in another sense, directional constraints

are strictly more expressive than bounded ones.
If Gen is �xed, then any hierarchy of bounded
constraints can be simulated by some hierarchy
of directional constraints10|but not vice-versa.
Indeed, we show even more strongly that di-

rectional constraints cannot always be simu-
lated even by unbounded constraints.11 De�ne
�b as in x2.5. This ranks the set (ajb)n in lexico-
graphic order, so it makes 2n distinctions. Let
Gen be the regular relation

(a :ajb :b)�(c :a(a :ajb :b)� j c :b(a :ajb :bja :bjb :a)�)

We claim that the grammar (Gen; �b) is not
equivalent to (Gen; C1; : : : ; Cs) for any bounded
or unbounded constraints C1; : : : Cs. There is
some k such that for all Æ 2 �n, each Ci(Æ) <
kn.12 So candidates Æ of length n have at most

(kn)s di�erent violation pro�les ~C(Æ). Choose n
such that 2n > (kn)s. Then the set of 2n strings
(ajb)n must contain two distinct strings, Æ =

x1 � � � xn and Æ0 = y1 � � � yn, with ~C(Æ) = ~C(Æ0).
Let i be minimal such that xi 6= yi, and with-
out loss of generality assume xi = a; yi = b. Put
� = x1 � � � xi�1cxi+1 � � � xn. Now Æ; Æ0 2 Gen(�)
and Æ is lexicographically minimal in Gen(�).
So the grammar (Gen; �b) maps � to Æ only,

whereas (Gen; ~C) cannot distinguish between Æ
and Æ0, so it maps � to neither or both.

3.4 Grammar compilation: OT = FST

It is trivial to translate an arbitrary FST gram-

mar into OT: let Gen be the FST, and ~C = ().
The rest of this section shows, conversely, how

to compile a �nite-state OT grammar (Gen; ~C)
into an FST, provided that the grammar uses
only bounded and/or directional constraints.

10How? By using states to count, a bounded con-
straint's WFSA can be transformed so that all the weight
of each path falls on its �nal arc. This de�nes the same
optimal candidates, even when interpreted directionally.

11Nor vice-versa, since only unbounded constraints can
implement non-regular relations (x2.4,x3.4).

12Apply x3.4.4 to eliminate any �'s from the constraint
WDFAs (regarded as outputless transducers), then take
k to exceed all arc weights in the result.

3.4.1 The outer loop of compilation

Let T0 = Gen. For i > 0, we will construct
an FST Ti that implements the partial gram-
mar (Gen; C1; C2; : : : Ci). We construct Ti from
Ti�1 and Ci only: Ti(x) contains the forms
y 2 Ti�1(x) for which Ci(y) is minimal.
If Ci is k-bounded, we use the construction of

(Frank and Satta, 1998; Karttunen, 1998).
If Ci is a left-to-right constraint, we compose

Ti�1 with the WFSA that represents Ci, obtain-
ing a weighted �nite-state transducer (WFST),

T̂i . This transducer may be regarded as assign-
ing a Ci-violation level (an (j�j + 1)-tuple) to
each � : Æ it accepts. We must now prune away
the suboptimal candidates: using the DBP al-
gorithm below, we construct a new unweighted
FST Ti that transduces � : Æ i� the weighted T̂i
can transduce � : Æ as cheaply as any � : Æ0.
If Ci is right-to-left, we do just the same, ex-

cept DBP is used to construct TR
i from T̂R

i .

3.4.2 Directional Best Paths: The idea

All that remains is to give the construction of
Ti from T̂i, which we call Directional Best
Paths (DBP). Recall standard best-paths or
shortest-paths algorithms that pare a WFSA
down to its paths of minimum total weight (Di-
jkstra, 1959; Ellison, 1994). Our greedier ver-
sion does not sum along paths but always im-
mediately takes the lightest \available" arc.
Crucially, available arcs are de�ned relative to

the input string, because we must retain one or
more optimal output candidates for each input.
So availability requires \lookahead": we must
take a heavier arc (b : x below) just when the
rest of the input (e.g., abd) cannot otherwise be
accepted on any path.

1 2
a:a

a: ε

3b:b

5

b:x

4c:c

6
c:c

7

d:cT̂i(abd) = faxc; xcg

T̂i(abc) = fabc; bc; axc; xc
| {z }

suboptimal

g

(xc abbreviates (�; x; c))

On this example, DBP would simply make state
6 non-�nal (forcing abc to take the light arc un-
available to abd), but often it must add states!
This relativization is what lets us compile a

hierarchy of directional constraints, once and for
all, into an single FST that can �nd the optimal
output for any of the in�nitely many possible in-
puts. We saw in x2.4 why this is so desirable. By

contrast, Ellison's (1994) best-paths construc-
tion for unbounded constraints, and previously
proposed constructions for directional-style con-
straints (see x2.5) only �nd the optimal output
for a single input, or at best a �nite lexicon.

3.4.3 Dir. Best Paths: A special case

x3.2 restricted our FSTs such that for every arc
label � : , j�j � 1. In this section we construct

Ti from T̂i under the stronger assumption that
j�j = 1, i.e., T̂i is �-free on the input side.

If Q is the stateset of T̂i, then let the stateset
of Ti be f[q;R;S] : R � S � Q; q 2 S � Rg.
This has size jQj � 3jQj�1. However, most of
these states are typically unreachable from the
start state. Lazy \on-the-y" construction tech-
niques (Mohri, 1997) can be used to avoid allo-
cating states or arcs until they are discovered
during exploration from the start state.
For � 2 ��; q 2 Q, de�ne V (�; q) as the

minimum cost (a j�j-tuple of weights) of any

�-reading path from T̂i's start state q0 to q.
The start state of Ti is [q0; ;; fq0g]. The intent

is that Ti have a path from its start state to
[q;R;S] that transduces � : Æ13 i�

� T̂i has a q0 to q, � :Æ path of cost V (�; q);
� R = fq0 2 Q : V (�; q0) < V (�; q)g; and
� S = fq0 2 Q : V (�; q0) � V (�; q)g.

So as Ti reads �, it \follows" T̂i's cheapest �-
reading paths to q, while calculatingR, to which
yet cheaper (but perhaps dead-end) paths exist.
Let [q;R;S] be a �nal state (in Ti) i� q is �nal

and no q0 2 R is �nal (in T̂i). So an accepting

path in T̂i survives into Ti i� there is no lower-
cost accepting path in T̂i for the same input.
The arcs from [q;R;S] correspond to arcs

from q. For each arc from q to q0 labeled a :
and with weight W, add an unweighted a :
arc from [q;R;S] to [q0;R0;S0], provided that
the latter state exists (i.e., unless q0 2 R0, indi-
cating that there is a cheaper path to q0). Here
R0 is the set of states that are either reachable
from R by a (single) a-reading arc, or reachable
from S by an a-reading arc of weight < W . S0

is the union of R0 and all states reachable from
S by an a-reading arc of weight W .

3.4.4 Dir. Best Paths: The general case

To apply the above construction, we must �rst
transform T̂i so it is �-free on the input side. Of

13Æ is a tuple of j�j+1 strings, but Æ0 = � by �-freeness.

course input �'s are crucial if Gen is to be allowed
to insert unbounded amounts of surface mate-
rial (to be pruned back by the constraints).14

To eliminate �'s while preserving these seman-
tics, we are forced to introduce FST arc labels
of the form a : � where � is actually a regular
set of strings, represented as an FSA or regu-
lar expression. Following �-elimination, we can
apply the construction of x3.4.3 to get Ti, and
�nally convert Ti back to a normal transducer
by expanding each a :� into a subgraph.
When we eliminate an arc labeled � : , we

must push and the arc's weight back onto
a previous non-� arc (but no further; contrast
(Mohri, 1997)). The resulting machine will im-

plement the same aligned transduction as T̂i but
more transparently: in the notation of x3.2, the
arc reading ai will transduce it directly to Æi.

15

Concretely, suppose T̂i can get from state q
to q00 via a path of total weight W that begins
with a : 1 on its �rst arc followed by � : 2,
� : 3, . . . on its remaining arcs. We would like
to substitute an arc from q to q00 with label
a : 123 : : : and weight W . But there may
be in�nitely many such q{q00 paths, of varying
weight, so we actually write a : �, where � de-
scribes just those q{q00 paths with minimumW .
The exact procedure is as follows. Let G be

the possibly disconnected subgraph of T̂i formed
by �-reading arcs. Run an all-pairs shortest-
paths algorithm16 on G. This �nds, for each
state pair (q0; q00) connected by an �-reading
path, the subgraph Gq0;q00 of G formed by the
minimum-weight �-reading paths from q0 to q00,
as well as the common weight Wq0;q00 of these

paths. So for each arc in T̂i from q to q0, with
weight W and label a : , we now add an arc
to T̂i from q to q00 with weight W +Wq0;q00 and
label a : Gq0;q00(�). (G(�) denotes the regular
language to whichG transduces �.) Having done
this, we can delete all �-reading arcs.
The modi�ed �-free T̂i is equivalent to

14As is conventional. Besides epenthetic material, Gen
often introduces copious prosodic structure.

15That arc is labeled ai : � where Æi 2 �. But what is
a0? A special symbol E 2 � that we introduce so that
Æ0 can be pushed back onto it: Before �-elimination, we
modify T̂i by giving it a new start state, connected to
the old start state with an arc E : �. After �-elimination,
we apply DBP and replace E with � in the result Ti.

16(Cormen et al., 1990) cites several, including fast
algorithms for when edge weights are small integers.

the original except for eliminating some
of the suboptimal subpaths. Here is a
graph fragment before and after �-elimination:

1 2a:a
3ε :b

4ε :d

ε :b

ε :c
1

2a:a

3a:ab+

4

a:ad

Note: Right-to-left evaluation applies DBP to
T̂R
i , so consistency with our previous de�nitions

means it must push �'s forward, not backward.

4 Conclusions

This paper has proposed a new notion in OT:
\directional evaluation," where underlying loca-
tions are strictly ranked by their importance.
Traditional �nite-state OT constraints have

enough power to compare arbitrarily high
counts; Generalized Alignment is even worse.
Directional constraints seem to capture the pros
of these constraints: they appropriately mili-
tate against every instance of a disfavored con-
�guration in a candidate form, no matter how
many, and they naturally capture iterative and
edgemost e�ects. Yet they do not have the ex-
cess power: we have shown that an grammar of
directional and/or bounded constraints can be
compiled into a �nite-state transducer. That is
both empirically and computationally desirable.
The most obvious future work comes from lin-

guistics. Can directional constraints do all the
work of unbounded and GA constraints? How
do they change the style of analysis? (E.g., di-
rectional versions of markedness constraints pin
down the locations of marked objects, leaving
lower-ranked constraints no say.) Finally, direc-
tional constraints can be variously formulated
(is *Cluster o�ended at the start or end of
each cluster? or of its enclosing syllable?). So
what conventions or restrictions should apply?

References

Eric Bakovi�c. 1999. Assimilation to the unmarked.
Ms., Rutgers Optimality Archive ROA-340.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
1990. Introduction to Algorithms. MIT Press.

Edsger W. Dijkstra. 1959. A note on two problems
in connexion with graphs. Numerische Mathe-
matik, 1:269{271.

Jason Eisner. 1997a. EÆcient generation in primi-
tive Optimality Theory. In Proc. of the 35th An-
nual ACL and 8th EACL, Madrid, July, 313{320.

Jason Eisner. 1997b. FootForm decomposed: Us-

ing primitive constraints in OT. In Benjamin Bru-
ening, editor, Proc. of SCIL VIII, MIT Working
Papers in Linguistics 31, Cambridge, MA.

T. Mark Ellison. 1994. Phonological derivation in
optimality theory. In Proc. of COLING.

T. Mark Ellison. 1995. OT, �nite-state representa-
tions and procedurality. In Proc. of the Confer-
ence on Formal Grammar, Barcelona.

Robert Frank and Giorgio Satta. 1998. Optimal-
ity Theory and the generative complexity of con-
straint violability. Comp. Ling., 24(2):307{315.

Bruce Hayes. 1995. Metrical Stress Theory: Princi-
ples and Case Studies. U. of Chicago Press.

C. Douglas Johnson. 1972. Formal Aspects of
Phonological Description. Mouton.

Ronald M. Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Computa-
tional Linguistics, 20(3):331{378.

Lauri Karttunen. 1998. The proper treatment of
optimality in computational phonology. In Proc.
of FSMNLP'98, 1{12, Bilkent U., Ankara, Turkey.

Linda Lombardi. 1999. Positional faithfulness and
voicing assimilation in Optimality Theory. Natu-
ral Language and Linguistic Theory, 17:267{302.

John McCarthy and Alan Prince. 1993. Generalized
alignment. In Geert Booij and Jaap van Marle,
editors, Yearbook of Morphology, 79{153. Kluwer.

John McCarthy and Alan Prince. 1995. Faithfulness
and reduplicative identity. In Jill Beckman et al.,
editor, Papers in Optimality Theory, 259{384. U.
of Massachusetts, Amherst: GLSA.

Armin Mester and Jaye Padgett. 1994. Directional
syllabi�cation in Generalized Alignment. Phonol-
ogy at Santa Cruz 3, October.

Mehryar Mohri. 1997. Finite-state transducers in
language & speech processing. Comp. Ling. 23(2).

Alan Prince and Paul Smolensky. 1993. Optimal-
ity Theory: Constraint interaction in generative
grammar. Ms., Rutgers U. and U. of Colorado.

Alan Prince. 1983. Relating to the grid. Linguistic
Inquiry, 14:19{100.

J. P. Stemberger. 1996. The scope of the theory:
Where does beyond lie? In L. McNair, K. Singer,
L. M. Dobrin, and M. M. Aucoin, eds. Papers from
the Parasession on Theory and Data in Linguis-
tics, CLS 23, 139{164. Chicago Linguistic Society.

Bruce Tesar. 1995. Computational Optimality The-
ory. Ph.D. thesis, U. of Colorado, Boulder.

Jochen Trommer. 1998. Optimal morphology. In
T. Mark Ellison, editor, Proc. of the 4th ACL
SIGPHON Workshop, Quebec, July.

Jochen Trommer. 1999. Mende tone patterns revis-
ited: Tone mapping as local constraint evaluation.
In Linguistics in Potsdam Working Papers.

Markus Walther. 1999. One-level prosodic morphol-
ogy. Arbeiten zur Linguistik 1, U. of Marburg.

